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MORE ON α-TOPOLOGICAL SPACES

SHYAMAPADA MODAK AND MD. MONIRUL ISLAM

Abstract. The aim of this paper is to introduce a new topology with the help
of a-open sets. For this job, we shall define two new types of set and discuss
its properties in detail and characterize Njastad’s α-open sets and Levine’s
semi-open sets through these new types of set.

1. Introduction

The study of ideal in topological space was introduced and studied by Kuratowski
[15] and Vaidyanathaswamy [22] but in this study Jankovic and Hamlett gave a new
dimension through their paper “New topologies from old via ideals" [14]. Now a
days the authors like Navaneethakrishnan et al. [19], Hamlett and Jankovic [12],
Arenas et al. [4], Nasef and Mahmoud [18], Mukherjee et al. [17] Dontchev et al.
[6] and many others have enriched this study. The authors Al-Omari et al. [1, 2]
in their papers “a-local function and its properties in ideal topological spaces" and
“The <a operator in ideal topological spaces", have studied Ekici’s [7, 8, 9] a-open
sets in terms of ideals. They have obtained a new topology with the help of two
operators viz. <a and ()a

∗
, and have shown that this topology is finer than Ekici’s

a - topology.
In this paper, we have further considered the space which is the joint venture of

a-topology and an ideal as like Al-omari et al. have considered in [2, 1]. Through
this paper we will solve the question “how much finer is Noiri’s et al.’s topology
than Ekici’s topology?" For solution of this question we have considered Njastad’s
α-open sets [20] from literature.

2. Preliminaries

In this section we have discussed some preliminary concepts of literature and
introduce some prime results for discussing the paper.
Let A be a subset of a topological space (X, τ), then ‘Int(A)’and ‘Cl(A)’will

denote ‘interior of A’and ‘closure of A’respectively.
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We define following as a mathematical tool for this research article:

Definition 1. Let A be a subset of a topological space (X, τ). A is said to be
regular open [21] (resp. semi-open [16, 11], semi-pre open [3], α-open [20]) if A =
Int(Cl(A)) (resp. A ⊆ Cl(Int(A)), A ⊆ Cl(Int(Cl(A))), A ⊆ Int(Cl(Int(A)))).

Definition 2. [23] A subset A of a topological space (X, τ) is said to be δ-open if,
for each x ∈ A, there exists a regular open set G such that x ∈ G ⊆ A.
The complement of δ-open set is called δ-closed. Let (X, τ) be a topological

space, then the point x ∈ X is called δ-cluster point of A if Int(Cl(V )) ∩ A 6= ∅,
for each open set V containing x.
The δ-closure of A is denoted as Clδ(A) [23] and it is a set of all δ-cluster point

of A. In this regards, Intδ(A) [23] is the δ-interior of A and it is the union of all
regular open sets of (X, τ) contained in A. If Intδ(A) = A for a topological space
(X, τ), then A is δ-open and conversely [23]. It is remarkable that the collection of
all δ-open sets in a topological space (X, τ) forms a topology and it is denoted as
τ δ [23].

Definition 3. [8, 9, 10] A subset A of (X, τ) is said to be a-open (resp. a-closed)
if A ⊆ Int(Cl(Intδ(A))) (resp. Cl(Int(Clδ(A))) ⊆ A).
The family of a-open sets in (X, τ) forms a topology on X. This collection is

denoted as τa [8], and τa(x) is denoted as the collection of all a-open sets containing
x.
In this paper we also denote ‘aCl’by the means of closure operator of Ekici’s

a−topology [7, 8].
Hereditary class and a-local function are also the mathematical tool for this

paper:

Definition 4. [15] A collection I ⊂ ℘(X) is said to be an ideal on X if B ⊆ A ∈ I
implies B ∈ I and A, B ∈ I implies A ∪B ∈ I.
Let I be an ideal on the topological space (X, τ), then (X, τ, I) is called an ideal

topological space.
According to Al-Omari et al. [2, 1], we give the following:
The a-local function ()a

∗
: ℘(X) → ℘(X) for a subset A of an ideal topological

space (X, τ, I) is defined as (A)a
∗

= {x ∈ X : U ∩ A /∈ I, for every U ∈ τa(x)},
and as like complement operator of ()a

∗
, <a : ℘(X)→ ℘(X) is defined as <a(A) =

X \ (X \ A)a
∗

= {x ∈ X : there exists Ux ∈ τa(x) such that Ux \ A ∈ I}.
Due to the operator ()a

∗
, we have a topology τa

∗
[1] whose one of the basis is

β(I, τ) = {V \ I : V ∈ τa, I ∈ I} [1]. In this respect, we will denote ‘Inta∗’and
‘Cla

∗
’as ‘interior’operator and ‘closure’operator of (X, τa

∗
) respectively.

