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ASYMPTOTIC DISTRIBUTION OF EIGENVALUES FOR
FOURTH-ORDER BOUNDARY VALUE PROBLEM WITH
DISCONTINUOUS COEFFICIENTS AND TRANSMISSION

CONDITIONS

MUSTAFA KANDEMİR

Abstract. We investigate a fourth-order boundary value problem with dis-
continuous coeffi cients, functional many points and transmission conditions.
In this problem, boundary conditions contain not only endpoints of the con-
sidered interval, but also a point of discontinuity, a finite number internal
points and abstract linear functionals. We discuss asymptotic distribution of
its eigenvalues. Finally, we obtain asymptotic formulas for the eigenvalues of
the problem in sectors of the complex plane.

1. Introduction

In classical theory, boundary-value problems for ordinary differential equations
are usually considered for equations with continuous coeffi cients and for boundary
conditions which contain only end-points of the considered interval. However, this
paper deals with one nonclassical boundary-value problem for ordinary differential
equation with discontinuous coeffi cients and boundary conditions containing not
only end-points of the considered interval, but also a point of discontinuity and
internal points. This type problems are connected with different applied problems
which include various transfer problems such as heat transfer in heterogeneous
media. Naturally, transmission problems arise in various physical fields as the
theory of diffraction, elasticity, heat and mass transfer [10], [16], [17], [18].
The investigation of boundary value problem for which the eigenvalue parameter

appears both in the equation and boundary conditions originates from the works
of G. D. Birkhoff [4], [5]. There are many papers and books that the spectral
properties of such problem are investigated; see[2], [3], [6]. Some spectral properties
of such problems with discontinuous coeffi cients and the eigenvalue parameter both
in the differential equation and boundary conditions have been studied by O. Sh.
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Mukhtarov, M. Kandemir and some others [7], [8], [9], [11], [12], [13]. In this study,
we shall consider fourth-order differential equation

p(x)u(4) + q(x)u = λ4u, x ∈ I, (1.1)

with the functional-transmission boundary conditions

Lk(u) =

3∑
s=0

λ4−s[αksu
(s)(−1)

+βksu
(s)(−0) + δksu

(s)(+0) + γksu
(s)(1)

+

∫ 0

−1
u(s)(x)φks(x)dx

+

∫ 1

0

u(s)(x)φks(x)dx

+

2∑
i=1

Niks∑
j=1

ζijksu
(s)(aiksj)] = 0, k = 1, 2, ..., 8, (1.2)

where I = I1 ∪ I2 = [−1, 0) ∪ (0, 1]; p(x) and q(x) are complex valued functions;
p(x) = pj(x) and q(x) = qj(x) for x ∈ Ij , j = 1, 2; αks, βks, δks , γks, ζks are com-
plex coeffi cients; aiksj ∈ Ii internal points and u(mk)(∓0) denotes lim

x→∓0
u(mk)(x).

Denote:

F1ku :=

3∑
s=0

λ4−s
∫ 0

−1
u(s)(x)φks(x)dx

and

F2ku :=

3∑
s=0

λ4−s
∫ 1

0

u(s)(x)φks(x)dx.

F1k and F2k are abstract linear functionals. F1k + F2k acts from W k
p (−1, 0) +

W k
p (0, 1) into complex plane C continuously. In virtue of the general representation

of the continuous linear functionals in the Lq(−1, 1) spaces and using the well-known
methods of real analysis it may be shown that there exists a function φks(x) ∈
W k
p (−1, 0) +W k

p (0, 1) such that for every u ∈W k
q (−1, 0) +W k

q (0, 1), ( 1p + 1
q = 1).

W q
p (−1, 0, 1) := W q

p (−1, 0) + W q
p (0, 1), 1 < p < ∞, q = 0, 1, 2, ..., denotes the

Banach spaces of complex valued functions u = u(x) defined on [−1, 0)∪(0, 1], which
belongs toW q

p (−1, 0) andW q
p (0, 1) on intervals (−1, 0) and (0, 1), respectively, with

the norm

‖u‖W q
p (−1,0,1) =

(
‖u‖pW q

p (−1,0) + ‖u‖pW q
p (0,1)

) 1
p

where W q
p (−1, 0) and W q

p (0, 1) are the usual Sobolev space [1].
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Note that, without loss of generality we consider the equation (1.1) instead of
more general equation

p(x)u(4) + p3(x)u′′′ + p2(x)u′′ + p1(x)u′ + p0(x)u = λ4u, x ∈ I. (1.3)

If p3 6= 0, by using the substitution

u = ũeψ(x),

ψ(x) =


− 1
4p1

∫ x
−1 p3(t)dt, x ∈ [−1, 0)

− 1
4p2

∫ x
−1 p3(t)dt, x ∈ (0, 1]

,

we can find that equation (1.3) takes the form

p(x)ũ(4) + p̃2(x)ũ′′ + p̃1(x)ũ′ + p̃0(x)ũ = λ4ũ,

where p̃2, p̃1, p̃0 are continuous in I and λ is the same eigenvalue parameter.
Therefore, we can write equation (1.1) instead of equation (1.3) from [14]. Also, it
is easy to verify that under this substitution the form of boundary conditions (1.3)
has not changed.

