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ON PULLBACK AND INDUCED CROSSED MODULES OF
R-ALGEBROIDS

OSMAN AVCIOĞLU AND İBRAHIM İLKER AKÇA

Abstract. In this paper we study the pullback and induced crossed mod-
ules of R-algebroids, prove that the related induced crossed module functor is
the left adjoint of the related pullback crossed module functor and give some
consequences of the adjunction.

1. Introduction

Crossed modules, algebraic models of two types, were firstly invented by White-
head [22, 23] in his study on homotopy groups. Various studies on crossed modules
of groups and groupoids can be found in papers and books such as [8, 9, 19], and
those of algebras in [4, 5, 18, 20, 21] and in [11, 12, 13] with different names. G.H.
Mosa [17] has studied crossed modules of R-algebroids and double R-algebroids.
Pullback crossed modules of groups is introduced in [8, 10] and induced crossed

modules of groups in [7, 8, 10]. It’s proved in [8] that, in the category of crossed
modules of groups, the induced crossed module functor is the left adjoint of the
pullback crossed module functor.
R-algebroids were especially studied by B. Mitchell, [14, 15, 16], and by S. M.

Amgott, [3]. B. Mitchell has given a categorical definition of R-algebroids. G.H.
Mosa has defined crossed modules of R-algebroids and proved the equivalence of
crossed modules of algebroids and special double algebroids with connections in [17].
M. Alp has constructed the pullback and pushout crossed modules of algebroids in
[1] and [2], respectively.
After the introduction, in the second section of this study we give some basic

data on R-algebroids, modules over R-algebroids and (pre)crossed modules of R-
algebroids.
In the third section, first we study the pullback crossed modules of R-algebroids,

whose construction is done by M. Alp in [1]. Then we prove the ‘naturality property’
of this construction (Proposition 2).
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In the fourth section first we give a construction of induced crossed modules of
R-algebroids using the construction of free precrossed modules of R-algebroids in
[6]. Then we prove the ‘naturality property’of this construction (Proposition 4).
Finally, as the basic goal of this paper, we prove in the category of crossed modules
of R-algebroids that the induced crossed module functor is the left adjoint of the
pullback crossed module functor (Theorem 1).
In the fifth section we explore some consequences of the adjunction given in

Theorem 1.
Throughout the paper R is a commutative ring.

2. Preliminaries

The following data can be found in [3, 14, 15, 16, 17]:

Definition 1. A category of which each homset has an R-module structure and
of which composition is R-bilinear is called an R-category. A small R-category is
called an R-algebroid. Moreover if we omit the axiom of the existence of identi-
ties from an R-algebroid structure then the remaining structure is called a pre-R-
algebroid.

Remark 1. If A is an R-algebroid then:
1. A has an object set Ob (A) = A0, a morphism set Mor (A) and two functions

s, t : Mor (A) −→ Ob (A), the source and target functions, respectively.
2. For any a ∈ Mor (A) if sa = x and ta = y then x and y are called as the

source and target of a, respectively, and a is said to be from x to y.
3. For all x, y ∈ A0 the set of all morphisms from x to y, which is denoted by

A (x, y) and called a homset, is an R-module.

Throughout this paper, for any R-algebroid A, a ∈ A will mean that a is a
morphism of A and the composition of any a, b ∈ A with ta = sb will be denoted
by ab. Moreover the identity morphism on any x ∈ A0 will be denoted by 1x or
only by 1 if there is no ambiguity.

Definition 2. An R-linear functor between two R-categories is called an R-functor
and an R-functor between two R-algebroids is called an R-algebroid morphism.
Moreover a map between two pre-R-algebroids obtained by omitting the axiom of
identity preservation from an R-algebroid morphism is called a pre-R-algebroid
morphism.

Note from the Definitions 1 and 2 that an R-algebroid is a pre-R-algebroid and
an R-algebroid morphism is a pre-R-algebroid morphism.

Definition 3. Let A be an R-algebroid and I = {I (x, y) ⊆ A (x, y) | x, y ∈ A0} be
a family of R-submodules. For all w, x, y, z ∈ A0, a′ ∈ A (w, x) , a′′ ∈ A (y, z) and
a ∈ I (x, y) if a′a ∈ I (w, y) and aa′′ ∈ I (x, z) then I is said to be a two sided ideal
of A.
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Definition 4. Let A be an-R-algebroid and M be a pre-R-algebroid with the same
object set A0 as A. A family of maps defined for all x, y, z ∈ A0 as

M (x, y)×A (y, z) −→ M (x, z)
(m, a) 7−→ ma

is called a right action of A on M, if the conditions

1. (ma)
a′

= maa′ , 4. (m1 +m2)
a

= ma
1 +ma

2,
2. ma1+a2 = ma1 +ma2 , 5. (r ·m)

a
= r ·ma = mr·a,

3. (m′m)
a

= m′ma, 6. m1tm = m

are satisfied for all r ∈ R, a, a′, a1, a2 ∈ A, m,m′,m1,m2 ∈ M with tm′ = sm,
tm = tm1 = tm2 = sa = sa1 = sa2, ta = sa′.
A left action of A on M is defined in the same manner.