Following results help us for repairing the paper:

Theorem 1. [1] Let (X, τ, I) be an ideal topological space and U ∈ τa. Then
U ⊆ <a(U).



MORE ON α-TOPOLOGICAL SPACES 325

Corollary 2. Let A be a subset of an ideal topological space (X, τ, I), then aInt(A) ⊆
<a(A).

Theorem 3. [1] Let A be a subset of an ideal topological space (X, τ, I) with τa∩I =
∅. Then <a(A) ⊆ (A)a

∗
.

Corollary 4. Let A be a subset of an ideal topological space (X, τ, I) with τa∩I = ∅.
Then <a(A) ⊆ aCl(A).

Lemma 5. Let (X, τ, I) be an ideal topological space and O ∈ τa. Then τa ∩ I = ∅
if and only if (O)a

∗
= aCl(O).

Proof. Let τa ∩ I = ∅ and ∅ 6= O ∈ τa∗ . Now Oa
∗ ⊆ aCl(O) always. For reverse

inclusion, let x ∈ aCl(O). Therefore all neighbourhoods Ux ∈ τa(x), Ux ∩ O 6= ∅
implies Ux ∩O /∈ I, since τa ∩I = ∅. Therefore x ∈ (O)a

∗
. Hence (O)a

∗
= aCl(O).

Conversely let O ∈ τa, (O)a
∗

= aCl(O). Then Xa∗ = X and this implies
I ∩ τa∗ = ∅ [2]. �

Proposition 6. Let (X, τ, I) be an ideal topological space with τa ∩ I = ∅. Then
following hold:

(1) For A ⊆ X, <a(A) ⊆ aInt(aCl(A)).
(2) For a-closed subset A, <a(A) ⊆ A.
(3) For A ⊆ X, aInt(aCl(A)) = <a(aInt(aCl(A))).
(4) For any τa-regular open subset A, A = <a(A).
(5) For any O ∈ τa, <a(O) ⊆ aInt(aCl(O)) ⊆ (O)a

∗
.

Proof. (1) From Theorem 3, <a(A) ⊆ (A)a
∗
. Then <a(A) ⊆ aCl(A), and since

<a(A) is open, <a(A) ⊆ aInt(aCl(A)).
(3) <a(aInt(aCl(A))) ⊆ (aInt(aCl(A))a

∗
= aCl(aInt(aCl(A))) (from Lemma

5) ⊆ aCl(A). Thus <a(aInt(aCl(A))) ⊆ aInt(aCl(A)).
Reverse inclusion: aInt(aCl(A)) ⊆ <a(aInt(aCl(A))) (from Theorem 1).
Thus aInt(aCl(A)) = <a(aInt(aCl(A))). �

3. <a − aCl sets

Definition 5. Let (X, τ, I) be an ideal topological space and A ⊆ X, A is said to
be a <a − aCl set if A ⊆ aCl(<a(A)).

The collection of all <a − aCl sets in (X, τ, I) is denoted by <a(X, τa).

Note 3.1. Let (X, τ, I) be an ideal topological space. If A ∈ τa, then A ∈
<a(X, τa).

Later, we shall given the example for the converse of this note.

Theorem 7. Let {Ai : i ∈ Λ} be a collection of nonempty <a − aCl sets in an
ideal topological space (X, τ, I), then

⋃
i∈ΛAi ∈ <a(X, τa).
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Proof. For each i, Ai ⊆ aCl(<a(Ai)) ⊆ aCl(<a(
⋃
i∈ΛAi)). This implies that⋃

i∈ΛAi ⊆ aCl(<a(
⋃
i∈ΛAi)). Thus

⋃
i∈ΛAi ∈ <a(X, τa). �

For intersecting of two <a − aCl sets, we give following example:

Example 1. Let X = {e, b, c, d}, τ = {∅, X, {e}, {c}, {e, b}, {e, c}, {e, b, c}, {e, c, d}},
I = {∅, {b}}. Regular open sets are: ∅, X, {c}, {e, b}. Then τa = {∅, X, {c}, {e, b},
{e, b, c}}. Therefore <a({c, d}) = X \ ({e, b})a∗ = X \ {e, b, d} = {c} and
aCl(<a({c, d})) = {c, d}. Again <a({e, b, d}) = X\({c})a∗ = X\{c, d} = {e, b} and
aCl(<a({e, b, d})) = {e, b, d}. Now <a({d}) = X \ ({e, b, c})a∗ = X \{e, b, c, d} = ∅.
Hence we have {c, d} and {e, b, d} are <a − aCl sets but they are not a-open sets.
Again their intersection {d} is not a <a − aCl set.

