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T3 AND T4-OBJECTS IN THE TOPOLOGICAL CATEGORY OF
CAUCHY SPACES

MUAMMER KULA

Abstract. There are various generalization of the usual topological T3 and
T4 axioms to topological categories defined in [2] and [7]. [7] is shown that
they lead to different T3 and T4 concepts, in general. In this paper, an explicit
characterization of each of the separation properties T3 and T4 is given in
the topological category of Cauchy spaces. Moreover, specific relationships
that arise among the various Ti, i = 0, 1, 2, 3, 4, PreT2, and T2 structures are
examined in this category.

1. Introduction

In general topology and analysis, a Cauchy space is a generalization of metric
spaces and uniform spaces for which the notion of Cauchy convergence still makes
sense. When filters came into existence and uniform spaces were introduced, Cauchy
filters appeared in topological theory as a generalization of Cauchy sequences. The
theory of Cauchy spaces was initiated by H. J. Kowalsky [26]. Cauchy spaces were
introduced by H. Keller [22] in 1968, as an axiomatic tool derived from the idea of
a Cauchy filter in order to study completeness in topological spaces. In that paper
the relation between Cauchy spaces, uniform convergence spaces, and convergence
spaces was developed. In the completion theory of uniform convergence spaces and
convergence vector spaces, Cauchy spaces play an essential role ([19], [25], [39]).
This fact explain why most work on Cauchy spaces deals mainly with completions
([17], [18], [29]). Thus, Cauchy spaces form a useful tool for investigating comple-
tions.
In 1970, the study of regular Cauchy completions was initiated by J. Ramaley and

O. Wyler [36]. Later D. C. Kent and G. D. Richardson ([23], [24]) characterized the
T3 Cauchy spaces which have T3 completions and constructed a regular completion
functor.
In 1968, Keller [22] introduced the axiomatic definition of Cauchy spaces, which

is given briefly in the preliminaries section.
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Filter spaces are generalizations of Cauchy spaces. If we exclude the last of three
Keller’s [22] axioms for a Cauchy space, then the resulting space is what we call a
filter space. In [15], it is shown that the category FIL of filter spaces is isomorphic
to the category of filter meretopic spaces which were introduced by Katětov [21].
The category of Cauchy spaces is also known to be a bireflective, finally dense
subcategory of FIL [35].
The notions of "closedness" and "strong closedness" in set based topological

categories are introduced by Baran [2], [4] and it is shown in [9] that these notions
form an appropriate closure operator in the sense of Dikranjan and Giuli [16] in
some well-known topological categories. Moreover, various generalizations of each
of Ti, i = 0, 1, 2 separation properties for an arbitrary topological category over
SET, the category of sets are given and the relationship among various forms of
each of these notions are investigated by Baran in [2], [7], [8], [10], [12] and [14].
Note that for a T1 topological space X, X is T3 iff (a) X/F is T2 if it is T1, where

F is any nonempty subset of X, iff (b) X/F is PreT2 (i.e., a topological space is
called PreT2 if for any two distinct points, if there is a neighborhood of one missing
the other, then the two points have disjoint neighborhoods) if it is T1, where F be
a nonempty subset of X, iff (c) X/F is PreT2 for all closed ∅ 6= F in X, where
the equivalence of (a), (b), and (c) follow from the facts that for T1 topological
spaces, T2 is equivalent to PreT2, and F is closed iffX/F is T1. Note also that for
a topological space X, (d) X is T4 iffX is T1 and X/F is T3 if it is T1, where F is
any nonempty subset of X.
In view of (c) and (d), in [2], there are four ways of generalizing each of the

usual T3 and T4 separation axioms to arbitrary set based topological categories.
Recall, also, in [2], that there are various ways of generalizing each of the usual
T0 and T2 separation axioms to topological categories. Moreover, the relationships
among various forms of T0-objects and T2-objects are established in [11] and [12],
respectively.
The main goal of this paper is

(1) to give the characterization of each of the separation properties T3 and T4

in the topological category of Cauchy spaces,
(2) to examine how these generalizations are related, and
(3) to show that specific relationships that arise among the various Ti, i =

0, 1, 2, 3, 4, PreT2, and T2 structures are examined in the topological cate-
gory of Cauchy spaces.

