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SPECTRAL ANALYSIS OF BOUNDARY VALUE PROBLEMS
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ERDOGAN SEN AND AZAD BAYRAMOV

ABSTRACT. In this paper, by modifying some techniques of [S.B. Norkin, Dif-
ferential equations of the second order with retarded argument, Translations
of Mathematical Monographs, Vol. 31, AMS, Providence, RI, 1972] and sug-
gesting own approaches we find asymptotic formulas for the eigenvalues and
eigenfunctions of boundary value problems of Sturm-Liouville type for the
second order differential equation with retarded argument.

1. FORMULATION OF THE PROBLEM

In this study we shall investigate discontinuous eigenvalue problems which consist
of Sturm-Liouville equation

a(x)y” (z) + M(x)y(z — Az)) + Ay(z) =0 (1)
on [0,%) U (%, ], with boundary conditions
y(0) cos a + ¢'(0) sinaw = 0, (2)
y(m)cos B+ ¢/ () sin 8 =0, (3)
and transmission conditions
7r 7r
3/(5 -0) - 513/(5 +0) =0, (4)
7r 77
y’(§ —0) —52?/(54‘0) =0, (5)
where a(z) = af for € [0,%) and a(z) = a3 for © € (Z,7]; the real-valued

function M () is continuous in [0,%) U (Z,n| and has a finite limit M (% +0) =
lim, ., z +o M(z), the real valued function A(x) > 0 continuous in [0, 2)U(3, 7] and
has a finite limit A(340) = lim, . z+0 A(z), z—A(z) > 0,if z € [0,5) ;2—A(x) >

Received by the editors: May 18, 2016, Accepted: January 02, 2017.

2010 Mathematics Subject Classification. 34120, 35R10.

Key words and phrases. Differential equation with retarded argument; transmission conditions;
asymptotics of eigenvalues and eigenfunctions.

©2017 Ankara University
Communications de la Faculté des Sciences de I'Université d’Ankara. Séries Al. Mathematics and Statistics.

175



176 ERDOGAN SEN AND AZAD BAYRAMOV

Z,if x € (3,7]; X is a real spectral parameter; 0;’s (i = 1,2) are arbitrary real
numbers.

In the book [1] and papers [2-9] the asymptotic formulas for the eigenvalues and
eigenfunctions of boundary value problems with retarded argument and a spectral
parameter in the differential equation and/or boundary conditions and/or trans-
mission conditions were obtained.

The articles [10-18] are devoted to study of the spectral properties of eigenvalues
and eigenfunctions of the classical Sturm-Liouville problems.

If we take A(z) = 0 and/or §; = 02 = 1 and/or a(z) = 1 then the asymptotic
formulas for eigenvalues and eigenfunctions correspond to those for the classical
Sturm-Liouville problem [10, 14, 16-18].

Let ¢, (z,A) be a solution of Eq. (1) on [0, 3], satisfying the initial conditions

¢, (0,\) =sina, ¢} (0,\) = —cosa. (6)

The conditions (6) define a unique solution of Eq. (1) on [0, %] [1].
After defining the above solution we shall define the solution ¢, (2, ) of Eq. (1)
on [Z,7| by means of the solution ¢, (x,\) using the initial conditions

9
62 (5:2) =001 (5:1) 5 b (5.0) =826 (5.2). (7)

The conditions (7) are defined as a unique solution of Eq. (1) on [Z,7].
Consequently, the function ¢ (z, A) is defined on [ , 2) (% ] by the equality

_ (151(%,)\), T € [07 §)
oN={ G, TE G

is a solution of the Eq. (1) on [0, g) U (%7 7r] ; which satisfies one of the boundary
conditions and both transmission conditions.

Lemma 1.1. Let ¢ (x,\) be a solution of Eq.(1) and X\ > 0. Then the following
integral equations hold:
ajcosa | S

) s
o1 (z, ) =sinacos —x — sin —x
aq S aq

x

L My sinE @) 6, (r— A (), N) dr (s:ﬁ,A>o), 8)

a1 s a1

(9)
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Proof. To prove this, it is enough to substitute —Z—zqﬁl (1, \)— M and — = gbz(r, A)—
1

% instead of — A{l(;') ¢1(T—A(T),\) and — Ma(;) ¢o(T—A(T), ) in the integrals
1 2
in (8) and (9) respectively and integrate by parts twice. O

Theorem 1.2. The problem (1) — (5) can have only simple eigenvalues.

