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ON THE GENERALIZED PERRIN AND CORDONNIER
MATRICES

ADEM ŞAHİN

Abstract. In the present paper, we study the associated polynomials of Per-
rin and Cordonnier numbers. We define generalized Perrin and Cordonnier
matrices using these polynomials. We obtain the inverse of generalized Cor-
donnier matrices and give some relationships between generalized Perrin and
Cordonnier matrices. In addition, we give a factorization of generalized Cor-
donnier matrices. Finally, we give some determinantal representation of asso-
ciated polynomials Cordonnier numbers.

1. Introduction

There are several hundreds of papers on Fibonacci numbers and other recur-
rence related sequences published during the last 30 years. Perrin numbers and
Cordonnier numbers are some of them. Perrin numbers and Cordonnier numbers
are

Pn = Pn−2 + Pn−3 for n > 3 and P1 = 0, P2 = 2, P3 = 3,

Cn = Cn−2 + Cn−3 for n > 3 and C1 = 1, C2 = 1, C3 = 1,

respectively.
The characteristic equation associated with the Perrin and Cordonnier sequence

is x3 − x − 1 = 0 with roots α, β, β, in which α = ρ ≈ 1, 324718, is called plastic
number and

lim
n→∞

Cn+1
Cn

= lim
n→∞

Pn+1
Pn

= ρ.

The plastic number is used in art and architecture. Richard Padovan studied on
plastic number in Architecture and Mathematics in [20, 21]. Christopher Bartlett
found a significant number of paintings with canvas sizes that have the aspect
ratio of approximately 1.35. This ratio reminds Plastic number[1]. In [17] authors
constructed the Plastic number in a heuristic way, explaining its relation to human
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perception in three-dimensional space through architectural style of Dom Hans van
der Laan.
In [22], authors defined associated polynomials of Perrin and Cordonnier se-

quences as;

Pn(x) = x2Pn−2(x) + Pn−3(x) for n > 3 and P1(x) = 0, P2(x) = 2, P3(x) = 3x,

Cn(x) = x2Cn−2(x)+Cn−3(x) for n > 3 and C1(x) = 1, C2(x) = x, C3(x) = x2,

respectively.
If we take x = 1 we obtain Pn(x) = Pn and Cn(x) = Cn.
Yilmaz and Taskara [26] developed the matrix sequences that represent Padovan

and Perrin numbers. Kaygisiz and Bozkurt [5] defined k sequences of generalized
order-k Perrrin numbers. Kaygisiz and Sahin [9] defined generalized Van der Laan
and Perrin Polynomials, and generalizations of Van der Laan and Perrin Numbers.
Many researchers have studied Linear Algebra of the some matrices. In [2] au-

thors discussed the Linear Algebra of the Pascal Matrix, in [14] authors examined
the linear algebra of the k-Fibonacci matrix and the symmetric k-Fibonacci matrix.
In [12] authors studied on the Pell Matrix. Sahin [23] gave the (q, x, s)-Fibonacci
and Lucas matrices, obtained the inverse of these matrices and give some factor-
ization of these matrices. Lee et al. [13] defined Fibonacci matrices and gave the
factorization of Fibonacci matrix and obtained inverse of this matrix.
In addition many researchers have studied matrix representations of number

sequences. Yilmaz and Bozkurt [25] gave matrix representation of Perrin sequences.
Kaygisiz and Sahin [10] calculated terms of associated polynomials of Perrin and
Cordonnier numbers by using determinants and permanents of various Hessenberg
matrices. More examples can be found in [3, 6, 7, 8, 11, 15, 16, 19, 23].

Lemma 1.1. (Cf. Theorem of [3]) Let An be an n × n lower Hessenberg matrix
for all n ≥ 1 and define det(A0) = 1. Then, det(A1) = a11 and for n ≥ 2

det(An) = an,n det(An−1) +

n−1∑
r=1

[(−1)n−ran,r(
n−1∏
j=r

aj,j+1) det(Ar−1)].