2. Eigenvalues of the problem

Let u1j and u2j , j = 1, 2, 3, 4, denote some fundamental systems of solutions of
the differential equation (1.1) on I1 and I1, respectively. By defining{

u1j(x, λ) = 0, x ∈ I2
u2j(x, λ) = 0, x ∈ I1

∣∣∣∣ j = 1, 2, 3, 4,

the general solution of the equation (1.1) can be written in the form

u(x, λ) =

2∑
υ=1

4∑
j=1

cυjuυj(x, λ), (2.1)

where cυj are arbitrary constant numbers. Substituting (2.1) into boundary condi-
tions (2.1) yields a system of linear homogeneous equations

Lk(u(x, λ)) =

2∑
υ=1

4∑
j=1

cυjLk (uυj) = 0, k = 1, 2, ..., 8 (2.2)

for the determination of the constants cυj , υ = 1, 2, j = 1, 2, 3, 4. Consequently,
the eigenvalues of the boundary value problem (1.1)-(1.2) consist of zeros of the
characteristic determinant

∆ (λ) = det (Lk (uυj))8×8 , υ = 1, 2,

j = 1, 2, 3, 4, k = 1, 2, ..., 8. (2.3)

First, according to considered problem, we shall divide the complex λ-plane
into specific sectors, in which we shall find the asymptotic expression for solutions
of the differential equation, for boundary functionals and boundary value forms
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with transmission conditions. Then, by substituting these obtained asymptotic
expression into the equation ∆(λ) = 0 we shall find the corresponding asymptotic
formulas for the eigenvalues of the problem. Note that, such formulas are not only of
interest in themselves, but also they may be used for establishing the completeness
and basis properties of the system of eigen-and associated functions of considered
problem. In this study, we shall investigate the cases of both arg p1 6= arg p2 and
arg p1 = arg p2.

3. Asymptotic distribution of eigenvalues for the case arg p1 6= arg p2

3.1. Separation of the complex λ−plane into specific sectors. Throughout
the paper we employ the notation

ωj1 = (pj)
− 1
4 , ωj2 = − (pj)

− 1
4

ωj3 = i (pj)
− 1
4 , ωj4 = −i (pj)

− 1
4 , j = 1, 2

where z
1
4 := |z| e

i(arg z)
4 , −π < arg z < π. Divide the complex λ−plane into eight

sectors Sk, k = 1, 2, . . . , 8, by the rays

lk =
{
λ ∈ C| Reλωυj = 0, (−1)kImλωυj ≤ 0

υ = 1, 2, j = 1, 2, 3, 4 } .

On all of these sectors each of the real valued functions Reλωυj is of a single
sign, since these functions can vanish only on boundaries Sk. Let us consider one
of the sectors (Sk) with fixed index k. Using the same considerations as in [14]
it is easy to verify that for equation (1.1) there exists a fundamental system of
particular solutions u1j(x, λ) on I1, j = 1, 2, 3, 4, and u2j(x, λ) on I2, j = 1, 2, 3, 4,
respectively, which are analytic functions of λ ∈ Sk and for suffi ciently large |λ| ,
and which with derivatives, can be expressed in the asymptotic form

uυj(x, λ) = eλωυjx(1 +O(
1

λ
))

u
(s)
υj (x, λ) = (λωυj)

s
eλωυjx(1 +O(

1

λ
)),

υ = 1, 2, j = 1, 2, 3, 4. (3.1)

Here, as usual, the expression O( 1λ ) denotes any function of the form f(x,λ)
λ , where

|f(x, λ)| for x ∈ Ij , j = 1, 2, and suffi ciently large |λ| always remain less than a
constant.
Now let l′k, k = 1, 2, . . . , 8, be arbitrary rays, which originate from the point

λ = 0, distinct from the rays l and situated so as to from the sequence

l1, l
′
1, l2, l

′
2, l3, l

′
3, l4, l

′
4, ..., l8, l

′
8.
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The rays l′k divide each sector Sk into two subsectors. Therefore, we have sixteen
sectors which we shall denote as Ωi, i = 1, 2, ..., 16. As it seems from the construc-
tion, the sectors Ω = {Ω1,Ω2, ...,Ω16} can be distributed into two groups of

Ω(i) =
{

Ω
(i)
1 ,Ω

(i)
2 , ...,Ω

(i)
8

}
, i = 1, 2

such that, the group Ω(k), k = 1, 2, includes those sectors Ωi, i = 1, 2, ..., 16, in
which

Reλωυj →∞, υ = 1, 2, j = 1, 2, 3, 4, as λ→∞.

3.2. Asymptotic expressions for the characteristic determinant ∆(λ) in
the Ω sectors. Each of the real valued functions Reλωjυ does not change sign
also in each sector Ωi, since each of them is a subsector of certain sector Sk.
Let uυj = uυj(x, λ), x ∈ Iυ, υ = 1, 2, j = 1, 2, ..., 8, are functions defining as

for the fundamental system in Iυ, for which satisfied asymptotic expressions (3.1).
Only in one of the sectors of the groups Ω(1) the conditions

Reλω11 → +∞, Reλω21 ≥ 0,

Reλω13 → +∞, Reλω23 ≥ 0

and only in one of the sectors of the groups Ω(2) the conditions

Reλω21 → +∞, Reλω11 ≥ 0,

Reλω23 → +∞, Reλω13 ≥ 0

are holds for λ→∞. We shall denote these sectors as Ω
(1)
0 and Ω

(2)
0 , respectively.