We show that the intersecting of a <a − aCl set and an α - set of τa is also a
<a − aCl set.

Theorem 8. Let (X, τ, I) be an ideal topological space and A ∈ <a(X, τa). If
U ∈ τaα , then U ∩ A ∈ <a(X, τa) (τa

α

denotes the collection of all α-open sets in
(X, τa)).

Proof. Let G be a-open, and A ⊆ X, then it is obvious that
G ∩ aCl(A) ⊆ aCl(G ∩A) ........ (i).
If V is a-open, then V ⊆ aInt(aCl(V )) and it is obvious that aCl(aInt(aCl(V ))) ⊆

aCl(V ). Hence
aCl(V ) = aCl(aInt(aCl(A))) ...... (ii).
Again for A and B subsets of X,
<a(A ∩B) = <a(A) ∩ <a(B) [1] ...... (iii).
Let U ∈ τaα and A ∈ <a(X, τa), then we have U ∩ A ⊆ aInt(aCl(aInt(U))) ∩

aCl(<a(A)) ⊆ aInt(aCl(<a(U)))∩aCl(<a(A)) (Corollary 2). Since aInt(aCl(<a(U)))
is a-open, from (i) we have
U ∩ A ⊆ aCl[aInt(aCl(<a(U))) ∩ <a(A)] = aCl[aInt[aCl(<a(U)) ∩ <a(A)]], since
<a(A) is a-open. Now by again from (i), we have U ∩ A ⊆ aCl[aInt[aCl(<a(U) ∩
<a(A))]]. Since <a(U)∩<a(A) is a-open then from (ii), we get U∩A ⊆ aCl(<a(U)∩
<a(A)) = aCl(<a(U ∩A)) (using (iii)). Therefore, U ∩A ∈ <a(X, τa). �

As τa ⊆ τaα for a topological space (X, τ), then we have following corollary:

Corollary 9. Let (X, τ, I) be a topological space and A ∈ <a(X, τa). If U ∈ τa,
then U ∩A ∈ <a(X, τa).

For next, we recall that, a subset A of an ideal topological space (X, τ, I) is said
to be Ia-dense [1] if (A)a

∗
= X.

Theorem 10. A /∈ <a(X, τa) if and only if there exists x ∈ A such that there is a
τa - neighbourhood Vx of x for which X \A is relatively Ia - dense in Vx.
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Proof. Let A /∈ <a(X, τa). We are to show that there exists an element x ∈ A and
a τa - neighbourhood Vx of x satisfying that X \ A is relatively Ia - dense in Vx.
Since A * aCl(<a(A)), there exists x ∈ X such that x ∈ A but x /∈ aCl(<a(A)).
Hence there exists a τa - neighbourhood Vx of x such that Vx ∩ <a(A) = ∅. This
implies that Vx∩(X \(X \A)a

∗
= ∅ and so Vx ⊆ (X \A)a

∗
. Let U be any nonempty

a-open set in Vx. Since Vx ⊆ (X \ A)a
∗
, therefore U ∩ (X \ A) /∈ I. This implies

that (X \A) is relatively Ia - dense in Vx.
The converse part is obvious by reversing process. �

Relations between <a − aCl set with generalized open sets:

Theorem 11. Let (X, τ, I) be a topological space, then SO(X, τa) ⊆ <a(X, τa)
(SO(X, τa) denotes the collection of all semi-open sets in (X, τa)).

Proof. ForA ⊆ aCl(aInt(A)), A ⊆ aCl(aInt(A)) ⊆ aCl(<a(aInt(A))) ⊆ aCl(<a(A)).
Thus SO(X, τa) ⊆ <a(X, τa). �

Theorem 12. Let A be a <a − aCl set in a topological space (X, τ, I), where
τa ∩ I = ∅. Then A ∈ SPO(X, τa) (SPO(X, τa) denotes the collection of all
semi-preopen sets in (X, τa)).