In this paper, first we define generalized Perrin and Cordonnier matrices using
associated polynomials of Perrin and Cordonnier numbers. We obtain the inverse
of generalized Cordonnier matrices with the aid of determinants of some Hessen-
berg matrices which obtained from a part of these matrices. We also give some
relationships between generalized Perrin and Cordonnier matrices in this section.
Secondly, we give a factorization of generalized Cordonnier matrices. In the last
section we give some determinantal representation of associated polynomials Cor-
donnier numbers.
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2. Generalized Perrin and Cordonnier matrices

Definition 2.1. Let n be any positive integer, the n×n lower triangular generalized
Cordonnier matrix Cn,x = [ci,j ]i,j=1,2,...,n are defined by

ci,j =

{
Ci−j+1(x), if i− j > 0
0, otherwise.

(1)

For example,

C4,x =


1 0 0 0
x 1 0 0
x2 x 1 0

1 + x3 x2 x 1

 .
Definition 2.2. Let n be any positive integer, the n×n lower triangular generalized
Perrin matrix Pn,x = [pi,j ]i,j=1,2,...,n are defined by

pi,j =

{
Pi−j+2(x), if i− j > 0
0, otherwise.

(2)

For example,

P4,x =


2 0 0 0
3x 2 0 0
2x2 3x 2 0

2 + 3x3 2x2 3x 2

 .
Definition 2.3. Let n be any positive integer, the n× n lower Hessenberg matrix
sequence HCn,x = [ai,j ]i,j=1,2,...,n are defined by

ai,j =

{
Ci−j+2(x), if i− j + 1 ≥ 0
0, otherwise.

(3)

Lemma 2.4. Let c0(x) = 1, c1(x) = x, cn+1(x) = xcn(x)+
∑n
k=1(−1)n−k+1Cn−k+3(x)ck−1(x).

Then, det(HCn,x) = cn(x) for any positive integer n ≥ 1.

Proof. We proceed by induction on n. The result clearly holds for n = 1. Now
suppose that the result is true for all positive integers less than or equal to n. We
prove it for n+ 1. In fact, by using Lemma 1.1 we have

det(HCn+1,x) = xdet(HCn,x) +

n∑
i=1

(−1)n+1−ian+1,i n∏
j=i

aj,j+1 det(HCi−1,x)


= xdet(HCn,x) +

n∑
i=1

[
(−1)n+1−iCn−i+3(x) det(HCi−1,x)

]
.

From the hypothesis of induction, we obtain

det(HCn+1,x) = xcn(x) +

n∑
i=1

[
(−1)n+1−iCn−i+3(x)ci−1(x)

]
.



ON THE GENERALIZED PERRIN AND CORDONNIER MATRICES 245

Therefore, det(HCn,x) = cn(x) holds for all positive integers n. �

Example 2.5. We obtain c3(x), c4(x) by using Lemma 2.4.

det

 x 1 0
x2 x 1

1 + x3 x2 x

 = 1 = c3(x),det


x 1 0 0
x2 x 1 0

1 + x3 x2 x 1
x+ x4 1 + x3 x2 x

 = x =

c4(x).

Corollary 2.6. Let (HCn,x) be the n×n Hessenberg matrix in (3). Then, det(HCn,x) =
cn(x) = xn−3 for any positive integer n ≥ 3.

Proof. We proceed by induction on n. The result clearly holds for n = 3. Now
suppose that the result is true for all positive integers less than or equal to n. We
prove it for n+ 1. It is clear by the Laplace expansion of the last column that,

det(HCn+1,x) = xdet(Mn,n)− det(Mn−1,n)

= xdet(HCn,x)− det(Mn−1,n)

= xxn−3 − det(Mn−1,n)

and since nth row of Mn−1,n is equal x2((n− 1)th row of Mn−1,n)+ ((n− 2)th row
of Mn−1,n), det(Mn−1,n) = 0, where Mi,j is the (i, j) minor matrix of HCn,x. So
we obtain

det(HCn+1,x) = xn−2.

�

Theorem 2.7. Let n be any positive integer, Cn,x is n× n lower triangular gener-
alized Cordonnier matrix in (1) and (HCn,x) be the n × n Hessenberg matrix in
(3). Then (Cn,x)−1 = [cpi,j ] is obtained by

[cpi,j ] =

 (−1)i−j det(HCi−j,x), if i− j > 0
1, if i− j = 0
0, otherwise.