Definition 5. Let A be an R-algebroid and M be a pre-R-algebroid with the same
object set A0 as A. If A has a right and a left action on M and if the condition

(am)
a′

= a
(
ma′

)
is satisfied for all m ∈ M, a, a′ ∈ A with ta = sm, tm = sa′ then A is said to have
an associative action on M.

Definition 6. Let A be an R-algebroid and M be a pre-R-algebroid with the same
object set A0 as A. If A has an associative action on M then M is called an
A-module. In this case we write (M,A) and call this pair an (A-)module over R-
algebroids. Moreover, for any two modules (M,A) and (N,B) over R-algebroids, a
pair (f, g) : (M,A) −→ (N,B) is called a module morphism over R-algebroids if f :
M −→ N is a pre-R-algebroid morphism, g : A −→ B is an R-algebroid morphism
and the conditions

1. fm ∈ N (g (sm) , g (tm)) ,

2. f (am) = ga (fm) and f
(
ma′

)
= (fm)

ga′

are satisfied for all m ∈ M, a, a′ ∈ A with ta = sm, tm = sa′.

All modules over R-algebroids and their morphisms form a category denoted by
ModAlg (R). Moreover, all A-modules with the identity morphism on A form a
subcategory ModAlg(R) /A of ModAlg(R).

Definition 7. Let A be an R-algebroid, M be a pre-R-algebroid with the same object
set A0 as A and A have an associative action on M. A pre-R-algebroid morphism
µ : M −→ A is called a precrossed (A-)module of R-algebroids if the condition

CM1) µ (am) = a (µm) and µ
(
ma′

)
= (µm) a′

is satisfied and a precrossed (A-)module µ : M −→ A of R-algebroids is called a
crossed (A-)module of R-algebroids if the condition

CM2) mµm′ = mm′ = µmm′
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is satisfied for all a, a′ ∈ A and m,m′ ∈ M with ta = sm, tm = sa′ = sm′.
Let M = (µ : M −→ A) and N = (η : N −→ B) be two (pre)crossed modules of

R-algebroids, f : M −→ N be a pre-R-algebroid morphism and g : A −→ B be an
R-algebroid morphism. The pair (f, g) :M−→ N is called a (pre)crossed module
morphism if the conditions

1. f (am) = ga (fm) and f
(
ma′

)
= (fm)

ga′ ,

2. ηf = gµ

are satisfied for all a, a′ ∈ A, m ∈ M with ta = sm, tm = sa′. Note that if
µ : M −→ A is a (pre)crossed module then M is an A-module and a (pre)crossed
module morphism is a module morphism satisfying the second condition.

All precrossed modules of R-algebroids and their morphisms form a category
denoted by PXAlg(R). Moreover, all precrossed A-modules of R-algebroids with the
identity morphism on A form a subcategory, PXAlg(R) /A, of PXAlg(R). Similarly,
all crossed modules of R-algebroids form the category XAlg(R) and all crossed A-
modules of R-algebroids form the subcategory XAlg(R) /A of XAlg(R) . Obviously,
XAlg(R) is a full subcategory of PXAlg(R) and XAlg(R) /A is a full subcategory
of PXAlg(R) /A.

Example 1. If A is an R-algebroid and I is a two sided ideal of A, then the
inclusion morphism

i : I −→ A

is a crossed module with the action of A on I defined by

ab = ab and ba
′

= ba′

for all a, a′ ∈ A, b ∈ I with ta = sb, tb = sa′.

3. Pullback crossed modules of R-algebroids

M. Alp has given a construction of the pullback crossed modules of R-algebroids
in [1]. In this section, in the proof of the following proposition after giving a brief
summary of his construction in part 1 we show that the pullback crossed module
satisfies the related universal property in part 2. Moreover we also specify the
pullback crossed module functor.

Proposition 1. Let A and B be two R-algebroids, f : A −→ B be an R-algebroid
morphism and N = (η : N −→ B) be a crossed B-module of R-algebroids. There
exists a crossed A-module f∗N =

(
ηf∗ : f∗N −→ A

)
of R-algebroids and a crossed

module morphism
(
f̂ , f

)
: f∗N −→ N such that for any crossed A-module M =

(µ : M −→ A) of R-algebroids and crossed module morphism (ν, f) : M −→ N
there exists a unique crossed A-module morphism (h, idA) :M −→ f∗N such that
ν = f̂h, i.e. the universal diagram in Figure 1 is commutative:
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f∗N , with the morphism
(
f̂ , f

)
, is called the pullback crossed module of N along

f . The pullback crossed module is unique up to isomorphism.

