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Abstract 

In this paper, we study the stochastic lot sizing problem with probabilistic carbon emission 

constraints under the static uncertainty strategy and α service level constraints. We consider both 

the periodic and global carbon emission constraints and guarantee that the carbon emission 

constraints are met with the desired probabilities by using chance constraints. Though this 

problem can be observed in many real life production systems today, to the best of our knowledge, 

this is the first study on this problem. We formulate the problems as mixed integer linear programs 

and solve them by a commercial solver. In our computational experiments, we observe that the 

formulations can be solved for quite large problem instances in reasonable times. We compare 

the probabilistic global and periodic emission constraints according to their effects on the total 

cost and carbon emissions under different parameter settings, and present insights about the 

consequences of using these restrictions.    
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1. INTRODUCTION 

 

The climate change and global warming have started to become one of the most important global problems 

as they negatively affect the social and economic life all over the world.  In a recent study by Burke et al. 

[1], it is stated that if nothing is done, the temperature will increase by 4 degrees Celsius by 2100, and the 

global GDP would fall more than 30 percent from 2010 levels which is worse than the Great Depression. 

Besides, 97 percent of the scientists agree that climate warming is caused by human activities [2]. As a 

precaution, many countries have started to reduce the greenhouse gases caused by production and 

distribution processes by imposing legal restrictions. One of the major policies for carbon emission 

reduction is to limit the carbon emissions of the companies through mandatory emission caps. As a response 

to this development, recently, carbon emission constraints are started to be included in production and 

transportation systems.   

In this study, we consider a production planning problem with carbon emission constraints. More 

specifically, we study the stochastic lot sizing problem where the demand follows a stochastic process, and 

we assume that the firm has a carbon capacity that should be obeyed. We assume that the carbon emission 

is associated with setting up the production environment, production, and keeping inventory. We consider 

different versions of the carbon emission constraints and discuss the complexity of the problem, and the 

effects of the different restrictions on the production strategies and the total carbon emissions.  

 

The lot sizing problem has been studied extensively since the seminal work of Wagner and Whitin [3]. A 

review of the lot sizing problem and its extensions can be found in the book by Pochet and Wolsey [4]. The 

deterministic lot sizing problem with carbon emission constraints was studied by several authors under  

different settings. Benjaafar et al. [5] formulate the lot sizing problems under different carbon emission  
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constraints: carbon capacities, carbon tax, cap-and-trade policy, and carbon offsets. The authors 

investigate the impact of different emission regulations on the management decisions. Absi et al. [6] study 

the multi-sourcing uncapacitated lot sizing problem with periodic, cumulative, global and rolling carbon 

emission constraints. It is assumed that the carbon emission is only caused by production and the 

average/unitary carbon emission at each period should not exceed an allowed amount. For the periodic 

constraints a dynamic programming algorithm is developed, and it is showed that the problem is NP-hard 

under the cumulative and global emission constraints. 

 

Helmrich et al. [7] study the uncapacitated lot sizing problem with global emission constraints where the 

emissions are due to both production and holding inventories. The authors prove that the problem is NP-

hard even if the production is the only cause of carbon emissions and the emission amount is the same for 

each unit produced. Moreover, they show that the problem is still NP-Hard if there exist two production 

modes, the emissions are linear in the production amounts, and either all cost or emission parameters are 

the same for all periods. The authors introduce several (non-polynomial) algorithms to find solutions for 

the problem. 

 

Akbalik and Rapine [8] consider the uncapacitated lot sizing problem with the cap-and-trade carbon policy 

and the global emission capacity constraint. The authors reduce the problem to the classical uncapacitated 

lot sizing problem and consequently, show that the problem is polynomially solvable. Nevertheless, the 

problem becomes NP-hard when there exist budget (capacity) constraints on the carbon emissions.  

 

Romeijn et al. [9] study a bilevel lot sizing problem where the second objective is to minimize the emission 

costs. The authors make use of both the global and the periodic emission constraints to find the Pareto 

efficient solutions to the problems, and they discuss the complexity of the problem under different cost 

structures and emission constraints.  

 

Absi et al. [10] study the uncapacitated lot sizing problem when there exist different production modes with 

different carbon emissions and production costs. It is assumed that the unitary carbon emission at each 

period should not be greater than an allowed amount. The emissions are due to the setups and production 

amounts. The authors show that the problem is NP-hard even if there exist only two production modes and 

there is no cost for holding inventory.  

 

Hong et al. [11] consider the uncapacitated lot sizing problem with two production modes, a regular and a 

green technology, under cap-and-trade policy. The authors consider the periodic emission constraints and 

introduce a dynamic programming algorithm to solve the case where the emission is only due to production. 

 

In all these studies mentioned above, the deterministic version of the lot sizing problem where the demand 

for the next T periods is assumed to be known certainly is considered. However, in most of the real-life 

production systems the demand for the future periods is not known beforehand and estimating the exact 

demand information may be a challenging task. Thus, the deterministic lot sizing problem may not 

appropriately represent these systems. In the stochastic lot sizing problem, to represent real life systems 

better, this assumption is relaxed and it is assumed that the demand is random. 