Besides, we shall denote by [A], A ∈ C, any sum of the from A + f(λ) when
f(λ)→ 0 as λ→∞.
First, let λ vary in Ω

(1)
0 . Substituting (3.1) into (1.2), remembering that

ω11 = −ω12, ω13 = −ω14,
ω21 = −ω22, ω23 = −ω24

and applying well-known Rieamann-Lebesgue Lemma [14, p. 117, Lemma 7), we
have

Lk(u11)

=

3∑
s=0

λ4−s
(
(λω11)

s (
αkse

−λω11 [1] + βks [1]
)

+ (λω11)
s
∫ 0

−1
eλω11x(1 +O(

1

λ
))φks(x)dx

+

N1
ks∑

j=1

ζ1jks (λω11)
s
eλω11a

1
ksj [1])
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=

3∑
s=0

λ4−s (λω11)
s (
αkse

−λω11 [1] + βks [1]

+

∫ 1

0

e−λω11x(1 +O(
1

λ
))φks(−x)dx+ [0])

=

3∑
s=0

λ4−s (λω11)
s

(βks [1] + [0])

= λ4
[
βk0 + ω11βk1 + ω211βk2 + ω311βk3

]
, (3.2)

Lk(u12)

= λ4e−λω12
[
αk0 + ω12αk1 + ω212αk2 + ω312αk3

]
, (3.3)

Lk(u13)

= λ4
[
βk0 + ω13βk1 + ω213βk2 + ω313βk3

]
, (3.4)

Lk(u14)

= λ4e−λω14
[
αk0 + ω14αk1 + ω214αk2 + ω314αk3

]
, (3.5)

Lk(u21)

=

3∑
s=0

λ4−s
(
(λω21)

s (
δks [1] + γkse

λω21 [1]
)

+ (λω21)
s
∫ 1

0

eλω21x(1 +O(
1

λ
))φks(x)dx

+

N2
ks∑

j=1

ζ2jks (λω21)
s
eλω21a

2
ksj [1])

= λ4
3∑
s=0

(
ωs21

(
δks [1] + γkse

λω21 [1]
)

+ωs21e
λω21

∫ 1

0

e−λω21(1−x)(1 +O(
1

λ
))φks(1− x)dx

+

N2
ks∑

j=1

ζ2jks (ω21)
s
eλω21a

2
ksj [1])
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= λ4
([
δk0 + ω21δk1 + ω221δk2 + ω321δk3

]
+eλω21

[
γk0 + ω21γk1 + ω221γk2 + ω321γk3

]
+

N2
ks∑

j=1

eλω21a
2
ksj [ωs21ζ

2j
ks]), (3.6)

Lk(u22) = λ4
([
δk0 + ω22δk1 + ω222δk2 + ω322δk3

]
+eλω22

[
γk0 + ω22γk1 + ω222γk2 + ω322γk3

]
+

N2
ks∑

j=1

eλω22a
2
ksj [ωs22ζ

2j
ks]), (3.7)

Lk(u23)

= λ4
([
δk0 + ω23δk1 + ω223δk2 + ω323δk3

]
+eλω23

[
γk0 + ω23γk1 + ω223γk2 + ω323γk3

]
+

N2
ks∑

j=1

eλω23a
2
ksj [ωs23ζ

2j
ks]), (3.8)

Lk(u24)

= λ4
([
δk0 + ω24δk1 + ω224δk2 + ω324δk3

]
+eλω24

[
γk0 + ω24γk1 + ω224γk2 + ω324γk3

]
+

N2
ks∑

j=1

eλω24a
2
ksj [ωs24ζ

2j
ks]). (3.9)

From the system that is obtained by using (3.2)-(3.9), we have the characteristic
determinant in Ω

(1)
0 as asymptotic quasi-polynomial form

∆1 (λ) = λ32eλ(ω11+ω13)

×
(
[A1] e

σ11λω21 + · · ·+ [Aρ] e
σ1ρλω21

+ [B1] e
σ21λω23 + · · ·+ [Bρ] e

σ2ρλω23
)

(3.10)

where

−1 = σj1 < σj2 < · · · < σjρ = 1, j = 1, 2,

and

A1 = A11 +A12, ..., Aρ = Aρ1 +Aρ2,

B1 = B11 +B12, ..., Bρ = Bρ1 +Bρ2
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some complex numbers. Let us denote

∆1
21 (λ) := λ32eλ(ω11+ω13)

(
[A1] e

σ11λω21

+ [A2] e
σ12λω21 + · · ·+ [Aρ] e

σ1ρλω21
)
, (3.11)

∆1
23 (λ) := λ32eλ(ω11+ω13)

(
[B1] e

σ21λω23

+ [B2] e
σ22λω23 + · · ·+ [Bρ] e

σ2ρλω23
)
, (3.12)

and
∆1 (λ) = ∆1

21 (λ) + ∆1
23 (λ) .

Now, let the sector Ω
(1)
0 divide two sectors as Ω

(1)
01 and Ω

(1)
02 . We assume that one

of the expressions ∆1
21 (λ) and ∆1

23 (λ) vanish in one of the sectors Ω
(1)
01 and Ω

(1)
02 .