Proof. 1. i. Define the source and target of each (n, a) ∈ N × A as s (n, a) = sa
and t (n, a) = ta, respectively, and for all x, y ∈ A0 form the subset f∗N (x, y) =
{(n, a) | s (n, a) = x, t (n, a) = y and fa = ηn} of N×A.
ii. For all x, y ∈ A0 the set f∗N (x, y) has an R-module structure with the

addition defined as (n1, a1)+(n2, a2) = (n1 + n2, a1 + a2) and the R-action defined
as r · (n, a) = (r · n, r · a).
iii. The family f∗N = {f∗N (x, y) | x, y ∈ A0} is a pre-R-algebroid with the

composition defined as (n, a) (n′, a′) = (nn′, aa′) and an A-module with the asso-

ciative A-action defined as a
′′

(n, a) =
(
fa′′n, a′′a

)
and (n, a)

a′
=
(
nfa

′
, aa′

)
under

the conditions ta′′ = s (n, a), t (n, a) = sa′.
iv. The map ηf∗ : f∗N −→ A defined as ηf∗ (n, a) = a is a crossed module. (for

details see [1])
2. Define f̂ : f∗N −→ A as f̂ (n, a) = n. Clearly f̂ is a pre-R-algebroid morphism

and
(
f̂ , f

)
is a crossed module morphism since

f̂ (n, a) = n ∈ N (sn, tn) = N (s (ηn) , t (ηn)) = N (s (fa) , t (fa))

= N (f (sa) , f (ta)) = N (f (s (n, a)) , f (t (n, a)))

and

f̂
(

(n, a)
a′
)

= f̂
(
nfa

′
, aa′

)
= nfa

′
=
(
f̂ (n, a)

)fa′
,

f̂
(
a′′ (n, a)

)
= f̂

(
fa′′n, a′′a

)
= fa′′n = fa′′

(
f̂ (n, a)

)
Now, for any crossed A-moduleM = (µ : M −→ A) and crossed module morphism
(ν, f) : M −→ N , define h : M −→ f∗N as h (m) = (νm, µm) . h is well defined
since ην = fµ and so η (νm) = f (µm) for allm ∈ M. By a direct calculation, it can
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be shown that (h, idA) : M −→ f∗N is a crossed A-module morphism. Moreover
νm = f̂ (νm, µm) = f̂hm for all m ∈ M, which means ν = f̂h, as required.
Let (h′, idA) :M−→ f∗N be a crossed A-module morphism satisfying ν = f̂h′.

Then h′ must be defined as h′m = (h′1m,h
′
2m) where h′1m ∈ N and h′2m ∈ A. But,

in this case, h′1m = f̂ (h′1m,h
′
2m) = f̂h′m = νm and h′2m = ηf∗ (h′1m,h

′
2m) =

ηf∗h
′m = µm since ηf∗h

′ = µ. So h′m = (h′1m,h
′
2m) = (νm, µm) = hm for all

m ∈ M, which means h is unique.

Finally, assume that f̃∗N =
(
ηf̃∗ : f̃∗N −→ A

)
is a crossed module of R-

algebroids and
(
f̃ , f

)
: f̃∗N −→ N is a crossed module morphism which together

satisfy the same conditions as f∗N and
(
f̂ , f

)
. Then there exists unique mor-

phisms
(
h̃, idA

)
: f∗N −→ f̃∗N and (h, idA) : f̃∗N −→ f∗N making related

universal diagrams commutative. So ηf∗ = ηf̃∗ h̃ = ηf∗hh̃ and ηf̃∗ = ηf∗h = ηf̃∗ h̃h

which together requires hh̃ = idf∗N and h̃h = idf̃∗N. Thus h̃ is an isomorphism

and the pullback crossed module f∗N , with the morphism
(
f̂ , f

)
, is unique up to

isomorphism. �

So, we get a pullback crossed module functor f∗ : XAlg(R)/B −→ XAlg(R)/A
which gives a crossed A-module f∗N for any crossed B-module N and is defined
as f∗ (g, idB) = (f∗g, idA) on morphisms such that (f∗g) (n, a) = (gn, a).
Now we prove an important property of pullback crossed module:

Proposition 2. If A, B, C are R-algebroids and f : A −→ B, f ′ : B −→ C are
R-algebroid morphisms then the functor f∗f ′∗ is naturally isomorphic to (f ′f)

∗.

Proof. For anyN = (η : N −→ C) ∈ XAlg(R)/C, the B-module f ′∗N, the A-module
(f∗f ′∗) N = f∗ (f ′∗N) and the A-module (f ′f)

∗
N is formed by the pairs (n, b),

((n, b) , a) and (n, a), respectively, under the conditions ηn = f ′b, ηf ′∗ (n, b) = fa
and ηn = (f ′f) a, the second of which means b = fa since ηf ′∗ (n, b) = b by
definition. So, any element ((n, b) , a) of (f∗f ′∗) N is, in fact, of the form ((n, fa) , a).
It can easily be shown that, for all crossed modules N = (η : N −→ C), the map

αN : (f∗f ′∗) N −→ (f ′f)
∗

N, defined as αN ((n, fa) , a) = (n, a), is an isomorphism.
Moreover, for all N = (η : N −→ C) ,N ′ = (η′ : N′ −→ C) ∈ XAlg(R)/C, for all
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crossed module morphisms (g, idC) : N −→ N ′ and for all ((n, fa) , a) ∈ (f∗f ′∗) N((
(f ′f)

∗
g
)
αN
)

((n, fa) , a) =
(
(f ′f)

∗
g
)

((αN) ((n, fa) , a))
=

(
(f ′f)

∗
g
)

