
Commun. Fac. Sci. Univ . Ank. Sér. A1 Math. Stat.
Volum e 65, Number 2, Pages 37—45 (2016)
DOI: 10.1501/Commua1_0000000757
ISSN 1303—5991

ON AN EXTENSION OF THE POLAR TAXICAB DISTANCE IN
SPACE

TEMEL ERMİŞ AND ÖZCAN GELİŞGEN

Abstract. The aim of this paper is to provide an alternative distance function
instead of Euclidean distance, which is very much used in navigation and
spherical trigonometry will contribute to advancement of logistics and optimal
facility location on spherical surfaces [8]. In this sense, we extend the polar
taxicab distance function defined in [7] to three dimesional analytical space.

1. Introduction

We live on a spherical Earth rather than on a Euclidean 3- space R3. We must
think of the distance as though a car would drive in the urban geography where
physical obstacles have to be avoided. So, one had to travel through horizontal
and vertical streets to get from one location to another. In this sense, the taxicab
geometry was first introduced by K. Menger [4] and has developed by E. F. Krause
[2]. Let P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be two points in the R3, Z. Akca and
R. Kaya [14] define the taxicab distance in R3 as follow dT (P1, P2) = |x1 − x2| +
|y1 − y2|+ |z1 − z2| . Also, the paths of taxicab distance dT from P1 to P2 as shown
in Figure 1.
Although Euclidean geometry is convenient, taxicab geometry is a better model

than Euclidean geometry for urban world.
Researchers give alternative distance functions of which paths are different from

path of Euclidean metric in the two or three dimensional analytic space. For ex-
ample, G. Chen developed Chinese checker distance in the R2 of which paths are
similar to the movement made by Chinese checker [3]. Afterwards, Ö. Geli̧sgen et.
al. [12] defined Chinese checker distance in the R3 of which paths from P1 to P2

as shown in Figure 2. If P1 = (x1, y1, z1) and P2 = (x2, y2, z2) be any two points in
the R3, then Chinese checker distance is defined by

dCC (P1, P2) = dL (P1, P2) +
(√

2− 1
)
dS (P1, P2)
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Figure 1. The Paths of Taxicab Distance dT

Figure 2. The Paths of Chinese Checker Distance dCC .

where

dS (P1, P2) = min {|x1 − x2|+ |y1 − y2| , |y1 − y2|+ |z1 − z2| , |z1 − z2|+ |x1 − x2|}

and dL (P1, P2) = max {|x1 − x2| , |y1 − y2| , |z1 − z2|} .
S. Tian [13] gave a family of metrics, α−metric (alpha metric) for α ∈ [0, π/4],

which includes the taxicab and Chinese checker metrics as special cases. Then,
Ö. Geli̧sgen and R. Kaya extended the α−distance to three and n dimensional
spaces in [11, 10], respectively. Afterwards, H. B. Çolakoğlu [6] extended the
α−metric for α ∈ [0, π/2) . For λ (α) = (secα- tanα), dα (P1, P2) = dL (P1, P2) +
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Figure 3. The Paths of Alpha Distance dα.

(√
2− 1

)
dS (P1, P2) the paths of alpha metric dα from P1 to P2 as shown in Figure

3.
Later, H. B. Çolakoğlu and R. Kaya [5] give the generalized m−metric Rn which

includes the taxicab, Chinese checker, maximum, and alpha metrics. It is the most
important property of generalized m−metric that its paths are not parallel to the
coordinate axes in n-dimensional analytical space. Finally, H. G. Park et. al. [7]
define the polar taxicab distance dPT in the R2 of which paths composed of arc in
circle and line segments. The polar taxicab metric has very important applications
in urban geography beacuse cities formed not only linear streets but also curvilinear
streets (Figure 4).

Figure 4. (a) Sun city in Arizona (b) Square of the Star in Paris

When we examine the common features of the metrics dM , dT , dCC , dα and
dPT , we see that these metrics were first defined in a planar surface. Considering
distance of air travel or travel over water in terms of Euclidean distance, these
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Figure 5

travels are made through the interior of spherical Earth which is impossible [8].
Using the idea given in [7], we have defined a new alternative metric on spherical
surfaces due to disadvantage and disharmony of Euclidean distance on earth’ s
surface. This metric composed of arc of circle on sphere and line segments will be
denoted dCL. Also another alternative metric on sphere was defined by A. Bayar
and R. Kaya [1].