Proof. Note that it suffi ces to prove that Cn,x(Cn,x)−1 = In. We take Cn,x(Cn,x)−1 =
[ai,j ]1≤i,j≤n. It is obvious that ai,j =

∑n
k=0 ci,kc

p
k,j = 0 for i − j < 0 and ai,j =∑n

k=0 ci,kc
p
k,j = ci,ic

p
i,i = 1 for i = j. For i > j ≥ 1 we have

ai,j =

n∑
k=0

ci,kc
p
k,j =

i∑
k=j

ci,kc
p
k,j

= Ci−j+1(x)− Ci−j(x)c1(x) + · · ·+ C1(x)(−1)i−jci−j(x)

and we know Ci−j+1(x) =
∑i−j
s=1(−1)s+1cs(x)Ci−j+1−s(x) from definition of cn(x).

Thus, we obtain ai,j =
∑n
k=0 ci,kc

p
k,j = 0 for i > j ≥ 1 which implies that

Cn,x(Cn,x)−1 = In. �
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Now, we show a relation between the generalized Perrin and Cordonnier matrices.
The n× n lower triangular matrix Tn,x := [ri,j ], (1 ≤ i, j ≤ n) is defined by

ri,j =

{∑i−j
k=0(−1)kPi−j−k+2(x)ck(x), if i > j;

0, otherwise.

Theorem 2.8. Let n be any positive integer, Pn,x and Cn,x are n× n lower trian-
gular generalized Perrin and Cordonnier matrices, then

Tn,xCn,x = Pn,x.

Proof. Note that it suffi ces to prove that Pn,x(Cn,x)−1 = Tn,x. It is obvious that
ri,j = 0 for i− j > 0. For i ≥ j ≥ 1 we have
n∑
k=0

pi,kc
p
k,j =

n∑
k=0

Pi−k+2(x)(−1)k−jck−j(x)

=

i∑
k=j

Pi−k+2(x)(−1)k−jck−j(x) =
i−j∑
k=0

Pi+j−k+2(x)(−1)kck(x) = ri,j

which implies that Pn,x(Cn,x)−1 = Tn,x, as desired. �

Example 2.9. We obtain relation between the generalized Perrin and Cordonnier
matrices for n=5 by using Theorem 2.8.

T5,xC5,x = P5,x.
2 0 0 0 0
x 2 0 0 0
−x2 x 2 0 0
x3 −x2 x 2 0
−x4 x3 −x2 x 2




1 0 0 0 0
x 1 0 0 0
x2 x 1 0 0

1 + x3 x2 x 1 0
x+ x4 1 + x3 x2 x 1



=


2 0 0 0 0
3x 2 0 0 0
2x2 3x 2 0 0

3x3 + 2 2x2 3x 2 0
3x+ 2x4 3x3 + 2 2x2 3x 2

 .
Now we give a companion matrix Qn,x as follows:

Qn,x =



0 1 0 0 0

0 0
. . . 0 0 0

0 0 1 0 0

0 0
. . . 0 1 0

0 0 0 0 1
(−1)n+1cn(x) (−1)ncn−1(x) · · · c3(x) 0 x


n×n

.



ON THE GENERALIZED PERRIN AND CORDONNIER MATRICES 247

Theorem 2.10. Let m ≤ n be the integers, then the last column of matrix (Qn,x)m
is 

Cm−n+2(x)
...

Cm(x)
Cm+1(x)

 .
Proof. We proceed by induction on m. The result clearly holds for m = 1. Now
suppose that the result is true for all positive integers less than or equal to m. We
prove it for m+ 1. The last column of matrix (Qn,x)m+1 is

0 1 0 0 0

0 0
. . . 0 0 0

0 0 1 0 0

0 0
. . . 0 1 0

0 0 0 0 1
(−1)n+1cn(x) (−1)ncn−1(x) · · · c3(x) 0 x




Cm−n+2(x)

...
Cm(x)
Cm+1(x)



=


Cm−n+3(x)

...
Cm+1(x)

(−1)n+1cn(x)Cm−n+2(x) + · · ·+ c1(x)Cm+1(x)

 =

Cm−n+3(x)

...
Cm+1(x)
Cm+2(x)

 .
�

2.1. Factorizations of Generalized Cordonnier matrices. The set of all n-
square matrices is denoted by Hn. A matrix H ∈ Hn of the form

H =


H11 0 · · · 0

0 H22
. . .

...
...