 

Now we will briefly summarize the related literature on the stochastic lot sizing problem. Silver [12] is one 

of the first studies on the stochastic lot sizing problem where a heuristic method is proposed for the problem. 

Laserre et al. [13] study the stochastic lot sizing problem when there exist capacity restrictions for both 

production and keeping inventory. The authors use chance constraints instead of the stock upper bound 

constraints and reformulate the problem as a deterministic lot sizing problem. Bookbinder and Tan [14] 

consider the stochastic lot sizing problem with α service level constraints, α is the lower bound for the 

probability of satisfying the demand of any period, under the static uncertainty (all the arrangements are 

done beforehand), dynamic uncertainty (decisions are taken dynamically at each period according to the 

demand realizations) and static-dynamic uncertainty (replenishment periods are decided at the beginning 

of the planning horizon, and the amounts that will be produced in these periods are decided dynamically) 
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strategies. The dynamic decision-making structure of dynamic and static-dynamic uncertainty rules result 

in system nervousness even though they might decrease the total system costs [15,16].  

 

Estimating the backlogging or shortage costs might be very hard as they might result in poor customer 

satisfaction which may not be easily quantified [5, 17]. This situation makes the service level constraints 

more popular in the stochastic production planning problems where the backlogging costs are generally 

omitted when the service levels are high (see Chen and Krass [18] for a review of service level constraints). 

 

To the best of our knowledge, there is only one study by Purohit et al. [19] that is related to ours. Purohit 

et al. [19] consider the stochastic lot sizing problem with carbon emission constraints under the static-

dynamic uncertainty strategy where the production periods are determined beforehand but the actual 

production amounts are decided at the beginning of the production periods based on the inventory levels 

observed. As it is stated before, the static-uncertainty strategy is criticized due to the system nervousness it 

causes by the uncertainty of the production plan. Besides, the authors use the expected values of the 

production amounts and inventory levels in the carbon emission constraints which may result in large 

violations in the carbon emission constraints in practice. In this study, we consider the static uncertainty 

rule and use chance constraint versions of the emission constraints which ensure that the emission 

constraints will be satisfied by a certain probability level. 

 

There are also several studies on the EOQ type models with carbon emission constraints (e.g. Ghosh et al. 

[20],  Qiao et al. [21] ) where the demand is assumed to be stationary (time-independent). These studies are 

not related to the lot sizing problems we consider in this paper since the demand is assumed to be dynamic 

(time-dependent) in our setting. 

 

Our contributions. We employ chance constraints in the context of stochastic lot sizing problem under the 

static uncertainty rule with carbon emission constraints. To the best of our knowledge, this is the first study 

on this problem. We develop mixed integer programming formulations that are capable of solving quite 

large problem instances in reasonable times. We also conduct extensive numerical experiments to 

demonstrate the value of proposed modeling approach and the effect of different problem parameters on 

the total costs and the carbon emissions.  

 

This study is important from the practical perspective due to the applicability of the stochastic lot sizing 

problem in different production, procurement and transportation systems. Besides, including carbon 

emission constraints in this problem makes the problem more appropriate for today’s practice.    

 

The rest of the paper is organized as follows. In section 2, we describe the problem and develop our 

formulations. In section 3, we present the results of the computational experiments, and we discuss the 

observations and the future research problems in section 4. 

 

2. PROBLEM DEFINITION AND FORMULATIONS 

 

We consider the stochastic lot sizing problem with service level constraints and carbon emission 

constraints. We search for the production plan for the next T periods. We assume that the demand of period 

t, represented by 𝑑𝑡, has normal distribution with mean 𝜇𝑡 and standard deviation 𝜎𝑡 for 𝑡 = 1, … , 𝑇. 
Besides, demands of different periods are independent from each other. Backlogging is allowed but all 

shortages are satisfied whenever a quantity becomes available. We use 𝛼 service level constraints to restrict 

this case, where 𝛼 is a lower bound for the probability of satisfying the demand of any period. There is no 

production capacity constraint, but the production will be limited due to the carbon emission constraints. 

We assume the static uncertainty strategy; thus, all decisions are taken before the demand is realized. Our 

goal is to determine a feasible production plan that ensures the service level and carbon emission constraints 

with minimum total expected cost.     