Therefore, let the characteristic determinant ∆1 (λ) has the asymptotic representa-
tion in the form (3.11) in Ω

(1)
01 and in the form (3.12) in Ω

(1)
01 . Here, all determinants

are different from each other. Also, it is easy to see that A11 and A12 determinants
for first coeffi cient of (3.11)

A11 =

∣∣∣∣∣∣∣∣∣

[
β10 + ω11β11 + ω211β12 + ω311β13

][
β20 + ω11β21 + ω211β22 + ω311β23

]
...[

β80 + ω11β81 + ω211β82 + ω311β83
]

· · ·
[
δ10 + ω24δ11 + ω224δ12 + ω324δ13

]
· · ·

[
δ20 + ω24δ21 + ω224δ22 + ω324δ23

]
...

...
· · ·

[
δ80 + ω24δ81 + ω224δ82 + ω324δ83

]
∣∣∣∣∣∣∣∣∣ ,

A12 =

∣∣∣∣∣∣∣∣∣

[
β10 + ω11β11 + ω211β12 + ω311β13

][
β20 + ω11β21 + ω211β22 + ω311β23

]
...[

β80 + ω11β81 + ω211β82 + ω311β83
]

· · ·
[
γ10 + ω24γ11 + ω224γ12 + ω324γ13

]
· · ·

[
γ20 + ω24γ21 + ω224γ22 + ω324γ23

]
...

...
· · ·

[
γ80 + ω24γ81 + ω224γ82 + ω324γ83

]
∣∣∣∣∣∣∣∣∣ .

We can obtain that the other determinants of (3.11) in the same way. B11 and B12
determinants for first coeffi cient of (3.12)

B11 =

∣∣∣∣∣∣∣∣∣

[
β10 + ω11β11 + ω211β12 + ω311β13

][
β20 + ω11β21 + ω211β22 + ω311β23

]
...[

β80 + ω11β81 + ω211β82 + ω311β83
]
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· · ·
[
γ10 + ω24γ11 + ω224γ12 + ω324γ13

]
· · ·

[
γ20 + ω24γ21 + ω224γ22 + ω324γ23

]
...

...
· · ·

[
γ80 + ω24γ81 + ω224γ82 + ω324γ83

]
∣∣∣∣∣∣∣∣∣ ,

B12 =

∣∣∣∣∣∣∣∣∣

[
β10 + ω11β11 + ω211β12 + ω311β13

][
β20 + ω11β21 + ω211β22 + ω311β23

]
...[

β80 + ω11β81 + ω211β82 + ω311β83
]

· · ·
[
γ10 + ω24γ11 + ω224γ12 + ω324γ13

]
· · ·

[
γ20 + ω24γ21 + ω224γ22 + ω324γ23

]
...

...
· · ·

[
γ80 + ω24γ81 + ω224γ82 + ω324γ83

]
∣∣∣∣∣∣∣∣∣ .

The other determinants of (3.12) can be obtained in the same way. It can be shown
analogically that, the characteristic determinant ∆2 (λ) in the sector Ω

(2)
0 has the

next asymptotic quasi-polynomial representation

∆2 (λ) = λ32eλ(ω21+ω23)

×
(
[M1] e

µ11λω11 + · · ·+ [Mϕ] eµ1ϕλω11

+ [N1] e
µ21λω13 + · · ·+ [Nϕ] eµ2ϕλω13

)
(3.13)

where
−1 = µj1 < µj2 < · · · < µjϕ = 1, j = 1, 2,

M1 = M11 +M12, ..., Mϕ = Mϕ1 +Mϕ2,

N1 = N11 +N12, ..., Nϕ = Nϕ1 +Nϕ2.

Now, let us denote

∆2
11 (λ) := λ32eλ(ω21+ω23)

(
[M1] e

µ11λω11

+ [M2] e
µ12λω11 + · · ·+ [Mϕ] eµ1ϕλω11

)
, (3.14)

∆2
13 (λ) := λ32eλ(ω21+ω23)

(
[N1] e

µ21λω13

+ [N2] e
µ22λω13 + · · ·+ [Nϕ] eµ2ϕλω13

)
, (3.15)

and
∆2 (λ) = ∆2

11 (λ) + ∆2
13 (λ) .

Let the sector Ω
(2)
0 divide two sectors as Ω

(2)
01 and Ω

(2)
02 .We assume that one of the

expressions ∆2
11 (λ) and ∆2

13 (λ) vanish in one of the sectors Ω
(2)
01 and Ω

(2)
02 . There-

fore, let the characteristic determinant ∆2 (λ) has the asymptotic representation in
the form (3.14) in Ω

(2)
01 and in the form (3.15) in Ω

(2)
02 . Here, all determinants are
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different from each other and some of them in the form. M11 andM12 determinants
for first coeffi cient of (3.14)

M11 =

∣∣∣∣∣∣∣∣∣

[
α10 + ω11α11 + ω211α12 + ω311α13

][
α20 + ω11α21 + ω211α22 + ω311α23

]
...[

α80 + ω11α81 + ω211α82 + ω311α83
]

· · ·
[
δ10 + ω24δ11 + ω224δ12 + ω324δ13

]
· · ·

[
δ20 + ω24δ21 + ω224δ22 + ω324δ23

]
...

...
· · ·

[
δ80 + ω24δ81 + ω224δ82 + ω324δ83

]
∣∣∣∣∣∣∣∣∣ ,

M12 =

∣∣∣∣∣∣∣∣∣

[
α10 + ω11α11 + ω211α12 + ω311α13

][
α20 + ω11α21 + ω211α22 + ω311α23

]
...[

α80 + ω11α81 + ω211α82 + ω311α83
]

· · ·
[
δ10 + ω24δ11 + ω224δ12 + ω324δ13

]
· · ·

[
δ20 + ω24δ21 + ω224δ22 + ω324δ23

]
...