Proof. 1t is similar to the proof of Theorem 1 in [6]. O

2. EXISTENCE OF SOLUTIONS OF THE PROBLEM

The function ¢(z, A)defined in introduction is a nontrivial solution of Eq. (1) sat-
isfying conditions (2), (4) and (5). Putting¢(x, A)into (3), we get the characteristic
equation

R(A\) = ¢(m, ) cos B+ ¢ (m, \) sin B = 0. (10)

By Theorem 1.2 the set of eigenvalues of boundary-value problem (1)-(5) co-
w/2

incides with the set of real roots of Eq. (10). Let M; = aj' f |M(7)|dr and

My = ay' [ |M(7)|dr. Also let us assume that A > max {k2 M7, K*M3}, k> 1
w/2
(k € R). Then for the solution ¢, (x,\) of Eq. (8), the following inequality holds:

\/k2M12 sin a + a3 cos? a -
N < 0,—1|. 11
‘¢1(m7 )|— (k—1)|M1‘ y X E |: 72:| ( )

Differentiating (8) with respect to z, we have

(2, N) = ~ % sinasin —z—cos acos 733,7 /M cos — (x —7)p(T—A(T), N)dr.
aq aq al
(12)
Then from (11) and (12) for the solution ¢, (z, \) of Eq. (9), the following inequality
holds:

\/kQMl2 sin? a + a3 cos? a T
62 (2, 0)] < ; , we | (13)
(k — ].) |a1M15162\
Theorem 2.1. The problem (1) — (5) has an infinite set of positive eigenvalues.

Proof. Differentiating (9) with respect to x, we get

¢l2($»)\)8¢)1(g’/\)81n; (w*g> +Mcosi(x—f)

az0y 5o as 2

%/M cos— (2 —7)o(T — A(T),Ndr (s =V A>0). (14)

/2
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From (8)-(10), (12) and (14), we get

1 . s ajcosa ., ST
— [ sinacos 20 sin

(51 aq S 2(11

,i 02 M (7) sin ail(g — 7)1 (7 — A7), /\)d7> X COS 28%2

a2 S . . 8T ST
+ —— sin asin —— — Ccos & cos ——

E ay ai ay
1 r2
| M) eos ail(g — )y (T — A7), A)dr) X sin%

b i M (1) sin i(ﬂ' — T)oo(T — A(T), )\)dT] cos 3

ass 71./2 ag
S ) ST aicosQ . ST
+ | = sin v cos —— — sin —
{ as01 ( 2a1 s 2a1
1 z s m ST
- — M(7)sin — (= — — A(7),\)dr | X sin —
a5 | ME)sin (G = o= A, ) ) in o

1 s . . 8T ST
+ — | —— sinasin — — cos «wCcos — —
62 a1 2&1 2(11

ST

1 (2 s T
—2/0 M(T)cos—(§ —T)¢1(T—A(T),)\)d7'> X CO8 —

af a1 2a0

1 [ s .
2 /l M (1) cos g(ﬂ' — T)po(T — A(T), )\)dT] sinf=0 (15)
2
There are four possible cases:
1. sina # 0, sin 8 # 0;
2. sina # 0,sin 5 = 0;
3. sina = 0,sin 5 # 0;
4. sina = 0,sin g8 = 0.
Let A be sufficiently large and d1a2 = d2a;.-
Cases 1 and 4. Then, by (11) and (13), Eq. (15) may be rewritten in the form
. s (a1 + ag)
_— 1)=0. 1
ssin e +0(1)=0 (16)
For large s Eq. (16) has an infinite set of roots.
Cases 2 and 3. In these cases, Eq. (15) assumes the form
SCOSM +0(1)=0. (17)

2&1&2
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Obviously, for large s Eq. (17) has, evidently, an infinite set of roots. The proof is
complete. ([l

Thus, by Theorem 1.2 we conclude that the problem (1)-(5) has infinitely many
nontrivial solutions.