Let (X, τ, I) be an ideal topological space, and In(τa) is denoted as the collection
of all nowhere dense subsets of (X, τa).

Lemma 13. Let (X, τ, I) be an ideal topological space, where I = In(τa), then for
A ⊆ X, <a(A) = aInt(aCl(aInt(A))).

Proof. Proof is obvious from the fact that <a(A) = X \ (X \ A)a
∗
and (A)a

∗
=

aInt(aCl(aInt(A))). �

Theorem 14. Let (X, τ, I) be an ideal topological space, where I = In(τa), then
<a(X, τa) = SO(X, τa).

Proof. Let A ∈ <a(X, τa), therefore A ⊆ aCl(<a(A)) = aCl(aInt(aCl(aInt(A))))
(from Lemma 13) = aCl(aInt(A)). Thus A ∈ SO(X, τa).
Suppose that A ∈ SO(X, τa). Then A ⊆ aCl(aInt(A)), so aInt(A) 6= ∅.

We know that aInt(A) ⊆ <a(A) by Corollary 2. Thus A ⊆ aCl(aInt(A)) ⊆
aCl(<a(A)). Hence the Theorem. �

In o.h.i. space two concepts semi-preopen set and <a−aCl set are synonymous,
where o.h.i. space is defined as follows:
A space (X, τ) is said to be resolvable [13] if there is a dense subset D of X such

that X \D are dense in (X, τ). Otherwise it is said to irresolvable [13]. Real line
with usual topology is an example of a resolvable space. A space (X, τ) is called
open hereditarily irresolvable (in short o.h.i.) [5] if every nonempty open subset of
it is irresolvable.
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Theorem 15. Let (X, τ, I) be an ideal topological space, where (X, τa) is an o.h.i.
space, τa ∩ I = ∅. Then <a(X, τa) = SPO(X, τa).

Proof. We shall prove only the inclusion SPO(X, τa) ⊆ <a(X, τa), reverse inclusion
has already been done. Let A ∈ SPO(X, τa). Then A ⊆ aCl(aInt(aCl(A))). Let
x ∈ aInt(aCl(A)). Therefore there exists a nonempty a-open set Ox (containing
x) such that Ox ⊆ aCl(A). Now it is obvious that Ox ∩A is dense in Ox. Since the
space is o.h.i., therefore aInt(Ox ∩ A) is dense in Ox, that is Ox ⊆ aCl(aInt(A))
and hence x ∈ aCl(aInt(A)). Thus aInt(aCl(A)) ⊆ aCl(aInt(A)). Now A ⊆
aCl(aInt(aCl(A))) ⊆ aCl(aInt(A)). But aInt(A) ⊆ <a(aInt(A)) ⊆ <a(A), thus
A ⊆ aCl(<a(A)). Therefore A ∈ <a(X, τa). �

4. α - topology of τa

Definition 6. Let (X, τ, I) be an ideal topological space and A ⊆ X. A is said to
be a <a - set if A ⊆ aInt(aCl(<a(A))).

The collection of all <a sets in (X, τ, I) is denoted as τa
<a .

It is obvious that τa ⊆ τa<a ⊆ <a(X, τa).

Theorem 16. Let (X, τ, I) be an ideal topological space with τa ∩ I = ∅, then the
collection τa

<a
= {A ⊆ X : A ⊆ aInt(aCl(<a(A)))} forms a topology on X.