(n, a)
= (gn, a)
= αN′ ((gn, fa) , a)
= αN′ ((f

′∗g) (n, fa) , a)
= αN′ ((f

∗ (f ′∗g)) ((n, fa) , a))
= αN′ (((f

∗f ′∗) g) ((n, fa) , a))
= (αN′ ((f

∗f ′∗) g)) ((n, fa) , a) ,

i.e. the diagram in Figure 2 is commutative:

That means
(
(f ′f)

∗
g
)
αN = αN′ ((f

∗f ′∗) g) and the family{
(αN, idA) : (f∗f ′∗)N −→ (f ′f)

∗N | N = (η : N −→ C) ∈ XAlg(R)/C
}

is a natural isomorphism between f∗f ′∗ and (f ′f)
∗. �

4. Induced crossed modules of R-algebroids

Although a similar crossed module construction might be possible to that in [2]
given by M. Alp, for the construction of the induced crossed module, we prefer
to use the free precrossed modules of R-algebroids constructed in [6], to provide
an application. The summary of the construction, in [6], of the free precrossed A-
module FP (ω) = (ω

P
: FP (ω) −→ A) of R-algebroids determined by the function

ω : K −→ A where K is a set and A is an R-algebroid such that ωk is a morphism
of A for all k ∈ K, is as follows:

1. The building blocks are elements of the form aka′ with ta = s (ωk) and
t (ωk) = sa′, and words of the form a1k1a

′
1a2k2a

′
2...ankna

′
n with ta

′
1 = sa2,...,ta′n−1 =

san, where n ∈ N+, a, a1, ..., an, a′, a′1, ..., a′n ∈ A and k, k1, ..., kn ∈ K. The source
and the target of any word p = a1k1a

′
1a2k2a

′
2...ankna

′
n are sp = sa1 and tp = ta′n,

respectively.
2. For all x, y ∈ A0, FP (ω) (x, y) is the quotient group obtained by dividing the

free additive abelian group generated by all words with source x and target y by
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its normal subgroup generated by all elements of the form

a1k1a′1...
(
ai + a

′′
i

)
kia
′
i...ankna

′
n − a1k1a′1...aikia′i...ankna′n − a1k1a′1...a′′i kia′i...ankna′n,

a1k1a′1...aiki
(
a′i + a

′′′
i

)
...ankna′n − a1k1a′1...aikia′i...ankna′n − a1k1a′1...aikia′′′i ...ankna′n,

(r · a1) k1a′1...aikia′i...ankna′n − a1k1a′1... (r · ai) kia′i...ankna′n,
(r · a1) k1a′1...aikia′i...ankna′n − a1k1a′1...aiki

(
r · a′i

)
...ankna′n.

So, the elements of FP (ω) (x, y) are of the form
∑
i

[pi] where pi is a word with

spi = x and tpi = y, and [pi] is the coset of pi.
3. FP (ω) (x, y) has an R-module structure with the R-action defined as r · [pi] =[

(r · ai1) ki1a′i1 ...ainkina
′
in

]
and as r ·

(∑
i

[pi]

)
=
∑
i

r · [pi].

4. FP (ω) = {FP (ω) (x, y) | x, y ∈ A0} is a pre-R-algebroid on A0 with the com-
position defined as

∑
i

[pi]
∑
j

[pj ] =
∑
i,j

[pipj ] where if pi = ai1ki1a
′
i1
...ainkina

′
in
and

pj = aj1kj1a
′
j1
...ajn′kjn′a

′
jn′
then pipj = ai1ki1a

′
i1
...ainkina

′
in
aj1kj1a

′
j1
...ajn′kjn′a

′
jn′

under the condition t [pi] = ta′in = saj1 = s [pj ].

5. FP (ω) is an A-module with the associative A-action defined as a
(∑

i

[pi]

)
=

∑
i

[api] and
(∑

i

[pi]

)a′
=
∑
i

[
pa
′

i

]
where api = (aai1) ki1a

′
i1
...ainkina

′
in
and pa

′

i =

ai1ki1a
′
i1
...ainkin

(
a′ina

′) with the condition that ta = spi , tpi = sa′.
6. ω

P
: FP (ω) −→ A is defined as ω

P
[aka′] = a (ωk) a′ on generators and

as ω
P

∑
i

[pi] =
∑
i

ω
P

[pi] on elements where ωP
[pi] = ω

P

[
ai1ki1a

′
i1
...ainkina

′
in

]
=

ω
P

[
ai1ki1a

′
i1

]
...ω

P

[
ainkina

′
in

]
.

Proposition 3. Let A and B be two R-algebroids, f : A −→ B be an R-algebroid
morphism and N = (η : N −→ A) be a crossed A-module of R-algebroids. There
exists a crossed B-module f∗N =

(
ηf∗ : f∗N −→ B

)
of R-algebroids and a crossed

module morphism
(
f, f

)
: N −→ f∗N such that for any crossed B-module M =

(µ : M −→ B) of R-algebroids and crossed module morphism (ν, f) : N −→ M
there exists a unique crossed B-module morphism (h, idB) : f∗N −→ M such that
ν = hf , i.e. the universal diagram in Figure 3 is commutative:
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f∗N , with the morphism
(
f, f

)
, is called the crossed module induced from N by

f . The induced crossed module is unique up to isomorphism.