3. ASYMPTOTIC FORMULAS FOR EIGENVALUES AND EIGENFUNCTIONS

The function ¢(x, \)defined in introduction is a nontrivial solution of Eq. (1) sat-
isfying conditions (2), (4) and (5). Putting#(x, A)into (3), we get the characteristic
equation

R(A\) = ¢(m,\) cos B+ ¢ (m, \) sin B = 0. (10)
By Theorem 1 the set of eigenvalues of boundary-value problem (1)-(5) coincides
m/2

with the set of real roots of Eq. (10). Let M; = a;' [ |M(7)|dT and My =
0

o1 [ |M(7)|dr. Also let us assume that A > max {k?M?, kM3 }, k > 1 (k € R).
w/2
Then for the solution ¢, (x,A) of Eq. (8), the following inequality holds:

\ \/kQMf sin? a + a cos? a T
2, )| < . we€ [0, —] . 11
Differentiating (8) with respect to z, we have
P s ] 1
¢1(x,\) = ——sinasin —z— cosozcos— 3 cos— (x —T) P (T—A(T), N)dr.
aj aj ay
0
(12)

Then from (11) and (12) for the solution ¢, (x, \) of Eq. (9), the following inequality
holds:

\/k2M12 sin? a + a3 cos? a

| (, A)] <
’ (k — 1)% a1 M10,65]

L ze [gw] (13)

Theorem 3.1. The problem (1) — (5) has an infinite set of positive eigenvalues.

Proof. Differentiating (9) with respect to x, we get

¢l2($»)\)8¢)1(g’/\)81n; (w*g> +Mcosi(x—f)

az0y 5o as 2

%/M cos— (2 —7)o(T — A(T),Ndr (s =V A>0). (14)

/2
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From (8)-(10), (12) and (14), we get

1 . ST ajcosa ., ST
— | sinacos — — sin —
61 2@1 S 2@1
1 3
“ai ) M (7)sin ail(g — 7)1 (1 — A(7), )x)dT) X COS 2877;
a2 ( S . . 8T ST
+ —— | - sinasin ;— — cosacos ——
852 a1 a1 a1
1 3 s
&y MO >COS;1<5 —T)qbl(r—A(T),A)dT)
xsm% — @ M(r bln— (m — 7)o (T — A(7), \)dT | cos
/2
+ 5 i ST a1CcosQ , ST
- sin o cos — — Ssm
@201 21 s 2a,
: : (X . sm
“ai ), M(r)sin ;1(5 — 7)1 (T — A(T),)\)dT) X sin 205
+ 1 S . . ST ST
— | —— sinasin — — cos & cos —
62 ai “ 2a1 5 Qreos 2(11
1 [%
] M@ G o - a0 A)ch) <eos 2T

1

2 | M()eos S —T)by(r — A(r), N)dr | sinf = 0. (15)

az

NH\:\

There are four possible cases:
1. sina # 0,sin 8 # 0;
2. sina # 0,sin 5 = 0;
3. sina = 0,sin 5 # 0;
4. sina = 0,sin 5 = 0.
Let A\ be sufficiently large and d1a2 = d2a;.
Cases 1 and 4. Then, by (11) and (13), Eq. (15) may be rewritten in the form

. s (a1 + az) B
ssin ey +0(1)=0. (16)

For large s Eq. (16) has an infinite set of roots.
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Cases 2 and 3. In these cases, Eq. (15) assumes the form

s (a1 + as)

e +0(1)=0. (17)

Obviously, for large s Eq. (17) has, evidently, an infinite set of roots. The proof is
complete. (I

Thus, by Theorem 1 we conclude that the problem (1)-(5) has infinitely many
nontrivial solutions. We shall now study the asymptotic properties of eigenvalues
and eigenfunctions. In the following we shall assume that s is sufficiently large.
From (8) and (11), we get

¢1(@, ) = 0(1) on [0,7] (18)
and from (9) and (13), we get

62(@,2) =0(1) on [3,7] (19)
in the cases 1 and 2. In cases 3 and 4 we have

G1(w ) =0() on [0.7] (20)
and

Gala, ) =0(5) on 5.7 (21)