 

Let 𝑥𝑡 be the production amount in period t, 𝑦𝑡 = 1 if there will be a production (𝑥𝑡 > 0) in period t and 0 

otherwise, and 𝑠𝑡 be the inventory on hand at the end of period t.  
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We consider the problem under global and periodic carbon emission constraints. With the global carbon 

emission constraints, the carbon emitted from production and keeping inventory is limited over the whole 

planning horizon, whereas in the periodic constraints the carbon emitted at each period is limited separately 

for each period. Let 𝑓𝑡, 𝑝̂𝑡 , ℎ̂𝑡 be the carbon emitted from setting up the production environment, production 

of one unit and keeping a unit in the inventory in period t, respectively. If the demand was not random, then 

the periodic carbon emission constraints would be 

 

 𝑓𝑡𝑦𝑡 +  𝑝̂𝑡𝑥𝑡 + ℎ̂𝑡𝑠𝑡 ≤ 𝐶̂𝑡 𝑡 = 1, … , 𝑇 (1) 

 

where the total carbon emission is limited by 𝐶̂𝑡 for period 𝑡 = 1, … , 𝑇. Similarly, if the demand was not 

random, the global carbon emission constraints would have the form  

 

 ∑(𝑓𝑡𝑦𝑡 +  𝑝̂𝑡𝑥𝑡 + ℎ̂𝑡𝑠𝑡)

𝑇

𝑡=1

≤ 𝐾̂ (2) 

 

where the total carbon emission over the planning horizon is limited by 𝐾̂.  

 

When the demand is random, the inventory on hand at the end of each period 𝑠𝑡 will be a random variable. 

If there is no carbon emission due to keeping inventory, i.e. ℎ̂𝑡 = 0 ∀𝑡, then constraints (1) and (2) could 

be used in the formulation directly. Then, the problem is NP-Hard when 𝑓𝑡, 𝑝̂𝑡  or 𝐶̂𝑡are time-dependent, 

and it is polynomially solvable when all emission parameters are time-invariant, and the cost parameters 

are non-speculative [9]. On the other hand, if keeping inventory also causes carbon emission, then we 

cannot use carbon emission constraints (1) and (2) directly as they include random variables 𝑠.  

 

In this study, we use chance constraints to ensure that probability of satisfying the carbon emission 

constraints is greater than or equal to a threshold value. Chance (probabilistic) constraints are one of the 

well-known approaches to model optimization problems under uncertainty. Chance constrained 

optimization was first introduced by Charnes and Cooper [22], and since then, it is widely applied to many 

different optimization problems including production planning, supply chain management, power systems 

management, and portfolio optimization. The reader is referred to Prekopa [23], Dentcheva [24], and 

Shapiro et al. [25] for more details on the chance constrained optimization models.  

 

We use disjoint (individual) chance constraints which have the following form 

 

Pr{𝑊z ≥ 𝜉} ≥ 𝛼 

 

where 𝑊 is a deterministic vector, z is a decision vector, 𝜉 is a random variable, and 𝛼 is the threshold 

probability level. We will use the probabilistic versions of constraints (1) and (2) with probability levels 𝛽𝑡 

and 𝛾, respectively. In other words, we will use the following chance constraints instead of constraints (1) 

and (2), respectively: 

 

 Pr{𝑓𝑡𝑦𝑡 +  𝑝̂𝑡𝑥𝑡 + ℎ̂𝑡𝑠𝑡 ≤ 𝐶̂𝑡} ≥ 𝛽𝑡 𝑡 = 1, … , 𝑇 (1’) 

 

 

 𝑃𝑟{∑ (𝑓𝑡𝑦𝑡 +  𝑝̂𝑡𝑥𝑡 +  ℎ̂𝑡𝑠𝑡)𝑇
𝑡=1 ≤ 𝐾̂} ≥ 𝛾. (2’) 

 

Let 𝑞𝑡 , 𝑐′𝑡, and 𝑔𝑡 be the setup, unit production and inventory holding costs for period t, respectively. Our 

goal is to determine a production plan which ensures the service level constraints and the probabilistic 

carbon emission constraints with minimum total expected cost. This problem can be formulated as follows. 

 

(𝐿𝑆) 
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 𝑚𝑖𝑛 ∑(𝑞𝑡𝑦𝑡 + 𝑐′𝑡𝑥𝑡 + 𝑔𝑡𝔼[max (𝑠𝑡 , 0)])

𝑇

𝑡=1

    (3) 
 

 𝑠. 𝑡. 𝑠𝑡 =  ∑ 𝑥𝑖

𝑡

𝑖=1

−  ∑ 𝑑𝑖

𝑡

𝑖=1

𝑡 = 1, … , 𝑇 (4) 
 

  Pr{𝑠𝑡 ≥ 0} ≥ 𝛼           𝑡 = 1, … , 𝑇 (5)  
  (1′)  𝑜𝑟 (2′)   
  𝑥𝑡 ≤ 𝑀𝑦𝑡 𝑡 = 1, … , 𝑇 (6)  
  𝑥𝑡 ≥ 0 𝑡 = 1, … , 𝑇 (7a)  
  𝑦𝑡 ∈ {0,1} 𝑡 = 1, … , 𝑇. (7b)  

 

In the objective function (3), the total expected cost due to production and keeping inventory is minimized. 

In constraints (4), the ending inventory for period t is related to the production amounts and the demand. 