2. An Alternative Metric In The R3

Let’s remember spherical coordinates, before definition of alternative metric is
given. The Cartesian coordinate of x, y, z of a point can be expressed in terms of
r, φ, θ as shown in the Figure 5 (x = r sinφ cos θ, y = r sinφ sin θ, z = r cosφ).
Now, we define the distance function dCL in the three dimensional analytic space

as follows.

Definition 1. Let P1 = (r1, φ1, θ1) and P2 = (r2, φ2, θ2) be two any points in the
spherical coordinates and the angle ∠P1OP2 is denoted ϕP1P2

. The distance function
dCL is defined by

dCL (P1, P2) =

{
ϕP1P2

×min {r1, r2}+ |r1 − r2| , 0 ≤ ϕP1P2
≤ 2

r1 + r2 , 2 < ϕP1P2
≤ π

where

ϕP1P2
= arcsin

(√
(2− λP1P2

)λP1P2

)
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such that

λP1P2 = (sinφ1 − sinφ2)
2 − sinφ1 sinφ2 [1− cos (θ1 − θ2)] .

The following theorem show that dCL is a metric.

Theorem 2. dCL distance function is a metric in the R3.

Proof. Let A = (r1, φ1, θ1) , B = (r2, φ2, θ2) and C = (r3, φ3, θ3) be any three
points in the spherical coordinates. Without lose of generality, we can take r3 ≥
r2 ≥ r1 ≥ 0. For the sake of simple, the angles ∠AOB, ∠BOC and ∠AOC are
denoted ϕAB , ϕBC and ϕAC , respectively. Consider the sphere with center the
origin and radius ri for i = 1, 2, 3, we write Bri and Cri to mean that the intersec-

tion points of this sphere and the vectors
−→
OB and

−→
OC, respectively. Also the points

A,Br1 and Cr1 are on the sphere with center the origin (0, 0, 0) and radius r1. The
shortest arc length joining these points can be denoted by dCL (A,Br1) , dCL (Br1 , Cr1)
and dCL (A,Cr1) in terms of Definition 1. Using the fact that the triangle inequality
is valid for the spherical triangles, we exactly write dCL (A,Br1)+dCL (Br1 , Cr1) ≥
dCL (A,Cr1) .
To show distance function dCL is the metric, we have proved following axioms

for dCL holds such that for all A,B and C ∈ R3

i) dCL (A,B) ≥ 0, (dCL (A,B) = 0⇐⇒ A = B)

ii) dCL (A,B) = dCL (B,A)

iii) dCL (A,B) + dCL (B,C) ≥ dCL (A,C)

Note that dCL (A,B) ≥ 0 since absolute values, each of r1 and r2 and ϕAB are
non-negative. Thus (i) for distance dCL holds. If A = B, then ϕAB = 0 and
r1 = r2, so this means dCL (A,B) = 0. On the other hand, if dCL (A,B) = 0, then
there are two cases;

Case 1: For 0 ≤ ϕAB ≤ 2;
dCL (A,B) = ϕAB × min {r1, r2} + |r1 − r2| = 0 , each of two terms ϕAB ×
min {r1, r2} and |r1 − r2| must be zero; ϕAB ×min {r1, r2} = 0 and |r1 − r2| = 0.
So, |r1 − r2| = 0 ⇒ r1 = r2 and ϕAB × min {r1, r2} = 0 ⇒ ϕAB = 0 since
min {r1, r2} ≥ 0. So, A = B is obtained.

Case 2: For 2 < ϕAB ≤ π;
dCL (P1, P2) = r1 + r2 = 0, since min {r1, r2} ≥ 0, r1 = r2 = 0. Thus, A = B.

It is clearly that dCL (A,B) = dCL (B,A) . That is dCL is symmetric.