The existence and continuity of the derivatives ¢} (z,\)for 0 <z < I, |A] < oo,

and ¢ (z, A) for 5 <z <, |A| < oo, follows from Theorem 1.4.1 in [1]. Using the

same technique in the proof of Lemma 3.1 in [1], we have the following equalities:
In cases 1 and 2

G1s(@ ) = 0(1), €0, 3] (22)

dhe(w, ) = O(1), @€ (3] (23)
and in cases 3 and 4

$u(x:0) =0(), zel0.3], (24)

buule ) =0(), w e[S, (25)

hold.
Let n be a natural number. We shall say that the number A is situated near the

4n’aal (2n+1)%a?al . . 2najas 1
(a1+az)? o e +az)? if, respectively artaz VA < 5z OF

&= (k>1,k€R).

number
a1+az

(2n+1l)aiaz \/X <
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Theorem 3.2. Let n be a natural number. For each sufficiently large n, in cases

2.2 2
1 and 4, there is exactly one eigenvalue of the problem (1) — (5) near (fi_:;:)zz and
2.2 2
in cases 2 and 3, there is exactly one eigenvalue of this problem near %
Proof. Tt is similar to proof of Theorem 3.3.1 in [1]. O

With the helps of Egs. (16) and (17) we can find asymptotic formulas for eigen-

values of the problem (1)-(5). Let n be sufficiently large. In what follows we shall

2.2 2

denote by )\, = s2 the eigenvalue of the problem (1) — (5) situated near éﬁ _f;j)%
(2n+1)%a?a? )
(a1+a2)® /-

Cases 1 and 4. We set 5, = 2249 1 § . From Eq. (16) it follows that

a1+az

2 1
s, = 192 o () . (26)

a1 + ao n

(or near

6, = O (). Consequently

Cases 2 and 3. We set s, = % + 8,. From Eq. (17) it follows that
0p =0 (%) Consequently
2 1 1
Sn:<n+)m2+0<>. (27)
ay + as n

Formula (26) and (27) make it possible to obtain asymptotic expressions for eigen-
function of the problem (1) — (5). In cases 1 and 2, from (8), (12) and (18), we
get

¢1(x,\) = sinacos Sr+0 (1> ) (28)
aq S
From (9), (19) and (28), we get
sin o m(aa—a1) =z 1
_ e T4 2 2. P
NEAPY 5, coss( ey +a2> +O<s> (29)
In cases 3 and 4, from (8), (12) and (20), we obtain
aicosa . S 1
A)=— - —
oua ) == 2o 0 (), (30)
From (9), (21) and (30), we get
ajcosa . m(ag —a1) =z 1
S ins (22" 4) T =), 1
Pa(z, ) o sms( e a2> +0 <S2> (31)

Now we can write the asymptotic representations of eigenfunctions
_J o (M) for xz€]0,7),
yn(z) = { &g (x,An) for 2z e (5,7
for the problem (1)-(5):
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Case 1. By substituting (26) into (28) and (29), we find that

2 1
éq (x, \p) = sinacos n%2T Lo (> )

a1 + as n

by (2, A) = sin o o <mr (ag — aq) N 2na1x ) Lo (1>
2 01 a1 + as a1 + a2 n/)’
Case 2. By substituting (27) into (28) and (29), we find that

2 1 1
61 (2, \n) = a% (n)

_ sina 2n+1)(az —a1)m  (2n+1) a1z 1
¢2 (x7)\n) o (51 o8 < 2 (a1 + Clg) + a1 + as ) + O () ’

Case 3. By substituting (27) into (30) and (31), we find that

e o (1)
2 1+ az
_ (mtag)cosa . ((2n+1)(az—a)m  (2n+1)ax 1
02 (2, An) = (2n + 1) azdy st 2 (a1 + az) + a1 + asg +0 n? )’

Case 4. By substituting (26) into (30) and (31), we find that

(a1 +az)cosa . 2nasx 1
An) = — o=
91 (2 An) 2nas st a1 + as + n2
(a1 4+ ag)cosa . (nmw(az —aq) 2na;x 1
An) = — ol—=].
92 (@ An) 2nasdy o a1 + a * ay + az " n?