Here, without loss of generality, it is assumed that the initial inventory is zero. Constraints (5) are the 𝛼 

service level constraints that ensure that probability of no stockout is at least 𝛼 at any period. Constraints 

(6) relate the production amounts with the setup decisions: if production occurs in period t then setup 

variable should be 1 for period t. The remaining constraints (7) define the types of the decision variables. 

We will call the problem with the probabilistic periodic carbon emission constraints (1’) and the 

probabilistic global carbon emission constraints (2’) as LS-I, and LS-II, respectively.  

 

Since we assume that the demand has normal distribution, and the demand of different periods are 

independent, as it is done in Koca et al. [26], the 𝛼 service level constraints (5) can be written as linear 

constraints 

 Pr{𝑠𝑡 ≥ 0} ≥ 𝛼 𝑡 = 1, … . 𝑇 ⟹ ∑ 𝑥𝑖

𝑡

𝑖=1

≥ 𝑍𝛼𝜎1𝑡 + 𝜇1𝑡 𝑡 = 1, … , 𝑇 (8) 

 

where 𝑍𝛼 is the 𝛼-quantile of the standard normal distribution, 𝜇1𝑡 =  ∑ 𝜇𝑖
𝑡
𝑖=1  is the expected total demand 

until period t, and 𝜎1𝑡 =  √∑ 𝜎𝑖
2𝑡

𝑖=1  is the standard deviation of the total demand until period t. Besides, 

since 𝛼 is assumed to be sufficiently large and shortages are satisfied as soon as possible, the expected total 

inventory cost in the objective function can be estimated as done in Bookbinder and Tan [14]  

 ∑ 𝑔𝑡𝔼[max {st, 0}]

𝑇

𝑡=1

≈ ∑ 𝑔̅𝑡𝑥𝑡 − ∑ 𝑔𝑡𝜇1𝑡

𝑇

𝑡=1

𝑇

𝑡=1

 (9) 

 

where 𝑔̅𝑡 =  ∑ 𝑔𝑖
𝑇
𝑖=𝑡  for 𝑡 = 1, … , 𝑇. Then, we can rewrite the objective function (3) as 

 ∑(𝑞𝑡𝑦𝑡 + 𝑐𝑡𝑥𝑡)

𝑇

𝑡=1

 (10) 

 

where 𝑐𝑡 =  𝑐′𝑡 +  𝑔̅𝑡 for 𝑡 = 1, … , 𝑇.  Note that in the new objective function (10), we ignore the second 

term in the right-hand side of (9) which is a constant.  

 

Now, we focus on the probabilistic periodic carbon emission constraint (1’) for a period t. We will use the 

notation  𝑥1𝑡 = ∑ 𝑥𝑖
𝑡
𝑖=1  and 𝑑1𝑡 = ∑ 𝑑𝑖

𝑡
𝑖=1  to simplify the expressions. The probabilistic constraints can be 

expressed in terms of the cumulative probability distribution 𝐺𝑑1𝑡
of the total demand until period t 
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Pr{𝑓𝑡𝑦𝑡 + 𝑝̂𝑡𝑥𝑡 +  ℎ̂𝑡𝑠𝑡 ≤ 𝐶̂𝑡} = Pr {𝑠𝑡 ≤
𝐶̂𝑡 − 𝑓𝑡𝑦𝑡 −  𝑝̂𝑡𝑥𝑡

ℎ̂𝑡

}

= Pr {𝑥1𝑡 −  𝑑1𝑡 ≤
𝐶̂𝑡 − 𝑓𝑡𝑦𝑡 − 𝑝̂𝑡𝑥𝑡

ℎ̂𝑡

}

= Pr {𝑑1𝑡 ≥
𝑓𝑡𝑦𝑡 +  𝑝̂𝑡𝑥𝑡 + ℎ̂𝑡𝑥1𝑡 − 𝐶̂𝑡

ℎ̂𝑡

}

= 1 − 𝐺𝑑1𝑡
(

𝑓𝑡𝑦𝑡 +  𝑝̂𝑡𝑥𝑡 + ℎ̂𝑡𝑥1𝑡 − 𝐶̂𝑡

ℎ̂𝑡

)

 

and consequently, constraint (1’) can be rewritten as a linear inequality: 

 

 

Pr{𝑓𝑡𝑦𝑡 +  𝑝̂𝑡𝑥𝑡 + ℎ̂𝑡𝑠𝑡 ≤ 𝐶̂𝑡} ≥ 𝛽𝑡 ⇒  
𝑓𝑡

ℎ̂𝑡

𝑦𝑡 +
𝑝̂𝑡

ℎ̂𝑡

𝑥𝑡 + 𝑥1𝑡 ≤
𝐶̂𝑡

ℎ̂𝑡

 +  𝜇1𝑡  +  𝑍1−𝛽𝑡
𝜎1𝑡

⇒ 𝑓𝑡̅𝑦𝑡 + 𝑝̅𝑡𝑥𝑡 +  ∑ 𝑥𝑖

𝑡

𝑖=1

≤ 𝐶𝑡̅

 