2. Preliminaries

The following are some basic definitions and notations which we will use through-
out the paper.
Let E and B be any categories. The functor U : E → B is said to be topological

or that E is a topological category over B if U is concrete (i.e., faithful, amnestic
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and transportable), has small (i.e., sets) fibers, and for which every U-source has
an initial lift or, equivalently, for which each U-sink has a final lift [1].
Note that a topological functor U : E → B is said to be normalized if constant

objects, i.e., subterminals, have a unique structure [1], [10], [32], or [34].
Recall in [1] or [34], that an object X ∈ E (where X ∈ E stands for X ∈Ob E), a

topological category, is discrete iff every map U(X)→ U(Y ) lifts to a map X → Y
for each object Y ∈ E and an object X ∈ E is indiscrete iff every map U(Y )→ U(X)
lifts to a map Y → X for each object Y ∈ E .
Let E be a topological category and X ∈ E . A is called a subspace of X if the

inclusion map i : A→ X is an initial lift (i.e., an embedding) and we denote it by
A ⊂ X.
A filter on a set X is a collection of subsets of X, containing X, which is closed

under finite intersection and formation of supersets (it may contain ∅). Let F(X)
denote the set of filters on X. If α, β ∈ F (X), then β ≥ α if and only if for
each U∈ α, ∃V∈ β such that V ⊆ U , that is equivalent to β ⊃ α. This defines a
partial order relation on F (X) .

·
x = [{x}] is the filter generated by the singleton

set {x} where [·] means generated filter and α∩β = [{ U ∪V | U ∈ α, V ∈ β }] . If
U∩V 6= ∅, for all U∈ α and V∈ β, then α∨β is the filter [{U ∩V | U ∈ α, V ∈ β }] .
If ∃U∈ α and V∈ β such that U∩V=∅, then we say that α ∨ β fails to exist.
Let A be a set and q be a function on A that assigns to each point x of A a set of

filters (proper or not, where a filter δ is proper iff δ does not contain the empty set,
∅, i.e., δ 6= [∅]) (the filters converging to x) is called a convergence structure on A
((A, q) a convergence space (in [34], it is called a convergence space)) iff it satisfies
the following three conditions ([33] p. 1374 or [34] p. 142):
1. [x] = [{x}] ∈ q(x) for each x ∈ A (where [F ] = {B ⊂ A : F ⊂ B}).
2. β ⊃ α ∈ q (x) implies β ∈ q (x) for any filter β on A.
3. α ∈ q(x)⇒ α ∩ [x] ∈ q(x).
A map f : (A, q) → (B, s) between two convergence spaces is called continuous

iff α ∈ q (x) implies f (α) ∈ s (f (x)) (where f (α) denotes the filter generated
by {f (D) : D ∈ α}). The category of convergence spaces and continuous maps is
denoted by CON (in [34] CONV).
For filters α and β we denote by α ∪ β the smallest filter containing both α and

β.

Definition 2.1. (cf. [22]) Let A be a set and K ⊂ F (A) be subject to the following
axioms:
1. [x] = [{x}] ∈ K for each x ∈ A (where [x] = {B ⊂ A : x ∈ B});
2. α ∈ K and β ≥ α implies β ∈ K (i.e., β ⊃ α ∈ K implies β ∈ K for any

filter β on A);
3. if α, β ∈ K and α ∨ β exists (i.e., α ∪ β is proper), then α ∩ β ∈ K.
Then K is a pre-Cauchy (Cauchy) structure if it obeys 1-2 (resp. 1-3) and the

pair (A,K) is called a pre-Cauchy space (Cauchy space), resp. Members of K
are called Cauchy filters. A map f : (A,K) → (B,L) between Cauchy spaces is
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said to be Cauchy continuous (Cauchy map) iff α ∈ K implies f (α) ∈ L (where
f (α) denotes the filter generated by {f (D) : D ∈ α}). The concrete category whose
objects are the pre-Cauchy (Cauchy) spaces and whose morphisms are the Cauchy
continuous maps is denoted by PCHY (CHY), respectively.
2.2 A source {fi : (A,K)→ (Ai,Ki) , i ∈ I} in CHY is an initial lift iff α ∈ K

precisely when fi (α) ∈ Ki for all i ∈ I [30], [35] or [37].
2.3 An epimorphism f : (A,K)→ (B,L) in CHY (equivalently, f is surjective)

is a final lift iff α ∈ L implies that there exists a finite sequence α1, ..., αn of Cauchy
filters in K such that every member of αi intersects every member of αi+1 for all

i < n and such that
n⋂
i=1

f (αi) ⊂ α [30], [35] or [37].