4. SHARPER ASYMPTOTIC FORMULAS FOR EIGENVALUES AND EIGENFUNCTIONS

Under some additional conditions the more exact asymptotic formulas which
depend upon the retardation may be obtained. Let us assume that the following
conditions are fulfilled:

a) The derivatives M’(x) and A”(z) exist and are bounded in [0, §) (5, 7] and
have finite limits M'(3 £0) = ligrnio M'(z) and A"(3 £0) = h%rrnio A" (x),
T T

respectively.
b) A'(z) <1 in0,5)U(5, 7], A(0) =0 and x_l)i1%11+oA(a:) =0.
By using b), we have
r—A@@) >0,z €[0,), (32)
fo(m)zg, ze(g,ﬂ. (33)

From (28), (29), (32) and (33), in the cases 1 and 2 we have

¢1(7—A(T),)\):sinacoss(T—A(T))-I-O(i)a (34)

ay
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¢2(T—A(7),A):Si;“coss<M+T—A(T)>+o(i>. (35)

1 as 20,1
From (30), (31), (32) and (33), in the cases 3 and 4 we have

¢1(T—A(T),A):—alc;’s°‘sin;(T—A(T))+o<812), (36)
br(r - 0) N = - 2 (T ) v (5.
Let
Al s, M) = & [ M(r)sin (£A()) dr,
B
B(z,s,A(r)) = %JM(T) cos (a—iA(T)) dr.

C(z,s8,AT)) = % (1) sin (;—QA(T)) dr,

M
D(z,5,A(1)) = L [ M(7) cos (iA(T)) dr.
It is obvious that these functions are bounded for § <z <7 and 0 < s < c0.
Under the conditions a) and b) the following formulas

of M(7) cos ﬁ(%‘ — A(7))dr

(1) sin (27 — A(7))dr

() cos = (27 — A(r))dr o (D

—
5 = E

(1) sin (27 — A(7))dr

P PR — O

can be proved by the same technique in Lemma 3.3.3 in [1].
Case 1. Putting the expressions (34) and (35) into (15), and using the equalities
n (15), after long operations we have

s (a1 + ag) 1[ cosfBsina  sin3cosa
a1 o) 2|

2@1&2 S 51 62
JrB (3,5,A(7)) sin 8 N D(w,s,A(;))sinaSinﬂ] Lo (12> '
aiaz0q a261 S

Again if we take s, = i’iaﬁaj + 0, then

0n (a1 + az) ~ ten dnm (a1 + az) _ @ + as
2a1 a9 2a1 a9 2naias

tan <n +
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T 2naia :
cosfBsina  sinfcos n B (57 alJrla;’A(T)) sin 3

51 52 a1a251

+ 2

D (w2992 A (7)) sinasin 3 1
( 1+az ) + 0 () .

a%él

Hence for large n,

T 2naia .
5 — 1 7cosﬁsina sin 8 cos B (5’ alJrla;’A(T)) sin 3
" nm 51 9 ajazdy
D (7r, 2;1‘11;122 A (T)) sin asin 8 1
+ 5 +0| =
as01 n
and finally
T 2naia L2
2naas 1 cosfBsina  sinfcosa B (5’ 0 Fan A (7')> sin 8
Sp = —— + — | —
a1 + ao nm (51 (52 a1a251
D (7r 2a”‘“a2 A (7’)) sin asin 3
’ai+az’ 1
ol—=]). 39
+ a%&l + <n2> ( )

Case 2. Putting the expressions (34) and (35) into (15), and using the equalities
n (15), after long operations we have

sm(ay + az) 1l010050+3<3757A(7)) D(W’S’A(T))]—FO(l)

cot =
2@1&2 S (51 a1(51 a251

52

Again if we take s,, = Zrtbads 4 5 then

ai+taz
cot 2ntl +6n(a1+a2) = —tan 6n7r(a1+a2) = a1+ ay
2 2a1a9 2a1 a9 (2n+1)ajas

+

51 a101 a01

7 (2n+1)aia (2n+1)aia
a1 Ccos o B (5’ a1+a21 Q’A(T)) D (W’ a1+a21 27A(T)> 1
+ +0 (=)