 

(11) 

where 𝑓𝑡̅ =  
𝑓̂𝑡

ℎ̂𝑡
, 𝑝̅𝑡 =

𝑝𝑡

ℎ̂𝑡
 and 𝐶𝑡̅ =  

𝐶̂𝑡

ℎ̂𝑡
 +  𝜇1𝑡 + 𝑍1−𝛽𝑡

𝜎1𝑡. As a result, we reformulate LS-I as a mixed integer 

linear program: 

 

(𝐿𝑆 − 𝑃)    

  

𝑚𝑖𝑛 ∑(𝑞𝑡𝑦𝑡 + 𝑐𝑡𝑥𝑡)

𝑇

𝑡=1

 

 

(10) 

  

𝑠. 𝑡. ∑ 𝑥𝑖

𝑡

𝑖=1

≥ 𝑍𝛼𝜎1𝑡 + 𝜇1𝑡            𝑡 = 1, … , 𝑇 
 

(8) 

  

𝑓𝑡̅𝑦𝑡 +  𝑝̅𝑡𝑥𝑡 +  ∑ 𝑥𝑖

𝑡

𝑖=1

≤ 𝐶𝑡̅ 𝑡 = 1, … , 𝑇 
 

(11) 

  (6) − (7).  

 

Note that constraints (8) and (11) are similar to the demand satisfaction and production capacity constraints 

of the classical lot sizing problem. But here the capacity constraints also include the previous production 

amounts. Indeed, constraints (11) are very similar to their deterministic counterparts (1) where the total 

demand until t, 𝑑1𝑡 is replaced by 𝑍1−𝛽𝑡
𝜎1𝑡 +  𝜇1𝑡. Due to Romeijn et al. [9], LS-P is polynomially solvable 

when all emission parameters are time-independent, and it is NP-Hard when 𝑓𝑡̅or 𝑝̅𝑡  are time-variant. In the 

next section, we will present the computational results for this formulation. 

 

Now, we will rewrite the probabilistic global carbon emission constraint (2’) as a linear constraint. The 

probabilistic constraint can be expressed as 
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Pr {∑(𝑓𝑡𝑦𝑡 +  𝑝̂𝑡𝑥𝑡 +  ℎ̂𝑡𝑠𝑡)

𝑇

𝑡=1

≤ 𝐾̂} = Pr {∑ ℎ̂𝑡𝑠𝑡

𝑇

𝑡=1

≤ 𝐾̂ −  ∑ 𝑓𝑡𝑦𝑡

𝑇

𝑡=1
− ∑ 𝑝̂𝑡𝑥𝑡

𝑇

𝑡=1
}

= Pr {∑ ℎ̂𝑡(𝑥1𝑡 − 𝑑1𝑡)

𝑇

𝑡=1

≤ 𝐾̂ −  ∑ 𝑓𝑡𝑦𝑡

𝑇

𝑡=1
−  ∑ 𝑝̂𝑡𝑥𝑡

𝑇

𝑡=1
}

= Pr {∑ ℎ̂𝑡𝑑1𝑡

𝑇

𝑡=1

≥ ∑ 𝑓𝑡𝑦𝑡

𝑇

𝑡=1
+  ∑ 𝑝̂𝑡𝑥𝑡 + ∑ ℎ̂𝑡𝑥1𝑡 − 𝐾̂ 

𝑇

𝑡=1

𝑇

𝑡=1
}

= 1 −  Pr {∑ ℎ̃𝑡𝑑𝑡

𝑇

𝑡=1

≤ ∑ 𝑓𝑡𝑦𝑡

𝑇

𝑡=1
+ ∑ 𝑝̃𝑡𝑥𝑡 − 𝐾̂

𝑇

𝑡=1
}

 

where ℎ̃𝑡 =  ∑ ℎ̂𝑇
𝑖=𝑡 𝑖

 and 𝑝̃𝑡 = 𝑝̂𝑡 + ∑ ℎ̂𝑇
𝑖=𝑡 𝑖

. As 𝑑𝑡 is normally distributed with mean 𝜇𝑡 and standard 

deviation 𝜎𝑡, and as they are independent for each period, ∑ ℎ̃𝑡𝑑𝑡
𝑇
𝑡=1  has also normal distribution with mean 

𝜇̃ =  ∑ ℎ̃𝑡𝜇𝑡
𝑇
𝑡=1  and standard deviation 𝜎̃  =  √∑ ℎ̃𝑡

2𝑇
𝑡=1 𝜎𝑡

2. Thus, constraint (2’) can be rewritten as a linear 

inequality 

 
Pr {∑(𝑓𝑡𝑦𝑡 +  𝑝̂𝑡𝑥𝑡 + ℎ̂𝑡𝑠𝑡)

𝑇

𝑡=1

≤ 𝐾̂} ≥ 𝛾 ⇒ ∑ 𝑓𝑡𝑦𝑡

𝑇

𝑡=1

+ ∑ 𝑝̃𝑡𝑥𝑡

𝑇

𝑡=1

≤ 𝐾̂ + 𝑍1−𝛾𝜎̃ +  𝜇̃.  

