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ABUNDANCE OF EQUIVALENT NORMS ON ¢y WITH FIXED
POINT PROPERTY FOR AFFINE NONEXPANSIVE MAPPINGS

VEYSEL NEZIR AND SIDDIK SADE

ABSTRACT. In 1979, K. Goebel and T. Kuczumow showed that a large class
of closed, bounded, convex (c.b.c.), non-weak*-compact subsets K of ! has
the fixed point property for nonexpansive mappings. Later, in 2008, P.K. Lin
proved that I' can be renormed to have the fixed point property for nonex-
pansive mappings. Then, Nezir recently worked on ¢cp-analogue of Goebel and
Kuczumow’s theorem with an equivalent norm and showed that there exists
a large class of equivalent norms || - || on ¢o for which there exist non-weakly
compact closed, bounded, convex subsets that have the fixed point property
for affine || - ||-nonexpansive mappings. In fact, he sees that his examples are
closed, convex hulls of some asymptotically isometric (ai) co-summing basic
sequences whereas Lennard and Nezir in 2011 showed that the closed, convex
hull of any ai cp-summing basic sequence fails the fixed point property for
affine || - ||oo-nonexpansive mappings. In this work, we show that equivalent
norms with fixed point property for affine nonexpansive mappings are some-
what abundant. Firstly, we construct many types of equivalent norms and
even show some norms are exactly the same as the natural norm while it is
not clear to see that in the beginning, and then we show with our new type of
equivalent norms cg do not contain any asymptotically isometric copy of cg.
Next, we see that Nezir’s equivalent norms are not the only ones with fixed
point property for affine nonexpansive mappings on his sets.

1. INTRODUCTION

It is well-known that Banach space of sequences converging to 0, (co,| - |l)
has the weak fixed point property, so does the space of absolutely summable
sequences, (£1,]-]];). In other words, for every weakly compact, convex (non-
empty) subset C of (co,|| - ||), for all nonexpansive mappings T: C — C [i.e.,
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2 VEYSEL NEZIR AND SIDDIK SADE

Tz —Ty| . < |z —yll, for all 2,y € C], T has a fixed fixed point in C. It is
also well-known that both spaces fail the fixed point property (¢! fails so does cg).
Indeed, let C' := {sequences (t,)nen : each ¢, > 0 and > 7, t, = 1}. Thisis
a closed, bounded, convex subset of £'. Let T': C — C be the right shift map on
C; ie., T(ty,ta,t3,...) = (0,t1,t2,t3,...). T is clearly || - ||;-nonexpansive (being
an isometry) and fixed point free on C. We should note that these two spaces
can be considered as the examples of nonreflexive Banach spaces failing the fixed
point property for nonexpansive mappings (FPP(n.e.)). It is an open question as
to whether or not all nonreflexive Banach spaces fail the FPP(n.e) and it is un-
known if every reflexive Banach space has the FPP(n.e.). However, in 1965, Kirk
[5] showed that all reflexive Banach spaces with normal structure (spaces such that
all non-trivial closed, bounded, convex sets C have a smaller Chebyshev radius
than diameter) have the FPP(n.e.). Recently, in a significant development, Lin [7]

provided the first example of a non-reflexive Banach space (X, || - ||) with the fixed
point property for nonexpansive mappings. Lin verified this fact for (¢1,]|-]|1) with
the equivalent norm ||| - ||| given by
88 & ]
z||| = sup —— T,l|, for all z = (x el .
el =5 g 3 ol (EnJner