As for final axiom (iii), is known as Triangle Inequality, we have to show that
dCL (A,B) + dCL (B,C) ≥ dCL (A,C) for all A,B and C ∈ R3.
Case 1: Let the angles ϕAB , ϕBC , ϕAC be in [0, 2], then

dCL (A,B) = dCL (A,Br1) + r2 − r1,

dCL (B,C) = dCL (B,Cr2) + r3 − r2.
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Also, we obtain that

dCL (A,B) + dCL (B,C) = dCL (A,Br1) + dCL (B,Cr2) + r3 − r1

= dCL (A,Br1) + dCL (B,Cr2) + dCL (A,C)

−dCL (A,Cr1) .

Therefore,

dCL (A,B)+dCL (B,C)−dCL (A,C)

= dCL (A,Br1) + dCL (B,Cr2)− dCL (A,Cr1)

≥ dCL (A,Br1) + dCL (Br1 , Cr1)− dCL (A,Cr1)

≥ dCL (A,Cr1)− dCL (A,Cr1)

= 0.

Namely, dCL (A,B) + dCL (B,C) ≥ dCL (A,C) .

Case 2: Let the angles ϕAB , ϕBC be in [0, 2] and ϕAC be in (2, π] , then

dCL (A,B) + dCL (B,C) = dCL (A,Br1) + dCL (B,Cr2) + r3 − r1

≥ dCL (A,Br1) + dCL (Br1 , Cr1) + r3 − r1

≥ dCL (A,Cr1) + r3 − r1

≥ r3 + r1

= dCL (A,C) .

Namely, dCL (A,B) + dCL (B,C) ≥ dCL (A,C) .

Case 3: Let the angles ϕAB and ϕAC be in [0, 2] , ϕBC be in (2, π] , then

dCL (A,B) + dCL (B,C) = dCL (A,Br1) + r2 − r1 + r2 + r3

≥ dCL (A,Br1) + 2r2 + dCL (A,C)− dCL (A,Cr1) .

Therefore,

dCL (A,B) + dCL (B,C)− dCL (A,C) = dCL (A,Br1)− dCL (A,Cr1) + 2r2

≥ dCL (A,Br1) + 2r2

≥ 0.

Namely, dCL (A,B) + dCL (B,C) ≥ dCL (A,C) .

Case 4: Let the angles ϕAB be in [0, 2] , ϕBC and ϕAC be in (2, π] , then

dCL (A,B) + dCL (B,C) = dCL (A,Br1) + r2 − r1 + r2 + r3

≥ dCL (A,Br1) + 2r2 + r3

≥ dCL (A,Br1) + r1 + r3

= dCL (A,Br1) + dCL (A,C)
≥ dCL (A,C) .

Namely, dCL (A,B) + dCL (B,C) ≥ dCL (A,C) .
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Case 5: Let the angles ϕAB be in (2, π] , ϕBC and ϕAC be in [0, 2] , then

dCL (A,B) + dCL (B,C) = r1 + r2 + dCL (B,Cr2) + r3 − r2

= dCL (B,Cr2) + r3 + r1

≥ dCL (B,Cr2) + r3 − r1

= dCL (B,Cr2) + dCL (A,C)− dCL (A,Cr1) .

Therefore,

dCL (A,B) + dCL (B,C)− dCL (A,C) = dCL (B,Cr2)− dCL (A,Cr1)
≥ 0.

Namely, dCL (A,B) + dCL (B,C) ≥ dCL (A,C) .

Case 6: Let the angles ϕAB and ϕAC be in (2, π] , ϕBC be in [0, 2] , then

dCL (A,B) + dCL (B,C) = r1 + r2 + dCL (B,Cr2) + r3 − r2

= dCL (B,Cr2) + r3 + r1

≥ r3 + r1

= dCL (A,C) .

Namely, dCL (A,B) + dCL (B,C) ≥ dCL (A,C) .

Case 7: Let the angles ϕAB and ϕBC be in (2, π] , ϕAC be in [0, 2] , then

dCL (A,B) + dCL (B,C) = r1 + r2 + r2 + r3

= 2r2 + r3 + r1

≥ r3 + r1

≥ dCL (A,C) .

Thus, dCL (A,B) + dCL (B,C) ≥ dCL (A,C) .

Case 8: Let the angles ϕAB , ϕBC , ϕAC be in (2, π], then

dCL (A,B) + dCL (B,C) = r1 + r2 + r2 + r3

= 2r2 + r3 + r1

≥ r3 + r1

= dCL (A,C) .