2.4 Let B be set and p ∈ B. Let B ∨p B be the wedge at p ([2] p. 334), i.e., two
disjoint copies of B identified at p, i.e., the pushout of p : 1→ B along itself (where
1 is the terminal object in SET). An epi sink {i1, i2 : (B,K)→ (B ∨p B,L) } ,
where i1, i2 are the canonical injections, in CHY is a final lift if and only if the
following statement holds. For any filter α on the wedge B ∨p B, where either
α ⊃ ik(α1) for some k = 1, 2 and some α1 ∈ K, or α ∈ L, we have that there exist
Cauchy filters α1, α2 ∈ K such that every member of α1 intersects every member
of α2 (i.e., α1 ∪ α2 is proper) and α ⊃ i1α1 ∩ i2α2. This is a special case of 2.3.
2.5 The discrete structure (A,K) on A in CHY is given by K = {[a] | a ∈

A} ∪ {[∅]} [30] or [35].
2.6 The indiscrete structure (A,K) on A in CHY is given by K = F (A) [30]

or [35].

CHY is a normalized topological category. The category of Cauchy spaces is
Cartesian closed, and contains the category of uniform spaces as a full subcategory
[35].
Let B be set and p ∈ B. Let B ∨p B be the wedge at p. A point x in B ∨p B

will be denoted by x1(x2) if x is in the first (resp. second) component of B ∨p B.
Note that p1 = (p, p) = p2.
The principal p−axis map, Ap : B ∨p B → B2 is defined by Ap(x1) = (x, p)

and Ap(x2) = (p, x). The skewed p−axis map, Sp : B ∨p B → B2 is defined by
Sp(x1) = (x, x) and Sp(x2) = (p, x).
The fold map at p, 5p : B ∨p B → B is given by 5p(xi) = x for i = 1, 2 [2], [4].
Note that the maps Sp and 5p are the unique maps arising from the above

pushout diagram for which Spi1 = (id, id) : B → B2, Spi2 = (p, id) : B → B2,
and 5pij = id, j = 1, 2, respectively, where, id : B → B is the identity map and
p : B → B is the constant map at p.
The infinite wedge product ∨∞p B is formed by taking countably many disjoint

copies of B and identifying them at the point p. Let B∞ = B × B × ... be
the countable cartesian product of B. Define A∞p : ∨∞p B → B∞ by A∞p (xi) =
(p, p, ..., p, x, p, ...), where xi is in the i-th component of the infinite wedge and
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x is in the i-th place in (p, p, ..., p, x, p, ...) (infinite principal p-axis map), and
5∞p : ∨∞p B → B by 5∞p (xi) = x for all i ∈ I (infinite fold map), [2], [4].
Note, also, that the map A∞p is the unique map arising from the multiple pushout

of p : 1 → B for which A∞p ij = (p, p, ..., p, id, p, ...) : B → B∞, where the identity
map, id, is in the j-th place [9].

Definition 2.2. (cf. [2], [4]) Let U : E → SET be a topological functor, X an
object in E with U(X) = B. Let F be a nonempty subset of B. We denote by X/F
the final lift of the epi U−sink q : U(X) = B → B/F = (B\F ) ∪ {∗}, where q is
the epi map that is the identity on B\F and identifying F with a point ∗ [2].
Let p be a point in B.

(1) X is T1 at p iff the initial lift of the U−source {Sp : B∨pB → U(X2) = B2

and 5p : B∨pB → UD(B) = B} is discrete, where D is the discrete functor
which is a left adjoint to U .

(2) p is closed iff the initial lift of the U−source {A∞p : ∨∞p B → U(X∞) = B∞

and ∇∞p : ∨∞p B → UD(B) = B} is discrete.
(3) F ⊂ X is closed iff {∗}, the image of F , is closed in X/F or F = ∅.
(4) F ⊂ X is strongly closed iff X/F is T1 at {∗} or F = ∅.
(5) If B = F = ∅, then we define F to be both closed and strongly closed.

3. T2-Objects

Recall, in [2] and [12], that there are various ways of generalizing the usual
T2 separation axiom to topological categories. Moreover, the relationships among
various forms of T2-objects are established in [12].
Let B be a nonempty set, B2 = B×B be cartesian product of B with itself and

B2 ∨∆ B2 be two distinct copies of B2 identified along the diagonal. A point (x, y)
in B2 ∨∆B2 will be denoted by (x, y)1(or (x, y)2) if (x, y) is in the first (or second)
component of B2 ∨∆ B2, respectively. Clearly (x, y)1 = (x, y)2 iff x = y [2].
The principal axis map A : B2 ∨∆ B2 → B3 is given by A(x, y)1 = (x, y, x)

and A(x, y)2 = (x, x, y). The skewed axis map S : B2 ∨∆ B2 → B3 is given by
S(x, y)1 = (x, y, y) and S(x, y)2 = (x, x, y) and the fold map, ∇ : B2 ∨∆ B2 → B2

is given by ∇(x, y)i = (x, y) for i = 1, 2. Note that π1S = π11 = π1A, π2S =
π21 = π2A, π3A = π12, and π3S = π22, where πk : B3 → B the k-th projection
k = 1, 2, 3 and πij = πi + πj : B2 ∨∆ B2 → B, for i, j ∈ {1, 2} [2].