...
· · ·

[
δ80 + ω24δ81 + ω224δ82 + ω324δ83

]
∣∣∣∣∣∣∣∣∣ .

We can obtain that the other determinants of (3.14) in the same way. N11 and N12
determinants for first coeffi cient of ((3.15)

N11 =

∣∣∣∣∣∣∣∣∣

[
β10 + ω11β11 + ω211β12 + ω311β13

][
β20 + ω11β21 + ω211β22 + ω311β23

]
...[

β80 + ω11β81 + ω211β82 + ω311β83
]

· · ·
[
δ10 + ω24δ11 + ω224δ12 + ω324δ13

]
· · ·

[
δ20 + ω24δ21 + ω224δ22 + ω324δ23

]
...

...
· · ·

[
δ80 + ω24δ81 + ω224δ82 + ω324δ83

]
∣∣∣∣∣∣∣∣∣ ,

N12 =

∣∣∣∣∣∣∣∣∣

[
α10 + ω11α11 + ω211α12 + ω311α13

][
α20 + ω11α21 + ω211α22 + ω311α23

]
...[

α80 + ω11α81 + ω211α82 + ω311α83
]
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· · ·
[
δ10 + ω24δ11 + ω224δ12 + ω324δ13

]
· · ·

[
δ20 + ω24δ21 + ω224δ22 + ω324δ23

]
...

...
· · ·

[
δ80 + ω24δ81 + ω224δ82 + ω324δ83

]
∣∣∣∣∣∣∣∣∣ .

The other determinants of (3.15) can be obtained in the same way.

3.3. Asymptotic distribution of eigenvalues for arg p1 6= arg p2. Now we can
obtain the asymptotic formulas for the eigenvalues of the boundary value problem
for arg p1 6= arg p2.

Theorem 1. We assume that the following conditions be satisfied

1) arg p1 6= arg p2.
2) q(x) ∈ Lp(−1, 1), p > 1.
3) Ai, Bi 6= 0, i = 1 and i = ρ; Mi, Ni, 6= 0, i = 1 and i = ϕ.
4) The linear functionals F1k + F2k in the spaces W k

p (−1, 0) + W k
p (0, 1) are

continuous.
Then, the boundary value problem (1.1)-(1.2) has in each sector Sk an precisely

numerable number eigenvalues, whose asymptotic distribution may be expressed by
the following formulas.

λjn = p
1
4
j πni(1 +O(

1

n
)), j = 1, 2, (3.16)

λj+2n = −p
1
4
j πni(1 +O(

1

n
)), j = 1, 2, (3.17)

λj+4n = p
1
4
j πn(1 +O(

1

n
)), j = 1, 2, (3.18)

λj+6n = −p
1
4
j πn(1 +O(

1

n
)), j = 1, 2. (3.19)

Proof. By the rays l′j , the complex λ-plane is divided into eight sectors Dj , j =
1, 2, ..., 8. Let Dj be that sector which contains the rays lj .We shall distribute these
sectors into two groups

D(i) =
{
D
(i)
1 , D

(i)
2 , ..., D

(i)
8

}
, i = 1, 2.

Obviously that sector of the group D(k) contains two sectors of the group Ω(k) by
D
(k)
0 denote that sectors of the group D(k) which contain Ω

(k)
0 , k = 1, 2. As seems

from the consideration in subsection 3.1 and 3.2 the asymptotic expressing (3.10)
and (3.13) hold also in the sectors D(1)

0 and D(2)
0 , respectively. Let D(1)

1 and D(2)
1

are the other sectors of the groups D(1) and D(2) respectively. Only in one of the
sectors of the groups D(1) the conditions

Reλω12 → +∞, Reλω22 ≥ 0,

Reλω14 → +∞, Reλω24 ≥ 0
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and only in one of the sectors of the groups D(2) the conditions

Reλω22 → +∞, Reλω12 ≥ 0,

Reλω24 → +∞, Reλω14 ≥ 0 .

hold for λ → ∞. By the similar way as in subsection 3.1 and 3.2, one can prove
that the characteristic determinants have the asymptotic quasi-polynomial repre-
sentation given by

∆3 (λ) = λ32e−λ(ω11+ω13)
(
[K1] e

η11λω21

+ · · ·+ [Kr] e
η1rλω21

+ [T1] e
η21λω23 + · · ·+ [Tr] e

η2rλω23
)

(3.20)

and

∆4 (λ) = λ32e−λ(ω21+ω23)
(
[U1] e

ξ11λω11

+ · · ·+ [U%] e
ξ1%λω11

+ [V1] e
ξ21λω13 + · · ·+ [V%] e

ξ2%λω13
)

(3.21)

in the sectors D(1)
0 and D(2)

0 , respectively, where

−1 = ηj1 < ηj2 < · · · < ηjr = 1, j = 1, 2,

K1 = K11 +K12, ..., Kr = Kr1 +Kr2,

T1 = T11 + T12, ..., Tr = Tr1 + Tr2

and
−1 = ξj1 < ξj2 < · · · < ξj% = 1, j = 1, 2,

U1 = U11 + U12, ..., U% = U%1 + U%2,

V1 = V11 + V12, ..., V% = V%1 + V%2.