Thus, dCL (A,B) + dCL (B,C) ≥ dCL (A,C) . Therefore dCL holds the triangle
inequality for all cases. Consequently dCL is a metric. �

3. Isometries of R3
CL

For the sake of simplicity, R3 furnished by the metric dCL is denoted R3
CL in the

rest of the article.
A linear transformation T from Rn to Rn is called orthogonal if it preserves

the length of vectors. Also, we know that an orthogonal transformation preserves
angles between vectors. For example, the reflection σ∆ about the plane ∆ that
passing the origin is a example of orthogonal transformations.
Suppose A = (r1, φ1, θ1) and B = (r2, φ2, θ2) are two any points in the spherical

coordinates and let image of the points A and B under transformation σ∆ are
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σ∆ (A) = A∆ and σ∆ (B) = B∆, respectively. Since the reflection σ∆ is a orthogonal
transformations, the distance from the point A∆ to origin is r1 (similarly, the
distance from the point B∆ to origin is r2) and ϕAB = ϕA∆B∆

. If 0 ≤ ϕAB ≤ 2, then
0 ≤ ϕσ∆(A)σ∆(B) ≤ 2. Thus

dCL (A,B) = ϕAB ×min {r1, r2}+ |r1 − r2|
= ϕσ∆(A)σ∆(B) ×min {r1, r2}+ |r1 − r2|
= ϕA∆B∆

×min {r1, r2}+ |r1 − r2|
= dCL (A∆, B∆) .

Namely, we obtain that the equality dCL (A,B) = dCL (A∆, B∆) for 0 ≤ ϕAB ≤ 2.
Similarly, the equality dCL (A,B) = dCL (A∆, B∆) can be easily shown for 2 <
ϕAB ≤ π. Consequently, we have proved the following theorem.

Theorem 3. The reflection σ∆ about the plane ∆ passing through the origin is an
isometry in the R3

CL.

Orthogonal transformations in two or three-dimensional Euclidean space are rigid
rotations, reflections, or combinations of rotations and reflections (also known as
rotary reflection, rotary inversion and inversion). A rotation can be written as the
composition of two distinct reflections about intersecting planes. That is, a rotation
Rφ about axis l is defined by σ∆σΓ where l is line of intersection between planes Γ
and ∆. It is known that the rotation Rφ = σ∆σΓ is an orthogonal transformation
such that two planes Γ and∆ pass through the origin. Therefore, following Theorem
4 can be given similar to Theorem 3. A rotary reflection is an transformation which
is the combination of a rotation about an axis and a reflection in a plane. That is,
a rotary reflection ρ is defined by σΠσ∆σΓ such that Γ and ∆ are two intersecting
planes each perpendicular to plane Π. Also, a rotary reflection ρ = σΠσ∆σΓ is an
orthogonal transformation if the planes Π, ∆ and Γ pass through the origin. A
inversion according to the origin O can be written as the σO(X) = Y such that O
is the midpoint of X and Y for X , Y ∈ R3. Also the inversion σO is an orthogonal
transformation. Finally, rotary inversion is the combination of a rotation and an
inversion in a point. That is, a rotary inversion ϕ is defined by σORφ where Rφ is
a rotation transformation and σO is a inversion according to the origin O. Also a
rotary inversion ϕ = σORφ is a example of orthogonal transformations. In the light
of above explanation, the following theorems can be proven similar to Theorem 3.

Theorem 4. A rotation Rφ with axis l through the origin is an isometry in the
R3
CL.

Theorem 5. Let the planes Π, ∆ and Γ pass through the origin. A rotary reflection
ρ = σΠσ∆σΓ where Γ and ∆ are two intersecting planes each perpendicular to plane
Π is an isometry in the R3

CL.

Theorem 6. A inversion σO according to the origin O is an isometry in the R3
CL.
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Theorem 7. Let Rφ be rotation with axis l through the origin and σO be inversion
according to the origin. A rotary inversion ϕ = σORφ is an isometry in the R3

CL.

Thus, if we again consider the theorems which is mentioned above then we give
following result:
The isometry group of R3

CL is O (3) orthogonal group where O (3) is the sym-
metry group of Euclidean sphere.
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