Definition 3.1. (cf. [2] and [10]) Let U : E → SET be a topological functor, X an
object in E with U(X) = B.

(1) X is T 0 iff the initial lift of the U-source {A : B2 ∨∆ B2 → U(X3) = B3

and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete, where D is the discrete
functor which is a left adjoint to U .

(2) X is T ′0 iff the initial lift of the U-source {id : B2∨∆B
2 → U(B2∨∆B

2)
′

=

B2∨∆B
2 and∇ : B2∨∆B

2 → UD(B2) = B2} is discrete, where (B2∨∆B
2)

′
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is the final lift of the U-sink {i1, i2 : U(X2) = B2 → B2 ∨∆ B2} and D(B2)
is the discrete structure on B2. Here, i1 and i2 are the canonical injections.

(3) X is T0 iff X does not contain an indiscrete subspace with (at least) two
points [31] or [40].

(4) X is T1 iff the initial lift of the U-source {S : B2 ∨∆ B2 → U(X3) = B3

and ∇ : B2 ∨∆ B2 → UD(B2) = B2} is discrete.
(5) X is PreT 2 iff the initial lifts of the U-source {A : B2 ∨∆ B2 → U(X3) =

B3} and {S : B2 ∨∆ B2 → U(X3) = B3} coincide.
(6) X is PreT ′2 iff the initial lift of the U-source {S : B2∨∆B

2 → U(X3) = B3}
and the final lift of the U-sink {i1, i2 : U(X2) = B2 → B2 ∨∆ B2} coincide,
where i1 and i2 are the canonical injections.

(7) X is T 2 iffX is T 0 and PreT 2 [2].
(8) X is T ′2 iffX is T ′0 and PreT

′
2 [2].

(9) X is ST2 iff∆, the diagonal, is strongly closed in X2 [4].
(10) X is ∆T2 iff∆, the diagonal, is closed in X2 [4].
(11) X is KT2 iffX is T ′0 and PreT 2 [12].
(12) X is LT2 iffX is T 0 and PreT ′2 [12].
(13) X is MT2 iffX is T0 and PreT ′2 [12].
(14) X is NT2 iffX is T0 and PreT 2 [12].

Remark 3.1. 1. Note that for the category TOP of topological spaces, T 0, T ′0, T0,
or T1, or PreT 2, PreT ′2, or all of the T2’s in Definition 3.1 reduce to the usual T0,
or T1, or PreT2 (where a topological space is called PreT2 if for any two distinct
points, if there is a neighborhood of one missing the other, then the two points have
disjoint neighborhoods), or T2 separation axioms, respectively [2].
2. For an arbitrary topological category,
(i) By Theorem 3.2 of [11] or Theorem 2.7(1) of [12], T 0 implies T ′0 but the

converse of implication is generally not true. Moreover, there are no further im-
plications between T 0 and T0 (see [11] 3.4(1) and (2)) and between T ′0 and T0 (see
[11] 3.4(1) and (3)).
(ii) By Theorem 3.1(1) of [6], if X is PreT ′2, then X is PreT 2. But the converse

of implication is generally not true.

Definition 3.2. A Cauchy space (A,K) is said to be T2 if and only if x = y,
whenever [x] ∩ [y] ∈ K [38].

Theorem 3.1. [27] Let (A,K) be a Cauchy space.

(1) (A,K) in CHY is T 0 iff it is T0 iff it is T1 iff for each distinct pair x and
y in A, we have [x] ∩ [y] /∈ K.

(2) All objects (A,K) in CHY are T ′0.
(3) All objects (A,K) in CHY are PreT 2.
(4) (A,K) is PreT ′2 iff for each pair of distinct points x and y in A, we have

[x] ∩ [y] ∈ K(equivalently, for each finite subset F of A, we have [F ] ∈ K).
(5) (A,K) is T 2 iff for each distinct pair x and y in A, we have [x]∩ [y] /∈ K.
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(6) (A,K) is T ′2 iff for each distinct points x and y in A, we have [x] ∩ [y] ∈
K(equivalently, for each finite subset F of A, we have [F ] ∈ K).

Remark 3.2. If a Cauchy space (A,K) is T 0 or T0 (T1) then it is T ′0. How-
ever, the converse is not true generally. For example, let A = {x, y} and K =
{[x] , [y] , [{x, y}] , [∅]}. Then (A,K) is T ′0 but it is not T 0 or T0 (T1) [27].