Proof. As summarised above, there exists a free precrossed B-module FP
(
fη

m

)
=((

fη
m

)
P

: FP
(
fη

m

)
−→ B

)
determined by fη

m
where η

m
: Mor (N) −→ A is

defined as η
m

(n) = ηn. Let I be the two sided ideal of FP
(
fη

m

)
generated by all

elements of the form

[b1n1b
′
1b2n2b

′
2]− [(b1 (fηn1) b

′
1b2)n2b

′
2] ,

[b1n1b
′
1b2n2b

′
2]− [b1n1 (b′1b2 (fηn2) b

′
2)] ,

[bnb′] + [bn1b
′]− [b (n+ n1) b

′] ,
[b (an) b′]− [(b (fa))nb′] ,[
b
(
na
′
)
b′
]
− [bn ((fa′) b′)] ,

[(r · b)nb′]− [b (r · n) b′] ,
[bn (r · b′)]− [b (r · n) b′] .

Obviously, I is closed under the actions of R and B. Now, construct the family f∗N =
FP (fηm)

I =

{
f∗N (x, y) =

FP (fηm)(x,y)
I(x,y) | x, y ∈ B0

}
of quotient R-modules. For

any word b1n1b′1...btntb
′
t let’s denote the coset of [b1n1b

′
1...btntb

′
t] by b1n1b

′
1...btntb

′
t.

Then, note that, any coset b1n1b′1...btntb
′
t is, in fact, of the form b1n1b′′1 , where

b′′1 = b′1b2 (fηn2) b
′
2...bt (fηnt) b

′
t ∈ B. Thus each element of f∗N is of the form∑

i

binib′i for some bi, b
′
i ∈ B, ni ∈ N. Clearly, f∗N is an R-algebroid B-module

thanks to the addition, composition, R-action and associative B-action induced by
those defined on FP

(
fη

m

)
.

Moreover
(
fη

m

)
P
induces a precrossed module f∗N =

(
ηf∗ : f∗N −→ B

)
defined

as ηf∗
(
bnb′

)
=
(
fη

m

)
P

[bnb′] = b
(
fη

m
n
)
b′ = b (fηn) b′ on generators and the

precrossed module f∗N is also a crossed module thanks to the first two generators
of I.
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Define the function f : N −→ f∗N as fn = 1n1 where 1n1 = 1s(fηn)n1t(fηn). By
this definition the pair

(
f, f

)
is a crossed module morphism since

1. f (n1 + n2) = 1 (n1 + n2) 1 = 1n11 + 1n21 = 1n11 + 1n21 = fn1 + fn2,
2. f (nn′) = 1 (nn′) 1 = 1 (nηn′) 1 = 1n ((fηn′) 1) = 1n (11 (fηn′) 1)

= 1n11n′1 = 1n1 1n′1 = f (n) f (n′) ,
3. f (r · n) = 1 (r · n) 1 = (r · 1)n1 = r · 1n1 = r · fn,
4. f (an) = 1 (an) 1 = (1 (fa))n1 = ((fa) 1)n1

= fa (1n1) = fa1n1 = fa
(
fn
)
,

5. f
(
na
′
)

= 1 (na′) 1 = 1n ((fa′) 1) = 1n (1 (fa′))

= (1n1)
fa′

= 1n1
fa′

=
(
fn
)fa′

,
6. ηf∗

(
fn
)

= ηf∗
(
1n1

)
= 1 (fηn) 1 = fηn

for all n, n1, n2, n′ ∈ N, a, a′ ∈ A and r ∈ R such that sn1 = sn2, tn1 = tn2, ta =
sn, tn = sn′ = sa′.
Now for all crossed B-module M = (µ : M −→ B) of R-algebroids and for all

crossed module morphism (ν, f) : N −→ M define the function h : f∗N −→ M

as h
(
bnb′

)
= b (νn)

b′ on generators. It can easily be shown that h preserves the
addition, R-action and B-action. Moreover

h
(
b1n1b′1 b2n2b

′
2

)
= h

(
b1n1 (b′1b2 (fηn2) b′2)

)
= b1 (νn1)

b′1b2(µνn2)b
′
2

= b1 (νn1)
b′1(b2(µ(νn2))b

′
2) =

(
b1 (νn1)

b′1
)µ(b2 (νn2)b′2)

=
(
b1 (νn1)

b′1
)(

b2 (νn2)
b′2
)

= h
(
b1n1b′1

)
h
(
b2n2b′2

)
for all generators b1n1b′1, b2n2b

′
2 of f∗N with tb′1 = sb2, which means h preserves

the composition. Besides,

(µh)
(
bnb′

)
= µ

(
h
(
bnb′

))
= µ

(
b (νn)

b′
)

= b (µ (νn)) b′ = b ((µν) (n)) b′

= b ((fη) (n)) b′ = ηf∗
(
bnb′

)
=

(
idBηf∗

) (
bnb′

)
on generators. That is, (h, idB) is a crossed B-module morphism. Finally(

hf
)

(n) = h
(
1n1

)
= 1 (νn)

1
= νn

for all n ∈ N, i.e. h makes the universal diagram in Figure 3 commutative. It can
also directly be shown that (h, idB) is the unique morphism satisfying ν = hf , and
f∗N , with the morphism

(
f, f

)
, is unique up to isomorphism. �

Thus we get an induced crossed module functor f∗ : XAlg(R)/A −→ XAlg(R)/B
which gives a crossed B-module f∗N for any crossed A-module N and is defined as
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f∗ (g, idA) = (f∗g, idB) on morphisms such that (f∗g)
(
bnb′

)
= b (gn) b′ on genera-

tors.