 

(12) 

Consequently, LS-II can be reformulated as a mixed integer program by replacing (11) with (12) in the 

formulation LS-P, which will be called as LS-G. Note that LS-G is also NP-Hard even if only 𝑝̃𝑡 is positive 

due to Helmrich et al. [7]. 

 

The mixed integer linear programs LS-P and LS-G are obtained under the normally distributed demand 

assumption. If this is not the case, a closed form formulation for the problems may not be obtained easily; 

but, again, the problems can be formulated as mixed integer programs given that all 𝐺𝑑1𝑡

−1 (. ) values that will 

be used in the models are calculated beforehand.    

 

In the next section, we will present the computational experiments for the formulations LS-P and LS-G and 

discuss their effects on the total costs and the carbon emissions.    

 

3. COMPUTATIONAL EXPERIMENTS 

 

We test the formulations LS-P and LS-G in terms of their capabilities to solve large problem instances and 

investigate the effect of probabilistic carbon emission constraints in the total expected cost and the carbon 

emissions.  

 

We generate test instances as follows. We consider the problem instances for 𝑇 =  50, 100 periods. We 

assume that the unit inventory holding cost (𝑔) is 1 and unit production cost (c) is 5 for all periods. Different 

time-invariant setup costs 𝑞 ∈ {1000, 5000} are considered. We assume that coefficient of variation is 

10%, and the expected demand for each period is determined as 𝜇𝑡 ∼ 𝑈[0.7𝜇, 1.3𝜇] for 𝑡 = 1, … , 𝑇 where 

𝜇 ∈ {100,1000}. The carbon emission parameters are assumed to be time-invariant and selected as follows: 

ℎ̂ = 1, 𝑝̂ = 3, 𝑓 = 0.1𝑞, 𝐶̂  =  𝑎 𝐶𝑚𝑎𝑥 for 𝑎 ∈ {0.03, 0.05, 0.08} when 𝑇 =  50, and 𝑎 ∈
{0.02, 0.03, 0.05, 0.08} when 𝑇 =  100 where 𝐶𝑚𝑎𝑥 is the carbon capacity that allows to produce the 

amount 𝜇1𝑇 + 𝑍𝛼𝜎1𝑇 and keep it in inventory. To be able to compare the models with periodic and global 

emission constraints, we select the global carbon emission capacities as 𝐾̂ = 𝑘𝑇𝐶̂ where 𝑘 ∈ {0.5, 0.8, 1} 

and 𝑘 ∈ {0.2, 0.3, 0.5, 0.8} for 50 and 100 period problem instances, respectively. We assume that 𝛼 = 0.90 

and consider different probability levels for emission constraints: 𝛽𝑡 = 𝛽 for all 𝑡, and 𝛽 =  𝛾 ∈
{0.90, 0.95,0.98}.  

 

We implement the formulations in Gurobi 8.0.1 and perform the experiments on a 2.60 GHz Intel Core i7 

machine with 16GB memory running Windows 10. We set the time limit to 3600 seconds. 
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We first discuss the solution times of LS-P. For each instance group, we report the average solution times 

(for the instances solved to optimality), the percentage of instances that cannot be solved within the time 

limit, and the average final gaps for those instances in Table 1. Note that all 50 period problem instances 

are solved in very short computation times, the average and maximum solution times for these instances 

are 8 and 147 seconds, respectively. Similarly, 100 period instances are also solved in short times when 𝜇 =
1000, the maximum solution times are 2 and 429 seconds for 𝑞 = 1000 and 𝑞 = 5000, respectively. On 

the other hand, we could not solve 33 % of the instances when 𝜇 = 100. We observe that it is harder to 

solve the problem when the setup costs are higher, and the emission capacities are tighter. Similarly, the 

problem becomes difficult when 𝛽 is larger (not reported in Table 1), which makes the modified emission 

capacity 𝐶̅ smaller. As it can be seen from Table 1, we could not solve none of the instances when set up 

cost is 5000, and the emission capacity coefficient is 0.02 and 0.03. But note that the reported average final 

gaps are very small. 

 

We solve the same problem instances with different a and 𝛾 values by LS-G and summarize the results in 

Table 2. We ignore some of the parameter settings that cause infeasibility due to smaller emission 

capacities, such as 𝑎 = 0.03, 𝑘 = 0.5 and 𝛾 = 0.95. We again solve all instances with T = 50 optimally 

within the time limit by LS-G. For 50 period instances, the maximum solution time is 64 seconds, and 

average is 2.43 seconds. When 𝑇 =100, instances with 𝜇 = 1000 are solved approximately in 5 seconds, 

the maximum solution time is 13 seconds for this class. As it can be seen from Table 2, it is harder to solve 

the problem when setup costs are higher and the emission capacities (when 𝑎 × 𝑘 )  are smaller. Note that 

we observe the same result for LS-P.  But, instances with 𝑞 = 5000 are solved in very short times compared 

to LS-P. Only in 57% of the instances with 𝑞 = 5000, 𝑎 × 𝑘 ∈ {0.015, 0.016} LS-G could not be solved 

optimally, the average final gap for these instances is 1.26%. 