Proof. We shall prove only finite intersection property:
Let A1, A2 ∈ τa

<a . We are to show that A1 ∩A2 ∈ τa
<a . If A1 ∩A2 = ∅, we are

done. Let A1 ∩A2 6= ∅. Let x ∈ A1 ∩A2. Now A1 ⊆ aInt(aCl(<a(A1))) and A2 ⊆
aInt(aCl(<a(A2))), implies that x ∈ aInt(aCl(<a(A1))) ∩ aInt(aCl(<a(A2))). So
x ∈ aInt[aCl(<a(A1)) ∩ aCl(<a(A2))]. Therefore there exists an a-open set Vx
containing x such that Vx ⊆ aCl(<a(A1)) ∩ aCl(<a(A2)). Let Ux be any a-
neighbourhood of x. Then ∅ 6= Vx∩Ux ⊆ aCl(<a(A1)) and Vx∩Ux ⊆ aCl(<a(A2)).
Let y ∈ Vx∩Ux. Consider any open set Gy containing y. Without loss of generality
we may suppose that Gy ⊆ Vx∩Ux. So Gy∩<a(A1) 6= ∅. From definition of <a(A1)
there exists a nonempty a-open set U such that U ⊆ Gy and U \A1 ∈ I. Again U ⊆
aCl(<a(A2)), so there exists a nonempty a-open set U ′ ⊆ U such that U ′ \A2 ∈ I.
Now U ′\(A1∩A2) = (U ′\A1)∪(U ′\A2) ⊆ (U\A1)∪(U ′\A2) ∈ I (finite additivity).
Hence from definition U ′ ⊆ <a(A1 ∩ A2). Since U ′ ⊆ Gy, Gy ∩ <a(A1 ∩ A2) 6= ∅,
therefore y ∈ aCl(<a(A1 ∩ A2). Since y was any point of Ux ∩ Vx, it follows that
Ux ∩ Vx ⊆ aCl(<a(A1 ∩ A2)), implies that x ∈ aInt(aCl(<a(A1 ∩ A2))). Thus
A1 ∩A2 ⊆ aInt(aCl(<a(A1 ∩A2))). Hence A1 ∩A2 ∈ τa

<a . �

Theorem 17. Let (X, τ, I) be an ideal topological space, where τa ∩ I = ∅, then
τa

α ⊆ τa<a .

Corollary 18. Let (X, τ, I) be an ideal topological space, where I = In(τa), then
τa

α

= τa
<a .
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Lemma 19. Let (X, τ, I) be an ideal topological space, where τa ∩ I = ∅. Then
<a(A) 6= ∅ if and only if A contains a nonempty τa

∗
-interior.

Proof. Let <a(A) 6= ∅. Therefore <a(A) = ∪{M : M ∈ τa, M \ A ∈ I} 6= ∅,
implies that there exists ∅ 6= M ∈ τa such that M \A ∈ I. Let M \A = P , where
P ∈ I. So M \ P ⊆ A where M \ P 6= ∅, since τa ∩ I = ∅. Since M \ P ∈ τa∗ , so
that A contains a nonempty τa

∗
- interior.

Conversely suppose that A contains a τa
∗
- interior M \ P (say), where M ∈

τa, P ∈ I. Thus M \ P ⊆ A, that is M \ A ⊆ P . Hence M \ A ∈ I. So
∪{M : M ∈ τa, M \A ∈ I} 6= ∅. This implies that <a(A) 6= ∅. �

Corollary 20. Let x ∈ X. Then {x} is open in (X, τa
∗
) if and only if {x} ∈

<a(X, τa).

Corollary 21. Let x ∈ X, then {x} ∈ τa<a if and only if {x} ∈ <a(X, τa).

Theorem 22. τa
<a is exactly the collection such that A ∈ τa<a and B ∈ <a(X, τa)

implies A ∩B ∈ <a(X, τa).

Proof. Let A ∈ τa
<a and B ∈ <a(X, τa). Now we are to show that A ∩ B ∈

<a(X, τa). If A∩B = ∅, we are done. Let A∩B 6= ∅. Let x ∈ A∩B. This implies
that x ∈ aInt(aCl(<a(A))), therefore aInt(aCl(<a(A))) is a a-neighbourhood of
x. Consider any a-neighbourhood Ux of x, then Ux ∩ aInt(aCl(<a(A))) is a a-
neighbourhood of x. Since x ∈ B ⊆ aCl(<a(B)), then Ux ∩ aInt(aCl(<a(A))) ∩
<a(B) 6= ∅. Let V = Ux ∩ aInt(aCl(<a(A))) ∩ <a(B), then V ⊆ aCl(<a(A)).
This implies that Ux ∩ <a(A) ∩ <a(B) = V ∩ <a(A) 6= ∅, since <a(A) is a-open.
Therefore x ∈ aCl(<a(A) ∩ <a(B)), that is x ∈ aCl(<a(A ∩ B)). Hence A ∩ B ⊆
aCl(<a(A ∩B)), therefore A ∩B ∈ <a(X, τa).
Next we consider a subset A of X such that A ∩ B ∈ <a(X, τa) for each