Remark 3.3. If a Cauchy space (A,K) is PreT ′2 then it is PreT 2. However,
the converse is not true, in general. For example, let A = {x, y} and K =
{[x] , [y] , [∅]}. Then (A,K) is PreT 2 but it is not PreT ′2 [27].

Remark 3.4. Let (A,K) be in CHY. By Theorem 3.1(5) and 3.6, the following
are equivalent:
(a) (A,K) is T 2 and T ′2.
(b) A is a point or the empty set [27].

Corollary 3.1. Let (A,K) be in CHY. (A,K) is ST2 iff it is ∆T2 iff for each
pair of distinct points x and y in A and for any α, β ∈ K, α ∪ β is improper if
α ⊂ [x] and β ⊂ [y] [27].

Remark 3.5. Let (A,K) be in CHY. By Remark 4.5 (2) of [28], (A,K) is T 2 iff
(A,K) is ST2 or ∆T2.

Remark 3.6. ([3], p. 106) Let α and β be filters on A. If f : A→ B is a function,
then f (α ∩ β) = fα ∩ fβ.

Let (A,K) be in CHY, and F be a nonempty subset of A. Let q : (A,K) →
(A/F,L) be the quotient map that identifying F to a point, ∗ [2].

Theorem 3.2. If (A,K) is T ′2, then (A/F,L) is T ′2.

Proof. Suppose (A,K) is T ′2. Hence, for each distinct points x and y in A, we
have [x] ∩ [y] ∈ K by Theorem 3.1(6). If x and y in F , then q(x) = [∗] = q(y)
and q([x] ∩ [y]) = q([x]) ∩ q([y]) = [∗] ∈ L, by definition of the quotient map
and Remark 3.6, where L is the structure on A/F induced by q. If x /∈ F and
y /∈ F , then q(x) = [x], q(y) = [y] and q([x] ∩ [y]) = q([x]) ∩ q([y]) = [x] ∩ [y] ∈ L,
by definition of the quotient map and Remark 3.6. If x /∈ F and y ∈ F , then
q(x) = [x], q(y) = [∗] and q([x]∩ [y]) = q([x])∩q([y]) = [x]∩ [∗] ∈ L, by definition of
the quotient map and Remark 3.6. Similarly, if x ∈ F and y /∈ F , then q(x) = [∗],
q(y) = [y] and q([x] ∩ [y]) = q([x]) ∩ q([y]) = [∗] ∩ [y] ∈ L, by definition of the
quotient map and Remark 3.6.
Consequently for each distinct points a and b in A/F , we have [a] ∩ [b] ∈ L.

Hence by Theorem 3.1(6), (A/F,L) is T ′2. �

Theorem 3.3. If (A,K) is T 2, then (A/F,L) is T 2.

Proof. Suppose (A,K) is T 2. Let a and b be any distinct pair of points in A/F . By
Theorem 3.1(5), we only need to show that [a] ∩ [b] /∈ L, where L is the structure



36 MUAMMER KULA

on A/F induced by q. Suppose that a 6= ∗ and [a] , [∗] ∈ L implies ∃ [a] , [y] ∈ K
such that [a] ⊇ q([a]), [∗] ⊇ q([y]), and x = qx = a, qy = ∗ for any y ∈ F . If
[a] ∩ [∗] ∈ L, then [a] ∩ [y] ∈ K, by definition of the quotient map and Remark 3.6.

But [a]∩ [y] /∈ K since (A,K) is
−
T2. Hence [a]∩ [∗] /∈ L. Similarly, if a 6= b 6= ∗ and

[a] , [b] ∈ L implies ∃ [a] , [b] ∈ K such that [a] ⊇ q([a]), [b] ⊇ q([b]), and x = qx = a,
qb = b. If [a] ∩ [b] ∈ L, then [a] ∩ [b] ∈ K, by definition of the quotient map and
Remark 3.6. But [a] ∩ [b] /∈ K since (A,K) is T 2. Hence [a] ∩ [b] /∈ L.
Consequently for each distinct points a and b in A/F , we have [a] ∩ [b] /∈ L.

Hence by Theorem 3.1(5), (A/F,L) is T 2. �
Theorem 3.4. If (A,K) is PreT 2, then (A/F,L) is PreT 2.

Proof. It follows from Theorem 3.1(3). �
Theorem 3.5. If (A,K) is PreT ′2, then (A/F,L) is PreT ′2.

Proof. It follows from Theorem 3.1(4) and by using the same argument used in the
proof of Theorem 3.2. �
Theorem 3.6. Let (A,K) be in CHY. ∅ 6= F ⊂ A is closed iff for each a ∈ A
with a /∈ F and for all α ∈ K, α ∪ [F ] is improper or α * [a] [27].