Hence for large n,

7 (2n+1)ajaz (2n+1)aiaz
5 — 2 acosa B (5’ artar ’A(T)) N D (W’ arfan 7A(T))
" @n+)7 01 @101 asdy

~0()
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and finally
_ @n+Daay 2
" ayta 2n+1)7w
r (2n+1l)aia (2n+1)aia
arcosa B (57 aiTas 27A(7—)) N D (7“ aiTas Q’A(TD 40 1
01 a161 a961 n? )’

(40)

Case 3. Putting the expressions (36) and (37) into (15), and using the equalities
n (15), after long operations we have

s (a1 + ag) 1|aicosp A(3,s,A(r))sing
cot ———% = = -
201 a9 S 01 a0y
D (m, s, A i 1
~ a1 D (m,s : (T))Sln6:| Lo (2>
a301 s
Again if we take s, = % + 6, then
2n+1 6, (a1 +a2) Onm (a1 + az) a1 + as
t = —t —
corm < 2 + 2a1a2 a 2a1 a9 (2n+ 1) ajaz
© (2n+1l)aia .
ay cos 3 A (5’ ( a1+)a2172 A (T)) sin 8
01 a01

(2n+1)ajaz .
_a1D(W7w,A(7))SIDB +O(1)

2
a301 n2

Hence for large n,

7 (2n+1)aia .
2 ay cos 3 B A (57#»A(7)) sin 3

Op = —
2n+1)w 01 az01

_a1D (w,%,A(T)) sin 3 +O< 1 )

a%dl ﬁ
and finally
(27’L + 1) aia9 2
Sp = -
ar + az 2n+1)m

ay cos 3 B A (%7 (27:_2;21@ ;A (7')) sin 3 B a1 D (ﬂ', 7(27:;:2;21@2 ,A (7’)) sin 3 o (

61 a251 a%él

(41)

1

n2

).
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Case 4. Putting the expressions (36) and (37) into (15), and using the equalities
in (15), after long operations we have
1
+0(%).

oy 5T (a1 +a2) I[alD(W,S,A(T)) B(%,S,A(T))+alC(7T,3,A(7'))

a201 01 a01

2a1a9 S

o e 2na;a
Again if we take s, = vl On, then

0n (a1 + a2)> ~tan dnm (a1 +a2) a1 +ag

tan <n + =
2a1 a9

2a1 a9 2naias

wb (e 00)  B(3 4e00)

% ’ ai+tas
a0y 01
Jac(migzam)) o
agdl n2 '

Hence for large n,

| [aD (v 2 A 5) B (3200 A())

Op = — —

nmw as01 01

aC (r, 202 A (7)) 1

o=

+ 0,2(51 + <n2)
and finally
2 1
8, = naias s

a1 + ao nm

aD (w220 A(r))  B(3 292 A7) @C(r, 292 A(0) ]
+0(5)-

% as01 B 01 + a2d1
(42)
Now, we are ready to obtain a sharper asymptotic formula for the eigenfunctions.
Case 1. From (8) and (34)

apcosa , S
Sl —X
S aq

@1 (z,\) = sin a cos S

ai

sin o ’ S s

— M in— (x — —(r—=A dr. 4

. / (1) sin o (z — 7) cos o (r (1)) dr (43)
0
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Thus, using (38) and making necessary arrangements we have

¢1(z,\) = sina cos — [1 + A(%&A(T))}

aq ais
sin 2z inaB A 1
- —A [al cos o + & (.5, (T))} +0 (2> . (44)
s ay s
Now replacing s by s, and using (39) we get
 nags | (et a)A (208 A()
1, (x) =sinacos ——— |1+
ai + as 2na1a2
T 2nai :
.. 2nagr | x cosfBsina sinfBcosa B (2’ artar AT )) sin 3
— sin asin — |-
a1 + as nm 51 62 a1a251

’ ai+az’

D (7‘(‘ 2naias A( )) sin acsin 8 ai + as 2nazx
. _ sin

251 2na1a2 a1 + as

X |aqcosa+

sinaB (r e A )] (1)

a1 n2

From (12), (34) and (38), we have

Glwn) _ smasngel A@sA@)]
S N aq a1 s
cos =z inaB A 1
- {al cos o+ 0 (@5, (T))} +0 (2> . (45)
al S
From (9), (35), (38 ) and (45
A(Z s, A
1{smacos 1+ (2’5 (T))
TS a1 s
sin 57 (3,s,A(7)) sina 1 s (. 7
- lal cos o + o O 2 cos o (x 2)
+a2{ sin avsin 57— 1+A(%,S,A(T))
P ay as