What about (¢, ||-||eo) analogue of P.K. Lin’s work? While this is a famous open
question, ¢y analogue of Goebel & Kuczmunow’s theory (with an equivalent norm of
course) has also great importance since it would be the first step to find a candidate
equivalent norm to work on ¢y analogue of P.K. Lin’s work. For the readers who
don’t know Goebel and Kuczmunow’s work [3], we can explain their study which was
done before P.K. Lin’s. They showed that while [! fails the FPP(n.e.) with its usual
norm, there exists a large class of closed, convex, bounded and non-weak*-compact
subsets K of (¢1,] - ||1) such that every || - ||;-nonexpansive mappings T: K — K
has a fixed point. In contrast to Goebel and Kuczmunow’s result for !, Dowling,
Lennard and Turett [2] showed that any closed infinite dimensional subspace of
(co, || lloo) also fails the FPP(n.e.). Thus, to think about Goebel and Kuczmunow’s
work’s analogue for ¢y, we have to think about it after renorming cy. That is,
we can work on a question "do there exist any renorming of ¢y and a nonempty
closed, bounded and convex subset C' so that every nonexpansive mapping has fixed
point property?". Nezir [8] recently gave positive answer for this question when the
mapping is also affine. His work is interesting because he invented an equivalent
norm and he showed that the closed convex hull of an asymptotically isometric
co-summing basis for the usual absolute sup norm has the fixed point property
for affine nonexpansive mappings whereas in 2011, Lennard and Nezir [6] proved
that if a Banach space contains an asymptotically isometric (ai) co-summing basic
sequence (Tp)nen, then the closed convex hull of (zp)nen, E = c({z, : n € N}),
fails the fixed point property for affine nonexpansive mappings.
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In their paper, first of all, they work on some specific ai cp-summing basic se-
quences.

For example, they fix b € (0,1) and define the sequence (f,)nen in ¢g by setting
f1:=bex, fo ;== bes, and f, = e,, for all integers n > 3 where (e, )nen is the
canonical basis of cg; i.e., the scalar sequence e,,, with domain N, is defined to be
1 in its nth coordinate, and 0 in all other coordinates and recall that the sequence
(€n)nen is an unconditional basis for both (co, || - [|s) and (€1, - ||1)-

Next, they define the closed, bounded, convex subset E = Ej, of ¢y by

E:_{Ztnfn31—t12t22"‘2tnln0} :
n=1

Then, they define the sequence (7,,)nen in E in the following way. Let n; := f1
and n,, := f1 +--- + fp, for all integers n > 2. Note that

E::{iannn: each «,, > 0 and ianzl} .

n=1 n=1

Next, they give the following theorem:

Theorem 1.1. Let b € (0,1). Then E = E} is such that there exists an affine
I - || co-nOonexpansive mapping U : E — E that is fized point free.

Easily, it can be seen that the set F is the closed convex hull the sequence
(M, )nen and this sequence is an ai ¢p-summing basic sequence.

In the work of Nezir [8], he showed that ¢y can be renormed so that the set
E above with b restricted little bit (3C' € (0,1) > Vb € (0,C)) for all affine
nonexpansive mappings T: E — E, T has a fixed point in E. In fact, he presented
there is a large class of renormings to have this property.

In our work, we invent another large class of renormings that gives the same
results what Nezir had done in his above mentioned work. That is why, it can
be said that equivalent norms with fixed point property for affine nonexpansive
mappings on a large class of subsets of ¢y are somewhat abundant. Firstly, we
construct many types of equivalent norms and even show some norms are exactly
the same as the natural norm while it is not clear to see that in the beginning,
and then we show with our new type of equivalent norms ¢y do not contain any
asymptotically isometric copy of ¢yg. Next, we see that Nezir’s equivalent norms are
not the only ones with fixed point property for affine nonexpansive mappings on
his sets.

We believe that our results have great importance in terms of bringing new can-
didates to solve ¢y analogue of P.K. Lin’s theorem [7]. In fact, using our equivalent
norms, one can obtain more equivalent norms satisfying our results and even better
results.

Now, we can give preliminiaries for our work such that some preliminiaries have
been given in [8].
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2. PRELIMINARIES

Definition 2.1. Let C be a non-empty closed, bounded, convex (c.b.c.) subset
of a Banach space (X, |- ]). A mapping T : C — C is called nonezpansive if
IT(z) = T(y)ll < lz —yll , for all z,y € C.

We say that C has the fized point property for nonexpansive mappings [FPP(n.e.)]
if for all nonexpansive mappings 7' : C — C, there exists z € C with T'(z) = z.