 

Table 1. Average solution times and final gaps of LS-P 

𝑇 𝜇 𝑞 a Time (sec) % not solved fgap (%) 

50 100 1000 0.03 6 0% NA 

   0.05 5 0% NA 

   0.08 2 0% NA 

  5000 0.03 1 0% NA 

   0.05 1 0% NA 

   0.08 1 0% NA 

 1000 1000 0.03 26 0% NA 

   0.05 100 0% NA 

   0.08 11 0% NA 

  5000 0.03 3 0% NA 

   0.05 3 0% NA 

   0.08 1 0% NA 

100 100 1000 0.02 1405 33% 0.07 

   0.03 295 33% 0.02 

   0.05 11 0% NA 

   0.08 10 0% NA 

  5000 0.02 NA 100% 0.58 

   0.03 NA 100% 0.52 

   0.05 291 0% NA 

   0.08 47 0% NA 
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 1000 1000 0.02 1 0% NA 

   0.03 1 0% NA 

   0.05 1 0% NA 

   0.08 1 0% NA 

  5000 0.02 340 0% NA 

   0.03 26 0% NA 

   0.05 5 0% NA 

   0.08 4 0% NA 

 

Table 2. Average solution times and final gaps of LS-G 

 

According to the results given in Tables 1 and 2, we conclude that it is harder to solve LS-P, in general. 

Note that when 𝑘 = 1, LS-P and LS-G have the same total emission capacities, but as LS-P has periodic 

capacity constraints it will be more restricted than LS-G. We do not consider the case 𝑘 = 1 when T = 100 

𝑇 𝜇 𝑞 𝑎 × 𝑘 Time (sec) % not solved fgap (%) 

50 100 1000 {0.024, 0.025} 1 0% NA 

   {0.03, 0.04, 0.05} 1 0% NA 

   {0.064, 0.08} 2 0% NA 

  5000 {0.024, 0.025} 16 0% NA 

   {0.03, 0.04, 0.05} 2 0% NA 

   {0.064, 0.08} 2 0% NA 

 1000 1000 {0.024, 0.025} 1 0% NA 

   {0.03, 0.04, 0.05} 1 0% NA 

   {0.064, 0.08} 1 0% NA 

  5000 {0.024, 0.025} 1 0% NA 

   {0.03, 0.04, 0.05} 1 0% NA 

   {0.064, 0.08} 1 0% NA 

100 100 1000 {0.015, 0.016} 25 0% NA 

   {0.024, 0.025} 16 0% NA 

   {0.04, 0.064} 17 0% NA 

  5000 {0.015, 0.016} 180 57% 1.26 

   {0.024, 0.025} 240 0% NA 

   {0.04, 0.064} 483 0% NA 

 1000 1000 {0.015, 0.016} 1 0% NA 

   {0.024, 0.025} 1 0% NA 

   {0.04, 0.064} 1 0% NA 

  5000 {0.015, 0.016} 7 0% NA 

   {0.024, 0.025} 8 0% NA 

   {0.04, 0.064} 10 0% NA 
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since even with 𝑘 = 0.8, the problem is solved in very short times (when 𝑎 = 0.05 and 𝑎 = 0.08), and the 

emission constraints become redundant. 

 

Now we will analyze the effect of carbon emission constraints in the total costs by comparing the objective 

function values of LS-P (and LS-G) and the formulation of classical lot sizing problem with no carbon 

emission constraints which can be obtained by removing (11) from LS-P (called LS’ from now on). We 

compute the percentage increase in the total cost as 
𝑧𝐿𝑆−𝑃− 𝑧𝐿𝑆′

𝑧𝐿𝑆′ ∗ 100 where 𝑧𝐿𝑆−𝑃 and 𝑧𝐿𝑆′
 represent the 

best upper bounds for LS-P and LS’, respectively. Here, if the problem instance is solved to optimality 

within the time limit, then the best upper bound is equal to the optimal value; otherwise it is the best 

objective function value obtained by the solver within the time limit. In Figure 1, the data is grouped as 

𝑞 − 𝜇 − 𝑎 and the average percentage increase in the total cost for each instance group is presented for 50 

and 100 period instances, separately. Since there is no change in the total cost when the modified carbon 

emission capacities 𝐶̅ are larger (i.e. 𝑎 and/or 𝛽 are larger) or 𝜇 = 1000, we do not present the results for 

those instances in the figure.  The numbers above the bars represent the ratio of number of production 

periods in the solutions of LS-P and LS’.  