Proposition 4. If A, B, C are R-algebroids and f : A −→ B, f ′ : B −→ C are
R-algebroid morphisms then the functor f ′∗f∗ is naturally isomorphic to (f ′f)∗.

Proof. For any N = (η : N −→ A) ∈ XAlg(R)/A, generators of the B-module f∗N,
the C-module (f ′∗f∗) N = f ′∗ (f∗N) and the C-module (f ′f)∗N are of the forms bnb′,

c
(
bnb′

)
c′ and cnc′, respectively.

For all crossed module N = (η : N −→ A) define αN : (f ′∗f∗) N −→ (f ′f)∗N as

αN

(
c
(
bnb′

)
c′
)

= (c (f ′b))n ((f ′b′) c′) on generators. Obviously αN preserves the

addition, R-action and C-action. It also preserves the composition since

αN

(
c1

(
b1n1b′1

)
c′1 c2

(
b2n2b′2

)
c′2

)
= αN

(
c1

(
b1n1b′1

)(
c′1c2

((
f ′ηf∗

) (
b2n2b′2

))
c′2

))
= (c1 (f ′b1))n1( (f ′b′1) (c′1c2 (f ′ (b2 ((fη) (n2)) b′2)) c

′
2) )

= (c1 (f ′b1))n1( (f ′b′1) c
′
1c2 ((f ′b2) ((f ′fη) (n2)) (f ′b′2)) c

′
2)

= (c1 (f ′b1))n1( ((f ′b′1) c
′
1) (c2 (f ′b2)) (((f ′f) η) (n2)) ((f ′b′2) c

′
2) )

= (c1 (f ′b1))n1 ((f ′b′1) c
′
1) (c2 (f ′b2))n2 ((f ′b′2) c

′
2)

= αN

(
c1

(
b1n1b′1

)
c′1

)
αN

(
c2

(
b2n2b′2

)
c′2

)
for all generators c1

(
b1n1b′1

)
c′1, c2

(
b2n2b′2

)
c′2 of (f ′∗f∗) N with tc′1 = sc2.

Moreover(
η(f ′f)∗αN

)(
c
(
bnb′

)
c′
)

= η(f ′f)∗

(
αN

(
c
(
bnb′

)
c′
))

= η(f ′f)∗

(
(c (f ′b))n ((f ′b′) c′)

)
= (c (f ′b)) ((f ′f) ηn) ((f ′b′) c′)
= c ((f ′b) (f ′ ((fη) (n))) (f ′b′)) c′

= c (f ′ (b ((fη) (n)) b′)) c′

= c
(
f ′
(
ηf∗
(
bnb′

)))
c′

= c
((
f ′ηf∗

) (
bnb′

))
c′

=
(
ηf∗
)
f ′∗

(
c
(
bnb′

)
c′
)

=
(
idC

(
ηf∗
)
f ′∗

)(
c
(
bnb′

)
c′
)

on generators, which means (αN, idC) : (f ′∗f∗)N −→ (f ′f)∗N is a crossed C-
module morphism.
Now, for all crossed modules N = (η : N −→ A) define βN : (f ′f)∗N −→

(f ′∗f∗) N as βN
(
cnc′

)
= c

(
1n1

)
c′ on generators, in the reverse direction. Obviously
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βN preserve the addition, R-action and C-action. It also preserves the composition
since

βN

(
c1n1c′1 c2n2c

′
2

)
= βN

(
c1n1 (c′1c2 (((f ′f) η) (n2)) c′2)

)
= c11n11 (c′1c2 (f ′ ((fη) (n2))) c′2)

= c11n11 (c′1c2 (f ′ (1 ((fη) (n2)) 1)) c′2)

= c11n11
(
c′1c2

(
f ′
(
ηf∗1n21

))
c′2
)

= c11n11
(
c′1c2

((
f ′ηf∗

) (
1n21

))
c′2
)

= c11n11c′1 c21n21c
′
2

= βN

(
c1n1c′1

)
βN

(
c2n2c′2

)

for all generators c1n1c′1, c2n2c
′
2 of (f ′f)∗N with tc′1 = sc2. Moreover

((
ηf∗
)
f ′∗
βN

) (
cnc′

)
=

(
ηf∗
)
f ′∗

(
βN
(
cnc′

))
=

(
ηf∗
)
f ′∗

(
c1n1c′

)
= c

((
f ′ηf∗

)
1n1

)
c′

= c
(
f ′
(
ηf∗
(
1n1

)))
c′

= c (f ′ (1 ((fη) (n)) 1)) c′

= c (f ′ (fηn)) c′

= c (((f ′f) η) (n)) c′

= η(f ′f)∗

(
cnc′

)
=

(
idCη(f ′f)∗

) (
cnc′

)
on generators, which means (βN, idC) : (f ′f)∗N −→ (f ′∗f∗)N is a crossed C-
module morphism.
Now, for all generators c