Definition 2.2. Let C be a non-empty closed, bounded, convex subset of a Banach
space (X, -]|)- A mapping U : C — C is said to be affine if for all A € [0, 1], for
all xz,y € C,
U(l=Nz+Ay)=1-XNU(z)+AU(y) .
We say that C' has the fired point property for affine nonexpansive mappings
[FPP(affine, n.e.)] if for all affine nonexpansive mappings U : C — C, there exists
z€ Cwith U(z) =

Let (X,]| - ||) be a Banach space and E C X. We will denote the closed, convex
hull of E by ¢o(FE). As usual, (¢, || - ||c) is given by
co = {a: = (p)nen : each z, € Rand lim z, = O} .

n——oo

Further, ||2]lco := sup,cy |Zn|, for all z = (2,)nen € co; and (€1, ]| - [|1) is defined
by

o0
o= {x = (Zn)nen : €ach z, € R and ||z||; := Z |xn] < oo} .
n=1
We denote by cqg the vector space of all scalar sequences that have only finitely
many non-zero terms. In other words, cg is the linear span of {e, : n € N} inside
co (and £1).
We recall now the definition of an asymptotically isometric co-summing basic
sequence in a Banach space (X, | - ||) from the work of Lennard and Nezir [6].

Definition 2.3. Let (z,),en be a sequence in a Banach space (X,| - |]).
define (2, )nen to be an asymptotically isometric (ai) co-summing basic sequence in
(X, |I-]]) if there exists a null sequence (&, )nen in [0, 00) such that for all sequences
(tn)neN € Coo,

sup <1—|—5) Zt th] <5up (1+ep) i

n>1 J=1

2.1. Nezir’s equivalent norm and his results.

Theorem 2.4. [8] For z = (&), € o, define

Iz1° = =l +supzc2k|sk af;| where ZQk =1, Qk [k 0
k=1
and Q> Qk+1; vk € N.
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Then, if « =0 or if Q1 > 1«2!2Q\¢|x| when |a| > 1, then (co, ||Ho> does not contain

an asymptotically isometric copy of cgp.

2.1.1. For an equivalent norm, a set on cy like Goebel and Kuczumow’s set on 1'. In
1979, K. Goebel and T. Kuczumow showed that there exist some closed, bounded,
convex and non-weak*-compact subsets K of I and K have the FPP(n.e.). In
their work, they use the following lemma as a main tool and here we will get the
analogous idea for ¢y that will be a tool for us.

Lemma 2.5. [3] If {z,} is a sequence in I' converging to x in weak-star topology,
then for any y € 1!

r(y) =7 (x) +lly -zl
where r (y) = limsup,, ||z, — Y|, -

2.1.2. A Function Like Asymptotic Center Function.

Lemma 2.6. [8] Let (X, || . ||) be a Banach Space, (x,,), be a bounded sequence
in X. For any arbitrary subsequence (y, )., consider a function s : X — [0,00)

given by
1 m
m > T =Y
k=1

Then, if (Ym),, is a bounded sequence in co converging to x in weak topology, there
exists a subsequence (), whose Cesaro mean in norm approaches to x and so
when X = ¢y and s is defined by this subsequence, we have

s(y) =s(@) +lly -zl , vy €co

where ||-|| is any equivalent norm to ||-|| ., on co.

s (y) = limsup , Vye X .

m

2.1.3. A Set in ¢y having FPP(for n.e. and affine mappings) for an equivalent
norm.

Example 2.7. Fix b € (0,1). We define the sequence (f,)nen in ¢o by setting
fi:=bei, fo :=bes, and f, := e,, for all integers n > 3. Next, define the closed,
bounded, convex subset E = Ej, of ¢y by

o0

n=1
Let us define the sequence (7),,)nen in E in the following way. Let n; := f1 and
N, = f1 + -+ fn, for all integers n > 2. It is straightforward to check that

o0 o0
E = {Z ann, : each a, >0 and Z anzl} .

n=1 n=1
Then, in 2011, Lennard and Nezir [6] show that E = Ej is the closed convex hull
of (n,,)nen which is an asymptotically isometric co-summing basis respect to || - [|oo
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and that there exists an affine || - ||o-nonexpansive mapping U : E — E that is
fixed point free.