B ∈ <a(X, τa). We show that A ∈ τa
<a , that is A ⊆ aInt(aCl(<a(A))). If

possible suppose that x ∈ A but x /∈ aInt(aCl(<a(A))). Therefore x ∈ A ∩ [X \
aInt(aCl(<a(A)))] = A ∩ aCl(X \ aCl(<a(A))) = A ∩ aCl(G) (say). It is obvious
that G = X \ aCl(<a(A)) is a nonempty a−open set. Since x ∈ aCl(G) then for
all a-open sets Vx containing x, Vx ∩ G 6= ∅. Therefore Vx ∩ <a(G) 6= ∅, since
G ⊆ <a(G). This implies that
x ∈ aCl(<a(G)) ⊆ aCl(<a({x} ∪G)) ...... (i).
Again
G ⊆ aCl(<a(G)) ⊆ aCl(<a({x} ∪G)) ......(ii).
From (i) and (ii) {x}∪G ⊆ aCl(<a({x}∪G)). Thus {x}∪G ∈ <a(X, τa). Now

by given condition A ∩ ({x} ∪G) is a <a − aCl set.
We shall prove that A ∩ ({x} ∪G) = {x}.
If possible suppose that there exists y ∈ X and x 6= y such that y ∈ A∩({x}∪G).

So y ∈ A and y ∈ G. Now A = A∩X and X ∈ <a(X, τa), again by given condition
A ∈ <a(X, τa). Since y ∈ A, and y ∈ aCl(<a(A)) - a contradiction to the fact that
y ∈ G = X \ aCl(<a(A)). Thus A ∩ ({x} ∪G) = {x}. Since {x} ∈ <a(X, τa), then
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{x} ∈ τa
<a . So {x} ⊆ aInt(aCl(<a({x}))) = aInt(aCl(<a(A ∩ ({x} ∪ G)))) ⊆

aInt(aCl(<a(A))). But x ∈ aInt(aCl(<a(A))), that is A ∈ τa<a . �

Theorem 23. Let (X, τ, I) be an ideal topological space, where τa ∩ I = ∅. Then
SO(X, τa

∗
) = <a(X, τa).

Proof. Let A ∈ SO(X, τa
∗
). Then A ⊆ Cla

∗
(Inta

∗
(A)) = Cla

∗
[<a(A) ∩ A] ⊆

aCl(<a(A) ∩ A) ⊆ aCl(<a(A)). Thus A ∈ <a(X, τa). For reverse inclusion, let
A ∈ <a(X, τa). We show that A ∈ SO(X, τa

∗
). Take x ∈ A. Consider G1 ∈ β(I, τ)

[2] such that x ∈ G1. Then G1 is of the form G1 = G\E, where G ∈ τa, E ∈ I. So
x ∈ G. Since A ⊆ aCl(<a(A)) and G ∈ τa, G∩ (<a(A)) 6= ∅. Let y ∈ G∩ (<a(A)).
Thus there exists Oy ∈ τa such that Oy \ A ∈ I by definition of <a(A). Consider
∅ 6= G ∩ Oy. So (G ∩ Oy) \ A ∈ I (by heredity). Let G′ = G ∩ Oy. Then
G′ 6= ∅, G′ ∈ τa and G′ \ A = P say where P ∈ I and so G′ \ P ⊆ A. Hence
G′ \ (E∪P ) ⊆ A where G′ \ (E∪P ) 6= ∅, since τa∩I = ∅. WriteM = G′ \ (E∪P ).
Then ∅ 6= M ∈ τa∗ such that M ⊆ A ∩ (G \ E). Hence A contains a nonempty
τa
∗
-open set M contained in G \ E = G1. Since x is an arbitrary point of A, we

get A ⊆ Cla∗(Inta∗(A)). Therefore A ∈ SO(X, τa
∗
). �

Corollary 24. Let x ∈ X, then {x} ∈ SO(X, τa
∗
) if and only if {x} ∈ τa<a .

Theorem 25. τa
<a is exactly the collection such that A ∈ τa<a and B ∈ SO(X, τa

∗
)

imply A ∩B ∈ SO(X, τa
∗
), where τa

∗ ∩ I = ∅.

Theorem 26. [20] Let (X, τ) be a topological space. τα consists of exactly those
sets A for which A ∩B ∈ SO(X, τ) for all B ∈ SO(X, τ).

From above Theorem we get the representation of α - sets of (X, τa):

Theorem 27. Let (X, τ, I) be an ideal topological space with τa ∩ I = ∅. Then
τa
<a

= τa
∗α
.
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