Theorem 3.7. Let (A,K) be in CHY. ∅ 6= F ⊂ A is strongly closed iff for each
a ∈ A with a /∈ F and for all α ∈ K, α ∪ [F ] is improper or α * [a] [27].

Lemma 3.1. Let α and β be proper filters on A. Then qα∪ qβ is proper iff either
α ∪ β is proper or α ∪ [F ] and β ∪ [F ] are proper [5].

Theorem 3.8. If (A,K) is ST2 (or ∆T2) and F is (strongly) closed, then (A/F,L)
is ST2 (or ∆T2).

Proof. Let a and b be any distinct pair of points in A/F and α ⊂ [a], β ⊂ [b] be in
L, where L is the structure on A/F induced by q. If α∪β is improper, then we are
done by Corollary 3.1. Suppose that α∪ β is proper. q is the quotient map implies
∃α1 ∈ K and ∃β1 ∈ K such that α ⊃ qα1, β ⊃ qβ1, and qx = a, qy = b. Note that
qα∪ qβ is proper and by Lemma 2.13 (see [5] p. 165 Lemma 2.13), either α1∪β1 is
proper or α1 ∪ [F ] and β1 ∪ [F ] are proper. The first case can not hold since x 6= y
and (A,K) is ST2 (or ∆T2). Since a 6= b, we may assume x ∈ F . We have α1 ∈ K
and since F is (strongly) closed by Theorem 3.6 (3.7), α1 ∪ [F ] is improper. This
shows that the second case also can not hold. Therefore, α ∪ β must be improper
and, by Definition 3.1 (9) (3.1 (10)), we have the result. �
Theorem 3.9. All objects (A,K) in CHY are KT2.

Proof. It follows from Definition 3.1, Theorem 3.1(2) and 3.3. �
Theorem 3.10. (A,K) in CHY is LT2 iff A is a point or the empty set.

Proof. It follows from Definition 3.1, Theorem 3.1(1) and 3.4. �
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Theorem 3.11. (A,K) in CHY is MT2 iff A is a point or the empty set.

Proof. It follows from Definition 3.1, Theorem 3.1(1) and 3.4. �
Theorem 3.12. (A,K) in CHY is NT2 iff for each distinct pair x and y in A,
[x] ∩ [y] /∈ K.
Proof. It follows from Definition 3.1, Theorem 3.1(1) and 3.3. �
Remark 3.7. (1) If a Cauchy space (A,K) is LT2(MT2) then it is KT2. How-

ever, the converse is not true, in general. For example, let A = {x, y} and
K = {[x] , [y] , [∅]}. Then (A,K) is KT2 but it is not LT2(MT2).

(2) If a Cauchy space (A,K) is NT2 then it is KT2. However, the con-
verse is not true, in general. For example, let A = {x, y} and K =
{[x] , [y] , [{x, y}] , [∅]}. Then (A,K) is KT2 but it is not NT2.

(3) If a Cauchy space (A,K) is LT2(MT2) then it is NT2. However, the
converse is not true, in general. For example, let A = {x, y} and K =
{[x] , [y] , [∅]}. Then (A,K) is NT2 but it is not LT2(MT2).

4. T3-Objects

We now recall, ([2], [7] and [13]), various generalizations of the usual T3 sepa-
ration axiom to arbitrary set based topological categories and characterize each of
them for the topological categories CHY.

Definition 4.1. (cf. [2], [7] and [13]) Let U : E → SET be a topological functor,
X an object in E with U(X) = B. Let F be a non-empty subset of B.

(1) X is ST 3 iff X is T1 and X/F is PreT 2 for all strongly closed F 6= ∅ in
U (X).

(2) X is ST ′3 iff X is T1 and X/F is PreT ′2 for all strongly closed F 6= ∅ in
U (X).

(3) X is T 3 iffX is T1 and X/F is PreT 2 for all closed F 6= ∅ in U (X).
(4) X is T ′3 iffX is T1 and X/F is PreT ′2 for all closed F 6= ∅ in U (X).
(5) X is KT3 iffX is T1 and X/F is PreT 2 if it is T1, where F 6= ∅ in U (X).
(6) X is LT3 iffX is T1 and X/F is PreT ′2 if it is T1, where F 6= ∅ in U (X).
(7) X is ST3 iffX is T1 and X/F is ST2 if it is T1, where F 6= ∅ in U (X).
(8) X is ∆T3 iffX is T1 and X/F is ∆T2 if it is T1, where F 6= ∅ in U (X).