Theorem 2.8. [8] There exist constants 0 < C < 1 and a > % such that for all
b € (0,C) the set E defined as in the example above has the fixed point property

for ||.||-nonezpansive affine mappings where the norm ||-||¥ on co is given as below
such that Q1 > 1_213a :

For x = (&), € co and a > 0,

I2|¥ = ||zl +sup > Qi |& —ag;|  where > Qu =1, Qx 11 0,
JEN T k=1
Qr > Qiy1, VEEN.

3. A NEW LOOK TO THE ABSOLUTE SUP NORM OF ¢g

Theorem 3.1. For any x = (§;),cy € co and for any n,m € N,

: § : |£k|p ’
xr = lim 3.1
|| ||<x> pl o <k . kn ( )

and

m _ 1 — ‘gk‘p o 3 2
xHoo - pl»ngo Z kn . ( . )
k=1

Proof. Let x = (&;);cn € co- We will consider = # (0,0, ---) otherwise proof of the
claim is clear.
Then,

IN €N 3 |jzf|, = sup || = max || = [{x].
kEN keN

Due to power mean inequalities formula (see eg. [4]),

glgaglékl

= max{|&], 6], Ex]}
—  lim <|51|”+€2|p+"'+|§Np>p

N
[€xl”
N

N\ P
= i .
A (Z )
k=1

(1) Casen=1, m=1

]| o

p—00
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Claim 3.2.

Indeed,

=

]l

A
T_
g E
& ~
H'MZ

~
=
=
N———

IA
=
gE
-~
[]¢
-y
=
N—————
|

On the other hand, 3s € N such that [£,] < %, Vk > s. Thus,

>;

|5l
k

lim iw ’ = lim S‘gk‘eri
p—00 k © pooo Pt k —

P P [ee] P P
< um ( Sl dk)
k=1 s

—  lim - €kp+/°° 99 dk !
poo \ £~ k o k
N ’
< plggo (k—l B + s dk
| 1 »
< i P —
- pLH;o<|€N| ’;k+p(s+l)p>
° 1 1 »
< Py
< Jim <|§N| ;k+p(s+l)p>
1
S 1 ;
< (ot i [ L]+ )
. plfio('ffv' [ kT e
= |§N|
= |7 -

(2) Casen=2, m=1
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Claim 3.3.

_ - |§k|p

Indeed, first of all, (due to first case) it is clear that

D=

NE
<

p
] ) < llz]..

e
Il
—_

lim (
p—00

On the other hand, for p large enough, 35 € N such that

€417 < &, VE > 4. (so Yo |€|” is convergent. We should note that one
could be confused by taking a sequence e.g.

€, = - but as p large enough, that would not be in cy. We will not give

kP
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more detailed proof for our statement above.) Thus,

lim (i |§Z|p>p = lim
oo =t pmee

= i kZ k
k=1 k=1
= le”\ <N
< gt (D055 ) o[ { Dol
P k=1 P k=1

€el” + 1l

k=1 k=j

S
=

IA
_—
M=
g B
p
HMS
|
®l=

=1

.7 p 7

( 1)13%2;&1‘&@‘ +k§ 2
=J

=

P /_—? N ~—
-
N

=

INA

”fe

gE
?r/__\
HM8
=&

IN
-
,TP—‘
g g
T
INNgE
I~
?E;% ‘
~ |~~~ |~ ~ | ~
8=
&
=
~
<
|
=
a
4
]
+
c:‘z‘
~_
|

Therefore,

(3) Casen=2s+1, seN,m=1
Claim 3.4.