Let us denote

∆3
21 (λ) := λ32e−λ(ω11+ω13)

(
[K1] e

η11λω21

+ [K2] e
η12λω21 + · · ·+ [Kr] e

η1rλω21
)
, (3.22)

∆3
23 (λ) := λ32e−λ(ω11+ω13)

(
[T1] e

η21λω23

+ [T2] e
η22λω23 + · · ·+ [Tr] e

η2rλω23
)
, (3.23)

and
∆3 (λ) = ∆3

21 (λ) + ∆3
23 (λ) .

Let the sector D(1)
0 is divided into two sectors as D

(1)
01 and D

(1)
02 . We assume that

one of the expressions ∆3
21 (λ) and ∆3

23 (λ) vanish in one of the sectors D
(1)
01 and

D
(1)
02 . Therefore, let the characteristic determinant ∆3 (λ) has the asymptotic rep-

resentation in the form (3.22) in D(1)
01 and in the form (3.23) in D

(1)
02 . By the similar
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way for the sector D(2)
0 the characteristic determinant ∆4 (λ) has the asymptotic

quasi-polynomial representation in the form in D(2)
01

∆4
11 (λ) := λ32e−λ(ω21+ω23)

(
[U1] e

ξ11λω11

+ [U2] e
ξ12λω11 + · · ·+ [U%] e

ξ1%λω11
)
, (3.24)

and in D(2)
02

∆4
13 (λ) := λ32e−λ(ω21+ω23)

(
[V1] e

ξ21λω13

+ [V2] e
ξ22λω13 + · · ·+ [V%] e

ξ2%λω13
)

(3.25)

and
∆4 (λ) = ∆4

11 (λ) + ∆4
13 (λ) .

Hence, let the characteristic determinant ∆4 (λ) has the asymptotic representation
in the form (3.24) in D(2)

01 and in the form (3.25) in D(2)
02 . Here, all determinants

are different from each other and some determinants are in the following form

K11 =

∣∣∣∣∣∣∣∣∣

[
α10 + ω11α11 + ω211α12 + ω311α13

][
α20 + ω11α21 + ω211α22 + ω311α23

]
...[

α80 + ω11α81 + ω211α82 + ω311α83
]

· · ·
[
δ10 + ω24δ11 + ω224δ12 + ω324δ13

]
· · ·

[
δ20 + ω24δ21 + ω224δ22 + ω324δ23

]
...

...
· · ·

[
δ80 + ω24δ81 + ω224δ82 + ω324δ83

]
∣∣∣∣∣∣∣∣∣ ,

K12 =

∣∣∣∣∣∣∣∣∣

[
α10 + ω11α11 + ω211α12 + ω311α13

][
α20 + ω11α21 + ω211α22 + ω311α23

]
...[

α80 + ω11α81 + ω211α82 + ω311α83
]

· · ·
[
γ10 + ω24γ11 + ω224γ12 + ω324γ13

]
· · ·

[
γ20 + ω24γ21 + ω224γ22 + ω324γ23

]
...

...
· · ·

[
γ80 + ω24γ81 + ω224γ82 + ω324γ83

]
∣∣∣∣∣∣∣∣∣ .

The other determinants can be obtained in the same way. According to the condi-
tion 3 of the theorem, principal term of first and last coeffi cients of the asymptotic
quasipolynomials (3.10), (3.13), (3.20) and (3.23) are different from zero, that is
Ai, Bi 6= 0, i = 1 and i = ρ; Mi, Ni 6= 0, i = 1 and i = ϕ; Ki, Ti 6= 0, i = 1 and
i = r; Ui, Vi 6= 0, i = 1 and i = %.

Since ∆(λ) = ∆j(λ) when λ vary in sector D(i)
j and all quasi-polynomials ∆j(λ)

have the same form. Therefore, it is enough to investigate only one of them. Hence,
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we shall investigate the equation ∆(λ) = 0 only in the sector Ω
(1)
0 . We know that

Ω
(1)
0 consists of the sectors Ω

(1)
01 and Ω

(1)
02 . Therefore, from (3.11), we can write the

equation

[A1] e
σ11λω21 + [A2] e

σ12λω21 + · · ·+ [Aρ] e
σ1ρλω21 = 0 (3.26)

in Ω
(1)
01 and from (3.12), the equation

[B1] e
σ21λω23 + [B2] e

σ22λω23 + · · ·+ [Bρ] e
σ2ρλω23 = 0 (3.27)

in Ω
(1)
02 . By virtue of the [15, p. 100, Lemma 1] the equations (3.26) and (3.27)

have an infinite number of roots λn which contain in strips

E01 =

{
λ ∈ C| |Reλω21| <

h1
2

}
and

E02 =

{
λ ∈ C| |Reλω23| <

h2
2

}
in the sectors Ω

(1)
01 and Ω

(1)
02 , respectively, of finite width h1, h2 > 0 and have the

asymptotic expressions∣∣λ2nω21∣∣ =

∣∣∣∣ 2πn

σ1ρ − σ11
(1 +O(

1

n
))

∣∣∣∣
=

∣∣∣∣πn(1 +O(
1

n
))

∣∣∣∣ (3.28)

and ∣∣λ6nω23∣∣ =

∣∣∣∣ 2πn

σ2ρ − σ21
(1 +O(

1

n
))

∣∣∣∣
=

∣∣∣∣πn(1 +O(
1

n
))

∣∣∣∣ . (3.29)

Taking into account λ2n ∈ E01, λ6n ∈ E02 and λ2n ∈ Ω
(1)
01 , λ

6
n ∈ Ω

(1)
02 from (3.26) and

(3.27)