Remark 4.1. 1. For the category TOP of topological spaces, all of the T3’s reduce
to the usual T3 separation axiom (cf. [2], [7] and [13]).
2. If U : E → B, where B is a topos [20], then Parts (1), (2), and (5)-(8)of De-

finition 4.1 still make sense since each of these notions requires only finite products
and finite colimits in their definitions. Furthermore, if B has infinite products and
infinite wedge products, then Definition 4.1 (4), also, makes sense.

Theorem 4.1. (A,K) in CHY is ST 3 iff for each distinct pair x and y in A,
[x] ∩ [y] /∈ K.
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Proof. It follows from Definition 4.1, Theorem 3.1(1), 3.3 and 3.4. �

Theorem 4.2. (A,K) in CHY is ST ′3 iff A is a point or the empty set.

Proof. Suppose (A,K) is ST ′3 and CardA > 1. Since (A,K) is T1, by Theorem
3.1(1), for each distinct pair x and y in A, we have [x] ∩ [y] /∈ K. If α is in
K, q(α) ∈ L, where L is the structure on A/F induced by q. Since (A/F,L) is
PreT ′2, by Theorem 3.1(4), for each pair of distinct points a and b in A/F , we have
[a] ∩ [b] ∈ L. If a 6= ∗ and b 6= ∗, then it is easy to see that q(α) = [a] ∩ [b] ∈ L ⇒
q−1(q(α)) = q−1([a] ∩ [b]) =[a] ∩ [b] ⊆ α and consequently α = [a] ∩ [b] ∈ K. This
contradicts the fact that (A,K) is T1. If a 6= ∗ = b, then it follows easily that for
each y 6= ∗ in A/F , [{y, ∗}] /∈ L since F is closed. This contradicts the fact that
(A/F,L) is PreT ′2. Hence CardA ≤ 1.
Conversely, A = {x}, i.e., a singleton, then clearly, by Definition 4.1, (A,K) is

ST ′3. �

Theorem 4.3. (A,K) in CHY is T 3 iff for each distinct pair x and y in A,
[x] ∩ [y] /∈ K.

Proof. It follows from Definition 4.1, Theorem 3.1(1), 3.3 and 3.4. �

Theorem 4.4. (A,K) in CHY is T ′3 iff A is a point or the empty set.

Proof. It follows from Definition 4.1, Theorem 3.1(1) and by using the same argu-
ment used in the proof of Theorem 4.2. �

Theorem 4.5. (A,K) in CHY is KT3 iff for each distinct pair x and y in A,
[x] ∩ [y] /∈ K.

Proof. It follows from Definition 4.1, Theorem 3.1(1) and 3.3. �

Theorem 4.6. (A,K) in CHY is LT3 iff A is a point or the empty set.

Proof. It follows from Definition 4.1, Theorem 3.1(1) and 3.4. �

Theorem 4.7. (A,K) in CHY is ST3 iff for each pair of distinct points x and y
in A and for any α, β ∈ K, α ∪ β is improper if α ⊂ [x] and β ⊂ [y].

Proof. It follows from Definition 4.1, Theorem 3.1(1) and Remark 4.5 (1) in [28]
(i.e., (A,K) is T1 iff (A,K) is ST2 or ∆T2). �

Theorem 4.8. (A,K) in CHY is ∆T3 iff for each pair of distinct points x and y
in A and for any α, β ∈ K, α ∪ β is improper if α ⊂ [x] and β ⊂ [y].

Proof. It follows from Definition 4.1, Theorem 3.1(1) and Remark 4.5 (1) in [28]
(i.e., (A,K) is T1 iff (A,K) is ST2 or ∆T2). �



T3 AND T4-OBJECTS IN CHY 39

5. T4-Objects

We now recall various generalizations of the usual T4 separation axiom to ar-
bitrary set based topological categories that are defined in [2], [7] and [13], and
characterize each of them for the topological categories CHY.

Definition 5.1. (cf. [2], [7] and [13]) Let U : E → SET be a topological functor
and X an object in E with U(X) = B. Let F be a non-empty subset of B.

(1) X is ST 4 iffX is T1 and X/F is ST 3 for all strongly closed F 6= ∅ in U (X).
(2) X is ST ′4 iffX is T1 and X/F is ST ′3 for all strongly closed F 6= ∅ in U (X).
(3) X is T 4 iffX is T1 and X/F is T 3 for all closed F 6= ∅ in U (X).
(4) X is T ′4 iffX is T1 and X/F is X/F is T ′3 for all closed F 6= ∅ in U (X).

Remark 5.1. 1. For the category TOP of topological spaces, all of the T4’s reduce
to the usual T4 separation axiom ([2], [7] and [13]).
2. If U : E → B, where B is a topos [20], then Definition 5.1 still makes sense

since each of these notions requires only finite products and finite colimits in their
definitions.