. . .
. . . 0

0 · · · 0 Hkk



in which Hii ∈ Hni (i = 1, 2, ..., k) and
k∑
i=1

ni = n, is called block diagonal. No-

tationally, such a matrix is often indicated as H = H11 ⊕H22 ⊕ · · · ⊕Hkk; this is
called the direct sum of the matrices H11, H22, · · · , Hkk.
Lee et al. [13, 14] and Sahin[23] gave some factorization. Like these we consider

factorization of Cn,x. Let In be the identity matrix of order n. We define the
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matrices Cn,x = [1]⊕ (Cn−1,x) and

Dn=


1 0 · · · 0

c1(x)
... In+2

(−1)n+1cn+2(x)

 . (4)

Lemma 2.11. (Ck,x)(Dk−3) = Ck,x for k ≥ 3.
Proof. We take (Ck,x) = [ci,j ], (Dk−3) = [di,j ] and Ck,x = [ci,j ] and obtain
k∑
s=1

ci,sds,j for i, j = 1, 2, ..., k. It is obvious from matrix product and definition

of In+2 that c11 = 1,
k∑
s=1

ci,sds,j = ci,j for i = 1, 2, ..., k and j = 2, ..., k. For j = 1,

ci,1 =

k∑
s=1

ci,sds,1 = Ci−1(x)c1(x)− · · · (−1)k−1C1(x)ci−1(x).

Using ck−1(x) = xck−2(x)− C3(x)ck−3(x) + · · ·+ (−1)k−2Ck(x)c0(x) and c0(x) =
C1(x) = 1, we obtain Ck(x) = Ck−1(x)c1(x)−· · ·+(−1)k−1ck−1(x). So using these
last two equation the equation ci,1 = Ci−1(x)c1(x) − · · ·+ (−1)i−1C1(x)ci−1(x) =
Ci(x) is obtained. �
Theorem 2.12. Let n ≥ 3 be any positive integer. Then Cn,x = (In−2⊕(D−1)) · · · (I1⊕
(Dn−4))(Dn−3).

Proof. From Lemma 2.11 and matrix product we obtain

Cn,x = (Cn,x)(Dn−3) = [(I1 ⊕ Cn−1,x)(I1 ⊕ (Dn−4))](Dn−3)

= [(I2 ⊕ Cn−2,x)(I2 ⊕ (Dn−5))](I1 ⊕ (Dn−4))(Dn−3)

...

= (In−3 ⊕ C3,x)(In−3 ⊕ (D0)) · · · (I1 ⊕ (Dn−4))(Dn−3)

and (In−3 ⊕ C3,x) = (In−2 ⊕ (D−1)). Thus, we obtain
Cn,x = (In−2 ⊕ (D−1))(In−3 ⊕ (D0)) · · · (I1 ⊕ (Dn−4))(Dn−3).

�
Example 2.13. We give a factorization for C5,x by using Theorem 2.12:

(I3 ⊕D−1)(I2 ⊕D0)(I1 ⊕D1)D2

=


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 x 1



1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 x 1 0
0 0 0 0 1



1 0 0 0 0
0 1 0 0 0
0 x 1 0 0
0 0 0 1 0
0 1 0 0 1




1 0 0 0 0
x 1 0 0 0
0 0 1 0 0
1 0 0 1 0
−x 0 0 0 1
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=


1 0 0 0 0
x 1 0 0 0
x2 x 1 0 0

x3 + 1 x2 x 1 0
x+ x4 x3 + 1 x2 x 1

 .
Lemma 2.14. Dn are the (n+ 3)× (n+ 3) Hessenberg matrices in (4). Then

(Dn)
−1 =


1 0 · · · 0

−c1(x)
... In+2

(−1)n+2cn+2(x)

 .
Proof. The proof is obvious that matrix product. �

Corollary 2.15. Let n ≥ 3 be any positive integer. Then (Cn,x)−1 = (Dn−3)
−1(I1⊕

(Dn−4))
−1 · · · (In−2 ⊕ (D−1))−1.

Proof. Proof is obvious that previous lemma and equations (Ik ⊕ (Dn−k−3))
−1 =

Ik ⊕ (Dn−k−3)
−1. �

3. Determinantal representation of associated polynomials
Cordonnier numbers

Sahin and Ramirez gave a method for determinantal representation of Convolved
Lucas polynomials in [24]. Using similar method, we give determinantal represen-
tation of Cn(x).