λ2n = (ω21)
−1
πni(1 +O(

1

n
))

= p
1
4
2 πni(1 +O(

1

n
)), n = ∓1,∓2, ...

and

λ6n = (ω23)
−1
πni(1 +O(

1

n
))

= p
1
4
2 πn(1 +O(

1

n
)), n = ∓1,∓2, ...,
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where there is only one possible choice for the sign of the integer n. Similarly, from
(3.14) and (3.15), we can write the following asymptotic expression in Ω

(2)
01 and

Ω
(2)
02 , respectively,

λ1n = p
1
4
1 πni(1 +O(

1

n
)), n = ∓1,∓2, ...,

and

λ5n = p
1
4
1 πn(1 +O(

1

n
)), n = ∓1,∓2, ....

The other formulas in (3.16)-(3.19) can be obtained by the same procedure, which
we used in proving above asymptotic formulas. �

4. Asymptotic distribution of eigenvalues for the case arg p1 = arg p2

4.1. Separation of the complex λ−plane into specific sectors. In the case
arg p1 = arg p2, the lines

l1 = {λ ∈ C|Reλω11 = 0} ,
l3 = {λ ∈ C|Reλω21 = 0}

and the lines

l2 = {λ ∈ C|Reλω13 = 0} ,
l4 = {λ ∈ C|Reλω23 = 0}

coincide, then the lines d1 = l1 = l3 and d2 = l2 = l4 divide the complex λ−plane
into four sectors S′j , j = 1, 2, 3, 4. On all of these sectors each of the real valued
functions Reλωυj is a single sign, since these functions can vanish only on bound-
aries S′j . Now let d

′
k, k = 1, 2, 3, 4, be arbitrary rays, which originate from the point

λ = 0, distinct from the rays d and situated so as to from the sequence

d1, d
′
1, d2, d

′
2, d3, d

′
3, d4, d

′
4.

The rays d′k divide each sector S
′
j into two subsectors. Therefore, we have eight

sectors which we shall denote as Gi, i = 1, 2, ..., 8. As it seems from the construction,
the sectors G = {G1, G2, ..., G8} can be distributed into two groups of

G(i) =
{
G
(i)
1 , G

(i)
2 , G

(i)
3 , G

(i)
4

}
, i = 1, 2,

such that the group G(k)4 , k = 1, 2, includes those sectors G(i), i = 1, 2, ..., 8, in
which

Reλωυj →∞, υ = 1, 2, j = 1, 2, 3, 4, as λ→∞.
Only in one of the sectors of the groups G(1) the conditions

Reλω11 (Reλω21)→ +∞, Reλω13 (Reλω23) ≥ 0,

and only in one of the sectors of the groups G(2) the conditions

Reλω13 (Reλω23)→ +∞, Reλω11 (Reλω21) ≥ 0,
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hold for λ→∞. These sectors denote as G(1)0 and G(2)0 accordingly.

4.2. Asymptotic expressions for the characteristic determinant ∆(λ) in
the G sectors. First, we shall consider λ vary in G

(1)
0 . Let us substitute (3.1)

into (1.2). Therefore, we have the characteristic determinant as asymptotic quasi-
polynomial form

∆5 (λ) := λ32eλ(ω11+ω21)

×
(
[Q11] e

τ11λω14 + · · ·+ [Q1l] e
τ1lλω14

+ [Q21] e
τ21λω24 + · · ·+ [Q2l] e

τ2lλω24
)

where
−1 = τ j1 < τ j2 < · · · < τ jl = 1, j = 1, 2.

Let us denote

∆51 (λ) := λ32eλ(ω11+ω21)

×
(
[Q11] e

τ11λω14 + · · ·+ [Q1l] e
τ1lλω14

)
, (4.1)

∆52 (λ) := λ32eλ(ω11+ω21)

×
(
[Q21] e

τ21λω24 + · · ·+ [Q2l] e
τ2lλω24

)
(4.2)

and
∆5 (λ) = ∆51 (λ) + ∆51 (λ) .

Let divide the sector G(1)0 into two sectors as G
(1)
01 and G

(1)
02 . We assume that one

of the expressions ∆51 (λ) and ∆52 (λ) vanish in one of the sectors G
(1)
01 and G

(1)
02 .

Hence, let the characteristic determinant ∆5 (λ) has the asymptotic representation
in the form (4.1) in G(1)01 and in the form ((4.2) in G(1)02 where

Q11 =

∣∣∣∣∣∣∣∣∣

[
β10 + ω11β11 + ω211β12 + ω311β13

][
β20 + ω11β21 + ω211β22 + ω311β23

]
...[

β80 + ω11β81 + ω211β82 + ω311β83
]

· · ·
[
δ10 + ω24δ11 + ω224δ12 + ω324δ13

]
· · ·

[
δ20 + ω24δ21 + ω224δ22 + ω324δ23

]
...

...
· · ·

[
δ80 + ω24δ81 + ω224δ82 + ω324δ83

]
∣∣∣∣∣∣∣∣∣ ,

Q1l =

∣∣∣∣∣∣∣∣∣

[
β10 + ω11β11 + ω211β12 + ω311β13

][
β20 + ω11β21 + ω211β22 + ω311β23

]
...[

β80 + ω11β81 + ω211β82 + ω311β83
]
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· · ·
[
δ10 + ω24δ11 + ω224δ12 + ω324δ13

]
· · ·

[
δ20 + ω24δ21 + ω224δ22 + ω324δ23

]
...