B(%,s,A(7))sina

ay

_Sina/ M(r bm(z—ﬁwb(M+T_A(T)>+O<Sl2>

ST
7COS 2a;

lal cos & +

agéls a9
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_sina s <7T(Cl2 —ay) —l—x)

51 a2 2@1

A(5,8A(7))

a1 s

1+

a1 Cos o +
ai

1 —
SmS(W(azal)H)

B (g,s,A (T)) sin «
2@1

D (z,s,A(7))sinasin 2= (”((‘;T’l‘“) +x) +

a2518
. . s (m(az—a1)
C(z,s,A(r))sinacos ( 3 T 1
- +0(=]. (46)
2015 52

Now replacing s by s, and using (39) we get

(a1 +a2) A (%, A (T))

sin a 2na, 7 (ag — aq)
— - 1
920(7) 01 o8 <a1 + as ( 2a, t + 2na2as

Sinasin( 2na; (W(agal)er)){x [cosﬁsinaJrSinﬂcosa

01 a1 + a9 2a,q ;;; 01 09

B (“ naray A (T)) sing D (7T Zna162 A (7')) sin asin 3

27 ai1+az’ ’ ai+az

+ a1a251 * a%§l

T 2naia .
a;+ax 2na, (7 (az — ay) B (57 a2, A (T)) sin «

- Sin +x aj cos o +
2naiady a + as 2a4 a1

2naias .
(a1 +a2)D (:E, e A (T)) sin a i < 2na, (7‘(((12 —ay) —|—x)>

2naja3d; a1 + as 2a;

(a1 4+ a2) C (=, 72(1"“1;2 ,A (7)) sina _
+ ( e ) cos( 2nay (W(az @) +x>>+0 <1> .
n

2naia3d; a1 + as 2a4
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Case 2. Replacing s by s, in (44), we find, by use of (40), that

(2n+1)aia
61 (2) = sin a cos (2n+1) agx 4 (a1 +az) A (a& e A(T ))
1in -

ay + ag (2n + 1) a?as
. . (2TL + 1) a2
—sinasin ————
a1 + ao
7 (2n+1l)aja (2n+1)aia
_ 2x alcoscx+B(27 ¢11+¢121 2, A (T ))+D(7T’ a1+a21 = A(T )>
(2n+ 1)71' (51 0,1(51 a261
. (2n+1)aia
ay + as . (2n+1)asx N smaB( ara AT )) . 1
— sin aj cos o — .
(2n+1)ajas a1 +as ! ay n2

Now replacing s by s, in (46), we find, by use of (40), that

b () = si(?la o <(2n + D (w (a2 —ar) , x))

a1 + as 2aq

(1 +a2) A (;—”"*”W A()

aitaz

(2n + 1) a?as
B Smasin 2n+1)ay (ag — ay) .
01 a + as 2a, 2n +1
© (2n+1)aia (2n+1)aia
a1 CoOs & n B (2’ a1+a21 : A( )) D ( UE a1+a21 : A( ))

51 a101 a0

ay + ay Sin<(2n+1)a1 <7r(a2a1) H))

B (2n + 1) aiag0q a1 + a9 2a1

X |1+

27 ai+asz

B(7T (@n+l)asaz JA(T )) sin «v
X laycosa +

ay

(@ntl)aias i
B (a1+a2)D($a artar DA )) Smagin(@n"'l)“l (W(az_al) +m)>
(2 + 1) ara2s, a1+ a;
2n+1)ara :
. , {2ntllasay
(a —i—ag)C(fE( +1) 2A( ))SIHOZ

ai+az

(2n + 1) a1a30,

X €OS <(2n+1)a1 (W(az _al) +x>) +0 (1) .
aj + as 2a1 n?