Theorem 3.1. Let n ≥ 1 be an integer, Cn(x) be the nth associated polynomials
Cordonnier numbers and −A

(x)
n = [ai,j ]i,j=1,2,...,n be an n × n Hessenberg matrix

defined as

ai,j =


−1, if i− j = −1;
(−1)i−jci−j+1(x), if i ≥ j
0, otherwise.

(5)

Then

det(−A
(x)
n ) = Cn+1(x).

Proof. We proceed by induction onm. The result clearly holds for n = 1, det(−A
(x)
1 ) =

x = C2(x). Now suppose that the result is true for all positive integers less than or
equal to n− 1. We prove it for n.

−A
(x)
n [C1(x) C2(x) · · · Cn(x)]T = [0 0 · · · 0 Cn+1(x)]T
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In fact, using Cramers rule we have

Cn(x) =
det(−A

(x)
n−1)Cn+1(x)

det(−A
(x)
n )

⇒ Cn+1(x) =
det(−A

(x)
n )Cn(x)

det(−A
(x)
n−1)

From the hypothesis of induction we obtain

det(−A
(x)
n ) = Cn+1(x).

Therefore, det(−A
(x)
n ) = Cn+1(x) holds for all positive integers n. �

Example 3.2. We obtain the polynomial C7(x) by using Theorem 3.1.

det


x −1 0 0 0 0
0 x −1 0 0 0
1 0 x −1 0 0
−x 1 0 x −1 0
x2 −x 1 0 x −1
−x3 x2 −x 1 0 x

 = 2x
3 + x6 + 1.

Corollary 3.3. Let m ≤ n be the integers, en is nth row of the identity matrix In.
Then

en(−A
(x)
n )(Qn,x)

meTn = Cm+2(x).

Proof. Proof is obvious from matrix product, Theorem 2.10 and equation

−A
(x)
n [Cm−n+2(x) · · · Cm+1(x)]T = [0 0 · · · 0 Cn+2(x)]T .

�
Example 3.4. We obtain the polynomial C7(x) by using Corollary 3.3.

e6(−A
(x)
6 )(Q6,x)

5eT6 = 2x
3 + x6 + 1 = C7(x)

Theorem 3.5. Let n ≥ 1 be an integer, Cn(x) be the nth associated polynomials
Cordonnier numbers and +B

(x)
n = [bs,t]s,t=1,2,...,n be an n × n Hessenberg matrix

defined as

bs,t =


i, if s− t = −1;
(i)s−tcs−t+1, if s ≥ t
0, otherwise.

Then
det(+B

(x)
n ) = Cn+1(x).

Proof. If we multiply the kth column by (−1)(−i)k and the jth row by (−1)ij of
the matrix −A

(x)
n , where i =

√
−1, then the determinant is not altered. Therefore

we get the desired result. �
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Example 3.6. We obtain the polynomial C6(x) by using Theorem 3.5.

det


x i 0 0 0
0 x i 0 0
−1 0 x i 0
ix −1 0 x i
x2 ix −1 0 x

 = 2x2 + x5

The permanent of a n-square matrix is defined by perA =
∑
σ∈Sn

∏n
i=1 aiσ(i),

where the summation extends over all permutations σ of the symmetric group
Sn (cf. [18]). There is a relation between permanent and determinant of a Hessen-
berg matrix (cf. [4, 7]). Then it is clear the following corollary.

Corollary 3.7. Let n ≥ 1 be an integer, Cn(x) be the nth associated polynomials
Cordonnier numbers, +A

(x)
n = [us,t]s,t=1,2,...,n and −B

(x)
n = [vs,t]s,t=1,2,...,n be the

n× n Hessenberg matrices defined as

us,t =


1, if s− t = −1;
(−1)s−tcs−t+1, if s ≥ t
0, otherwise

and vs,t =


−i, if s− t = −1;
(i)s−tcs−t+1, if s ≥ t
0, otherwise

.

Where i =
√
−1. Then per(+A(x)n ) = per(−B

(x)
n ) = Cn+1(x).

Corollary 3.8. Let n ≥ 1 be an integer, −A(x)n be the n× n Hessenberg matrix in
(5), Cn(x) is the nth associated polynomials Cordonnier numbers and

̂
−A

(x)
n =


1 0 · · · 0

...
−(−A(x)n−1) 0

1

 .
Then,

(
̂
−A

(x)
n )−1 = Cn,x.

Proof. Proof is obvious from Theorem 2.7. �
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