(
bnb′

)
c′ of (f ′∗f∗) N

(βNαN)
(
c
(
bnb′

)
c′
)

= βN

(
αN

(
c
(
bnb′

)
c′
))

= βN

(
(c (f ′b))n ((f ′b′) c′)

)
= (c (f ′b)) 1n1 ((f ′b′) c′)

= c
(
b1n1

b′
)
c′

= c
(

(b1)n (1b′)
)
c′

= c
(
bnb′

)
c′,
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i.e. βNαN = id(f ′∗f∗)N and for all generators cnc
′ of (f ′f)∗N

(αNβN)
(
cnc′

)
= αN

(
βN
(
cnc′

))
= αN

(
c1n1c′

)
=

(
c
(
f ′1s((fη)(n))

))
n
((
f ′1t((fη)(n))

)
c′
)

=
(
c
(
1s((f ′fη)(n))

))
n
((

1t((f ′fη)(n))
)
c′
)

= (c (1tc))n ((1sc′) c′)
= cnc′,

i.e. αNβN = id(f ′f)∗N. That is, αN is an isomorphism from (f ′∗f∗) N to (f ′f)∗N.
Moreover, for all N = (η : N −→ A) ,N ′ = (η′ : N′ −→ A) ∈ XAlg(R)/A, for all

crossed module morphisms (g, idA) : N −→ N ′ and for all generators c
(
bnb′

)
c′ of

(f ′∗f∗) N

(((f ′f)∗ g)αN)
(
c
(
bnb′

)
c′
)

= ((f ′f)∗ g)
(
αN

(
c
(
bnb′

)
c′
))

= ((f ′f)∗ g)
(

(c (f ′b))n ((f ′b′) c′)
)

= (c (f ′b)) (gn) ((f ′b′) c′)

= αN′

(
c
(
b (gn) b′

)
c′
)

= αN′
(
c
(
(f∗g)

(
bnb′

))
c′
)

= αN′
(

(f ′∗ (f∗g))
(
c
(
bnb′

)
c′
))

= (αN′ ((f
′
∗f∗) g))

(
c
(
bnb′

)
c′
)

which means the diagram in Figure 4 is commutative:

So, we can conclude that

{(αN, idC) : (f ′∗f∗)N −→ (f ′f)∗N | N = (η : N −→ A) ∈ XAlg(R)/A}
is a natural isomorphism between f ′∗f∗ and (f ′f)∗. �
Theorem 1. For any R-algebroids A and B, and any R-algebroid morphism f :
A −→ B the induced crossed module functor f∗ is the left adjoint of the pullback
crossed module functor f∗.
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Proof. We must find a natural equivalence

Φ : (XAlg(R)/B) (f∗ (−) ,−) ∼= (XAlg(R)/A) (−, f∗ (−))

which is required to give a map

Φ : Ob (XAlg(R)/A)×Ob (XAlg(R)/B) −→ Sets
(M,N ) 7−→ Φ (M,N )

where Φ (M,N ), from (XAlg(R)/B) (f∗M,N ) to (XAlg(R)/A) (M, f∗N ), is a bi-
jection and natural in bothM and N .
For all crossed modules M = (µ : M −→ A) and N = (η : N −→ B) define

Φ (M,N ) as Φ (M,N ) (h, idB) = (Φ (M,N ) (h) , idA) such that (Φ (M,N ) (h)) (m)
=
(
h
(
1m1

)
, µm

)
for all (h, idB) ∈ (XAlg(R)/B) (f∗M,N ) andm ∈ M. Φ (M,N ) (h)

is well defined since η
(
h
(
1m1

))
= µf∗

(
1m1

)
= 1 ((fµ)m) 1 = f (µm) for all

m ∈ M. Moreover, it can easily be seen that (Φ (M,N ) (h) , idA) is a crossed
A-module morphism and Φ (M,N ) is 1-1.
For any (g, idA) ∈ (XAlg(R)/A) (M, f∗N ) the morphism g : M −→ f∗N must

be defined as gm = (g1m, g2m), for all m ∈ M, such that g1m ∈ N, g2m ∈ A and
ηg1m = fg2m. But g2m = ηf∗ (g1m, g2m) = ηf∗ (gm) =

(
ηf∗g

)
m = µm since

(g, idA) is a crossed A-module morphism. So we can write gm = (g1m,µm) where
ηg1m = fµm. Define h : f∗M −→ N as h

(
bmb′

)
= bg1m

b′ on generators. Clearly h
is an R-algebroid morphism preserving B-action and (h, idB) is a crossed B-module
morphism since

(ηh)
(
bmb′

)
= η

(
bg1m

b′
)

= b (ηg1m) b′ = b (fµm) b′

= b ((fµ) (m)) b′ = µf∗
(
bmb′

)
=
(
idBµf∗

) (
bmb′

)
on generators. That is (h, idB) ∈ (XAlg(R)/B) (f∗M,N ). Moreover

(Φ (M,N ) (h)) (m) =
(
h
(
1m1

)
, µm

)
=
(
1g1m

1, µm
)