+
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Case 3. By use of (8), (36) and (38) and making necessary arrangements we have

¢y (2, \) = Bl Ag)) al sin:ilgc [al cosa + A@sA(T) S;A (T))] +0 (;) )
Now replacing s by s, and using (41) we get o
(a1 + a2)2 B (337 7(27;':2;;“2 A (T)) cos 7(22;:12;;2‘
O1n () == (2n +1)% a?a2
(a1 + as) Sin% (a1 +az) A (m,%,A(T}) sin «
a (2n+1)aras a1 cosat (2n+1)aas

(2n+1)aszx

2 (a1 + ag) x cos @ cos R

(2n 4 1)% agm
acosg A (g, M,A(ﬂ) sin 3 ) a1 D (m M,A(T)) sin B

ai+az aitaz

01 as01 a%(sl

From (12), (37) and (38), we have

S 52a251
ay [C’ (z,8,A(7))sin = (W(a;Tjal) Jr:c)} 1
— |- 4
+ 52090, +O<83) (48)
From (9), (37), (38), (47) and (48)
B (3,54 (1) cos & (M%) 4 )
¢)2($7>‘) = - 82(51
sin 2 (”(GQZT:QI) + x) {m cos o + W]
B 851
aq {D (z,8,A (7)) cos a—i (%‘1”1) + x):|
+ 2
S 0,261

a x,s,A(T))sin = mlaz—ar) 4 4
[C .8 rysin s (24 +)LO<1), (1)

+ 32a261



192 ERDOGAN SEN AND AZAD BAYRAMOV
Now replacing s by s, and using (41) we get

(a1 + a2)? B (5, Ztdaez A (7 _
(2 T ) COS((2n+1)a1 <7r(a2 ap) +:1:>)

(2n +1)* a2a36, ai + ap 2a,

(a1 + a2) <in <(2n+ 1) as (’/T(CLQ —ay) +x)>

7(27’11—"- 1) aiaz0q a1 + as 2a,q
7 (2n+1)ara L
(a1+a2)A(§,WL;2 A(r )) sin o 2 (a1 + ag) xcos

(2TL+ 1) a1a2 (2n—|— 1)2 o017

« cos <(2n—|—1)a1 (ﬂ'(ag —ay) +x>)
aj + az 2a;

weoss A5 AM)sinp @D (r SR, A () sin

¢2n (27) ==

X a1 cosa +

6 20, 26,

(a1 + a2)” {D <x7 Wl)am}A(ﬂ) cos <(2n+ Do ( mle: —a) + ))
(%)

(2n 4 1)* aa3d; aj + as ai + as 2a1

(2n+1)ajas . ((2n+1)ay [(7(az —a1)
C — = A
" (m, ar+ay (7) ) sin a1 + az 2a1 T
Case 4. Replacing s by s, in (47), we find, by use of (42), that

(a1 +a2)” B (, 22922 A (7) ) cos 22222

(bln (l.) = 4n2a1a%
(1 + ) sin 22222 (1 +02) A (2, 282 A (7))
— a1 Ccos o +
2naias 2naias
(a1 + ag) z cos a cos 2?112
2n2aqm
o[p(mismam)ro(nimmam)] p(sasman)] o
X - — .
a251 51 ’I’L3

Now replacing s by s, in (49), we find, by use of (42), that

(a1 +az)” B (5, 22492 A (r) -
(2 1+az )cos( 2na; (T((CLQ a1)+x>)

4n2a2a3é, a1 + as 2a1

B (a1 + as2) sin 2na, 7 (ag — ay) o
2naiasdy a1 + as 2a1

Pop () = —




(1]
2]

(3]

(4]

(5]
[6]

[7]
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(a1 +az) A (g naey A (T)) sin

X lajcosa +

2naias
) _
_(a1 + as) z cos o nayx (7(ag —ay) .
2n2a2§17r a1 + ao 2(11
a [D(m 20 Ar) + O (r, 22002 A1) B(3,292,A())
X —
a251 51
2
2 2 —
N (a1 + ag) D (e naias A cos na; (7 (ag —aq) o
4dn2a1a301 a1 + as a1 + as 2a;
2naia 2na as — a 1
+C x,#,A(T) sin L (e 1)+x +0|—= ).
a1 + as a1 + as 2a; n3
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