Theorem 5.1. (A,K) in CHY is ST 4 iff for each distinct pair x and y in A,
[x] ∩ [y] /∈ K.

Proof. It follows from Definition 5.1, Theorem 3.1(1) and 4.1. �

Theorem 5.2. (A,K) in CHY is ST ′4 iff A is a point or the empty set.

Proof. It follows from Definition 5.1, Theorem 3.1(1) and 4.2. �

Theorem 5.3. (A,K) in CHY is T 4 iff for each distinct pair x and y in A,
[x] ∩ [y] /∈ K.

Proof. It follows from Definition 5.1, Theorem 3.1(1) and 4.3. �

Theorem 5.4. (A,K) in CHY is T ′4 iff A is a point or the empty set.

Proof. It follows from Definition 5.1, Theorem 3.1(1) and 4.4. �

Remark 5.2. Let (A,K) be a Cauchy space. It follows from Theorem 3.12, 4.1,
4.3, 4.5, 5.1, 5.3, Definition 3.1, 4.1 and 5.1 that (A,K) is NT2 iff (A,K) is ST 3

iff (A,K) is T 3 iff (A,K) is KT3 iff (A,K) is ST 4 iff (A,K) is T 4 iff for each
distinct pair x and y in A, [x] ∩ [y] /∈ K.

Remark 5.3. Let (A,K) be a Cauchy space. It follows from Theorem 3.10, 3.11,
4.2, 4.4, 4.6, 5.2, 5.4, Definition 3.1, 4.1 and 5.1 that (A,K) is ST ′3 iff (A,K) is
T ′3 iff (A,K) is LT2 iff (A,K) is MT2 iff (A,K) is LT3 iff (A,K) is ST ′4 iff (A,K)
is T ′4 iff A is a point or the empty set.

We can infer the following results.
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Remark 5.4. Let (A,K) be in CHY .
1. By Theorem 3.1(1), 4.1, 4.3, 4.5, Corollary 3.1 and Remark 5.2, (A,K) is

T1 iff it is T0 iff it is T 0 iff (A,K) is ST 3 iff it is T 3 iff it is KT3 iff (A,K) is ST 4

iff it is T 4 iff (A,K) is ST2 or ∆T2 iff (A,K) is ST3 or ∆T3 iff (A,K) is NT2.
2. By Theorem 3.1(5), Remark 3.5, Theorem 4.1, 4.3, 4.5, Corollary 3.1 and

Remark 5.2, (A,K) is T 2 iff (A,K) is ST 3 iff (A,K) is T 3 iff (A,K) is KT3 iff
(A,K) is ST 4 iff (A,K) is T 4 iff (A,K) is ST2 or ∆T2 iff (A,K) is ST3 or ∆T3

iff (A,K) is NT2.
3. By Theorem 3.1(2), 4.1, 4.3, 4.5, Corollary 3.1 and Remark 5.2, if (A,K)

is ST 3 or T 3 or KT3 or ST 4 or T 4 or ST2 or ∆T2 or ST3 or ∆T3 or NT2, then
(A,K) is T ′0. But the converse of implication is not true, in general. For example,
let A = {x, y} and K = {[x] , [y] , [{x, y}] , [∅]}. Then (A,K) is T ′0 but it is not
ST 3 or T 3 or KT3 or ST 4 or T 4 or ST2 or ∆T2 or ST3 or ∆T3 or NT2.
4. By Theorem 3.1(3), 4.1, 4.3, 4.5, Corollary 3.1 and Remark 5.2, if (A,K)

is ST 4 or T 3 or KT3 or ST 4 or T 4 or ST2 or ∆T2 or ST3 or ∆T3 or NT2, then
(A,K) is PreT 2. But the converse of implication is not true, in general. For
example, let A = {x, y} and K = {[x] , [y] , [{x, y}] , [∅]}. Then (A,K) is PreT 2

but it is not ST 3 or T 3 or KT3 or ST 4 or T 4 or ST2 or ∆T2 or ST3 or ∆T3 or
NT2.
5. By Theorem 3.1(4), 3.6, 4.1, 4.3, 4.5, Corollary 3.1 and Remark 5.2, the

following are equivalent:
(a) (A,K) is PreT ′2 (T ′2), and is ST 3 or T 3 or KT3 or ST 4 or T 4 or ST2 or

∆T2 or ST3 or ∆T3 or NT2.
(b) A is a point or the empty set.
6. By Definition 3.2, Theorem 4.1, 4.3, 4.5, Corollary 3.1 and Remark 5.2,

(A,K) is ST 3 or T 3 or KT3 or ST 4 or T 4 or ST2 or ∆T2 or ST3 or ∆T3 or NT2
iff (A,K) is T2.
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