...
· · ·

[
δ80 + ω24δ81 + ω224δ82 + ω324δ83

]
∣∣∣∣∣∣∣∣∣ ,

Q21 =

∣∣∣∣∣∣∣∣∣

[
β10 + ω11β11 + ω211β12 + ω311β13

][
β20 + ω11β21 + ω211β22 + ω311β23

]
...[

β80 + ω11β81 + ω211β82 + ω311β83
]

· · ·
[
δ10 + ω24δ11 + ω224δ12 + ω324δ13

]
· · ·

[
δ20 + ω24δ21 + ω224δ22 + ω324δ23

]
...

...
· · ·

[
δ80 + ω24δ81 + ω224δ82 + ω324δ83

]
∣∣∣∣∣∣∣∣∣ ,

Q2l =

∣∣∣∣∣∣∣∣∣

[
β10 + ω11β11 + ω211β12 + ω311β13

][
β20 + ω11β21 + ω211β22 + ω311β23

]
...[

β80 + ω11β81 + ω211β82 + ω311β83
]

· · ·
[
γ10 + ω24γ11 + ω224γ12 + ω324γ13

]
· · ·

[
γ20 + ω24γ21 + ω224γ22 + ω324γ23

]
...

...
· · ·

[
γ80 + ω24γ81 + ω224γ82 + ω324γ83

]
∣∣∣∣∣∣∣∣∣ .

By the same procedure in the sector G(2)0 , we have the characteristic determinant
as asymptotic representation

∆6 (λ) = λ32eλ(ω13+ω23)

×
(
[R11] e

t11λω12 + · · ·+ [R1m] et1mλω12

+ [R21] e
t21λω22 + · · ·+ [R2m] et2mλω22

)
where

−1 = tj1 < tj2 < · · · < tjm = 1, j = 1, 2.

Considering the above idea, we can write the following equalities in sectors G(2)01
and G(2)02

∆61 (λ) := λ32eλ(ω13+ω23)

×
(
[R11] e

t11λω12 + · · ·+ [R1m] et1mλω12
)
, (4.3)

∆62 (λ) := λ32eλ(ω13+ω23)

×
(
[R21] e

t21λω22 + · · ·+ [R2m] et2mλω22
)
, (4.4)
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respectively, and
∆6 (λ) = ∆61 (λ) + ∆6 (λ) .

The numbers Rυj can be seen by the same procedure in sectors G
(2)
01 and G

(2)
02 .

4.3. Asymptotic distribution of eigenvalues for arg p1 = arg p2. Now we can
prove the next theorem for the problem (1.1)-(1.2).

Theorem 2. We assume that the following conditions be satisfied

1) arg p1 = arg p2.
2) q(x) ∈ Lp(−1, 1), p > 1.
3) Qj1, Qjl, Rj1, Rjm, 6= 0, j = 1, 2.
4) The linear functionals F1k + F2k in the spaces W k

p (−1, 0) + W k
p (0, 1) are

continuous.
Then, the boundary value problem (1.1)-(1.2) has an precisely number of eigen-

values whose asymptotic distribution may be expressed by the following formulas

λ1n = −p
1
4
1 πn(1 +O(

1

n
)),

λ2n = −p
1
4
2 πn(1 +O(

1

n
)),

λ3n = −p
1
4
1 πni(1 +O(

1

n
)),

λ4n = −p
1
4
2 πni(1 +O(

1

n
)).

in each sector S′j .

Proof. According to condition (3) of the Theorem, the principal terms of the first
and last coeffi cients of the asymptotic quasi-polynomials (4.1), (4.2), (4.3) and
(4.2) are different from zero. These quasi-polynomials in sectors G(1)01 , G

(1)
02 , G

(2)
01

and G(2)02 have an infinite number of roots
{
λ1n
}
,
{
λ2n
}
,
{
λ3n
}
and

{
λ4n
}
, respectively,

and they are contained in strips

E1j =

{
λ ∈ C| |Reλωj4| <

h1j
2

}
, j = 1, 2,

E2j =

{
λ ∈ C| |Reλωj2| <

h2j
2

}
, j = 1, 2,

respectively, where hij > 0. Again, in view of the [15, p. 100, Lemma 1] eigenvalues
of the problem have the asymptotic representation∣∣λjnωj4∣∣ =

∣∣∣∣ 2πn

τ jl − τ j1
(1 +O(

1

n
))

∣∣∣∣
=

∣∣∣∣πn(1 +O(
1

n
))

∣∣∣∣ , j = 1, 2,
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∣∣λj+2n ωj2
∣∣ =

∣∣∣∣ 2πn

tjm − tj1
(1 +O(

1

n
))

∣∣∣∣
=

∣∣∣∣πn(1 +O(
1

n
))

∣∣∣∣ , j = 1, 2.

Therefore, we have the sought asymptotic formulas

λjn = (ωj4)
−1
πni(1 +O(

1

n
))

= −p
1
4
j πn(1 +O(

1

n
)),

j = 1, 2, n = ∓1,∓2, ...,

λj+2n = (ωj2)
−1
πni(1 +O(

1

n
))

= −p
1
4
j πni(1 +O(

1

n
)),

j = 1, 2, n = ∓1,∓2, ....

for eigenvalues of the problem (1.1)-(1.2). �
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