 

As it can be observed from Figure 1, the total cost is more affected when the setup costs are higher and the 

emission capacity coefficient 𝑎 is smaller. Note that for these instances the ratio of the production periods 

is very large, 8 and 6.2 for 50 and 100 periods, respectively. For example, if the demand for the next 50 

periods is satisfied by producing in 5 periods without carbon emission constraints, now there will be around 

40 production periods. The main reason of this situation is the smaller emission capacities for each period. 

When the modified emission capacities 𝐶̅ are smaller, less amount could be produced in the production 

periods, and therefore the total number of production periods, and consequently the total cost, increases. 

As it is expected, the increase in the total cost is higher when the setup costs are higher. 

 

 
Figure 1. Cost change due to the periodic carbon emission constraints 

 

We make a similar analysis for LS-G. We see that the same solution with LS’ is obtained by LS-G when 

𝑎 × 𝑘 ≥ 0.04 and T = 50, or  𝑎 × 𝑘 ≥ 0.024 and T = 100, which means that the global emission capacity 

is sufficient in these settings. Besides, even when the emission capacities are not sufficiently large to use 

the solution of LS’, smaller increases in the total cost are observed. When T = 50 and 𝑎 × 𝑘 ∈
{0.024, 0.025}, the maximum cost increase is 5.88% which is observed when 𝑞 =  5000 and 𝜇 =  100. 

Only in 18% of the instances the cost change is positive, and the average cost increase is 1.63 % for these 

instances. We observe similar results for the instances with T = 100 and 𝑎 × 𝑘 ∈ {0.015, 0.016}, the 

maximum and average cost increases are 4.35% and 0.81%, respectively, which is seen only in 11% of the 

instances. 

 

The results presented above imply that LS-G is relatively easier to solve, and it results in less cost increase 

compared to LS-P. Now we will compare the carbon emissions of the production plans obtained by LS-P 

and LS-G. As the demand for each period 𝑑𝑡, and consequently the inventory level at the end of each period 

𝑠𝑡 are random, we use simulation to compare the carbon emissions. We select an instance with 𝑇 = 50, 𝑞 =
5000, 𝜇 = 100, 𝛽 = 0.1, 𝑎 = 0.05 for which the emission capacity is 𝐶̂ = 1535.67. We generate the 
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demand of each period with the specified mean 𝜇𝑡 and the standard deviation 𝜎𝑡, and determine the 

inventory level at the end of each period 𝑠𝑡 by implementing the production plans obtained by LS-P or LS-

G. We repeat this process for 100 times and summarize the results in Table 3.  As LS-G restricts the carbon 

emission over the whole planning horizon, the first row (% of periods with violated emission constraints) 

is not applicable (NA) for it.  We observe that there exists approximately one period (out of 50 periods) 

with violated emission constraint when the solution of LS-P is implemented. As it can be seen from Table 

2, violation of periodic emission constraints occurs in 28 instances out of 100 whereas the global emission 

constraints are violated in only 5 instances when k = 0.5, i.e. the total carbon emission capacity of LS-G is 

as half as the total emission capacity of LS-P. Besides, when k = 0.8 no emission constraint is violated in 

the solutions of LS-G, and the same solutions are obtained by LS-G and LS’. The most important result of 

this experiment can be seen in the last row of Table 2: even though the total carbon emission capacity of 

LS-G is half of the total carbon emission capacity of LS-P, we observe less total carbon emission in LS-P. 

The main reason of this situation is the differences between the number of periods of the solutions: in the 

solution of LS-P there exist a production period in every 2 or 3 periods, whereas in the solution of LS-G 

we see a production period in every 5-6 periods. In other words, in LS-G more is produced and kept in the 

inventory compared to LS-P. The emission due to holding inventory is 22% and 43% of the total emission 

occurred in LS-P and LS-G, respectively. 

 

Table 3. Comparison of carbon emissions of LS-P and LS-G 

 
LS-P 

LS-G 

k = 0.5 k = 0.8 

% of periods with violated emission constraints 1.82 NA NA 

% of instances with violated emission constraints 28 5 0 

Average total carbon emission (for 50 periods) 33,313 34,446 43,660 

 

4. CONCLUSIONS 

 

We study the stochastic lot sizing problem with the probabilistic periodic and global carbon emission 

constraints which is not studied in the literature before. We formulate the problem as MIP under the 

assumption that the demand follows normal distribution and solve the formulations by a commercial solver. 

In the computational experiments, we see that both formulations LS-P and LS-G can be solved for quite 

large problem instances in short computation times. These formulations might be tightened, or stronger 

reformulations can be considered (similar to the ones developed for classical LS) in a future research. 

 

Since LS-P is more restrictive it results in more cost increase compared to the case with no emission 

constraints. On the other hand, according to our results the average total carbon emissions of the solutions 

are very close when the total emission capacity of LS-G is as half of the total capacity of LS-P. 

 

Here we consider the problem under the static uncertainty strategy and the α service level constraints. It 

would be interesting to study the similar problems with the other uncertainty strategies, or joint chance 

constraints. 
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