= (g1m,µm) = gm

for all m ∈ M which means Φ (M,N ) is onto and so is a bijection.
Moreover, provided that (−)

• is composition with (−) from right, for all crossed
moduleM′ = (µ′ : M′ −→ A), for all (g, idA) ∈ (XAlg(R)/A) (M,M′), (h, idB) ∈
(XAlg(R)/B) (f∗M′,N ) and m ∈ M((

Φ (M,N ) (f∗g)
•)

(h)
)

(m) =
(
Φ (M,N )

(
(f∗g)

•
h
))

(m)
= (Φ (M,N ) (h (f∗g))) (m)
=

(
(h (f∗g))

(
1m1

)
, µm

)
=

(
h
(

1 (gm) 1
)
, (µ′g) (m)

)
=

(
h
(

1 (gm) 1
)
, µ′ (gm)

)
= (Φ (M′,N ) (h)) (gm)
= ((Φ (M′,N ) (h)) g) (m)
= (g• (Φ (M′,N ) (h))) (m)
= ((g•Φ (M′,N )) (h)) (m)
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which means the diagram in Figure 5 is commutative and so Φ (M,N ) is natural
inM:

Finally, provided that (−)• is composition with (−) from left, for all crossed
module N ′ = (η′ : N′ −→ B), for all (g, idB) ∈ (XAlg(R)/B) (N ,N ′), (h, idB) ∈
(XAlg(R)/B) (f∗M,N ) and m ∈ M

((Φ (M,N ′) g•) (h)) (m) = (Φ (M,N ′) (g•h)) (m)
= (Φ (M,N ′) (gh)) (m)
=

(
(gh)

(
1m1

)
, µm

)
=

(
g
(
h
(
1m1

))
, µm

)
= (f∗g)

(
h
(
1m1

)
, µm

)
= (f∗g) ((Φ (M,N ) (h)) (m))
= ((f∗g) (Φ (M,N ) (h))) (m)
= ((f∗g)• (Φ (M,N ) (h))) (m)
= (((f∗g)• Φ (M,N )) (h)) (m)

which means the diagram in Figure 6 is commutative and so Φ (M,N ) is natural
in N :

�

5. Consequences of the Adjunction

Theorem 1 has some consequences:
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1. In the proof of the Theorem 1, since Φ (M,N ) is a bijection, its inverse
Φ−1 (M,N ) is also a bijection from (XAlg(R)/A) (M, f∗N ) to (XAlg(R)/B) (f∗M,N )
and defined for all (g, idA) ∈ (XAlg(R)/A) (M, f∗N ) as Φ−1 (M,N ) (g, idA) =(
Φ−1 (M,N ) (g) , idB

)
such that

(
Φ−1 (M,N ) (g)

) (
bmb′

)
= bf̂gmb′ on generators.

2. The family, called the unit of the adjunction,

{(αM, idA) = Φ (M,N ) (idf∗M, idB) :M−→ f∗f∗M | M ∈ Ob (XAlg(R)/A)}

is a natural transformation from 1XAlg(R)/A to f∗f∗ where 1XAlg(R)/A is the identity
functor on XAlg(R)/A. Moreover αM = (αM, idA) is universal for each M =
(µ : M −→ A) ∈ Ob (XAlg(R)/A), i.e. for each N ∈ Ob (XAlg(R)/B) and for
each morphism (g, idA) : M −→ f∗N there exists a unique morphism (g′, idB) :
f∗M−→ N making the universal diagram in Figure 7 commutative:

It can be shown that αM (m) =
(
1m1, µm

)
for all m ∈ M and (g′, idB) =

Φ−1 (M,N ) (g, idA) which requires g′ to be defined on generators as g′
(
bmb′

)
=

bf̂gmb′ .
3. The family, called the counit of the adjunction,{
(βN, idB) = Φ−1 (M,N ) (idf∗N, idA) : f∗f

∗N −→ N | N ∈ Ob (XAlg(R)/B)
}

is a natural transformation from f∗f
∗ to 1XAlg(R)/B where 1XAlg(R)/B is the iden-

tity functor on XAlg(R)/B. Moreover βN = (βN, idB) is universal for each N =
(η : N −→ B) ∈ Ob (XAlg(R)/B), i.e. for eachM ∈ Ob (XAlg(R)/A) and for each
morphism (h, idB) : f∗M−→ N there exists a unique morphism (h′, idA) :M−→
f∗N making the universal diagram in Figure 8 commutative:
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It can be shown that βN
(
b (n, a) b′

)
= bnb

′
on generators and (h′, idA) =

Φ (M,N ) (h, idB) which requires h′ to be defined as h′ (m) =
(
h
(
1m1

)
, µm

)
for

all m ∈ M .
4. For eachM∈ Ob (XAlg(R)/A) and for each N ∈ Ob (XAlg(R)/B)

βf∗Mf∗ (αM) = idf∗M and f∗ (βN )αf∗N = idf∗N
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Current address : Osman Avcıoğlu: Usak University, Faculty of Arts and Sciences, Department
of Mathematics, 64200 - Usak, Turkey.

E-mail address : osman.avcioglu@usak.edu.tr
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