(Sl
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By induction, first we show that

Claim 3.5.
1
— &7 )"
ol = hw@ i
Indeed,
1
— &\ "
lalle = lim <Z =
k=1
1
NN
= 1
pbo <; ks k3
1
. — 6" |~ 16"
< ([
< lim 3
P (\lk—l k k=1 k
= (S e (S5 H)
a p—o0 k3 p—o0 k
k=1 k=1
= e\
= Ldim (SEE) el
P k=1
and so

Furthermore, it is clear that

i (S l6GY i ’
pLHc}o Z k;s _pinolo
k=1 k=1

Now, fix t € N and assume that for s < ¢,

(P
\/||zlooplggo< L)

[l
k

il

Then, we claim that

Claim 3.6.

1

e RN LA
2l = phj& ( k2§+3 ‘

k=1
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Indeed,

(el N
lolo = Jim { D55
k=

=

< (S IEE IS el
—  p—oo k.2s+3 k25—1
k=1 k=1
I 1
. — l&" )" — 6"\ "
= lim (Z 3 lim Z
oo s+3 oo
p k:1k P = k
1
_ . — l&l” )"
- plggo <; k25+3 ||$Hoo

and so

Furthermore, it is clear that

= Jel -
S (D gars | < Jim (3

k=1

(94
k

-

Therefore, proof of this case is done.
(4) Casen=2s, se N, m=1
Proof of this case is similiar to the previous case.

In conclusion, we can say that proof of the theorem is complete since for any
m € N the rest (proof of the equation 3.2) is just application of the limit rules. O

Remark 3.7. Using the ideas above, we could extend examples and also check the
connections between ||z|| and
p

o0 P P [e'e]
pli_)r{:o <Z |§k’:ck| > or pli_)rrol<> (Z ak|§k|p> where ag, |1 0
k=1 k=1

for & = (&), € co but we like to leave those to readers and researchers due to
keeping on our focus of research here.

1 1
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4. AN EQUIVALENT NORM SUCH THAT cop DOES NOT CONTAIN AN
ASYMPTOTICALLY ISOMETRIC COPY OF c¢gp WITH THAT NORM.

For z = (&;,),, € co and for o € R, define ||z| by

P p
[zl = — lim sup~, Z \g } +vlsur>ZQk\§ K=ol

Y1 P keN

> 2
+71 squ)ZQk2|£k_a£j| where v, T 1, Y41 > 75, VE €N,
JEN =1

x* 1= (£";)jen is the decreasing rearrangement of ,

> Qr=1,Qxlr0and Qr > Qxi1, VkEN
k=1

such that from the definition of decreasing rearrangement, 3 a 1-1 mapping 7 :
N — N and 3(gj)jen s.t. each er;y € {—1,1} and then (£ = [§, )] =
Ex(k) En(r)s VE € N

Then, using similiar ideas in [8] and due to the theorem above, clearly we can
see || - || is equivalent to || - || ; furthermore, we give the following theorem. Note
that the result below is important since we know that if a Banach space contains
an asymptotically isometric copy of ¢g then it fails the FPP(n.e.). Thus, it is our
initial step to say our equivalent norm is a good candidate to work on ¢y analogue
of P.K. Lin’s theorem; now that let’s see our first theorem.

Theorem 4.1. If |a| > 1 and Q1 > %Jﬁlal, then (co, || - ||) does not contain an
asymptotically isometric copy of cgp.
Proof. By contradiction, assume (cg, || - ||) does contain an asymptotically isometric

copy of ¢g. That is, there exists a null sequence (e,),, in (0, 1) and a sequence (z,),,
in c¢g such that

for every n € N and every choice of scalars ty,ts, ..., t,,
n
it follows that max (I —er) te] < || D tezk|| < max |tg].
<k< = 1<k<n

Let |o| > 1 and Q1 > %J‘félla‘ then Q1 > 13;\404
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Hence, %12|a\ > 2> 1, 2a — 1] > |a] and we can assume for the following

equivalent norm |[.||™, (co, ||.||~) contains an asymptotically isometric copy of co:
1
” ”N li Z|J|p p+ ZQ 20[5*
x = — lim supy Y15up k - —&;
V1 P=o ke J ! je ST
oo 2
2
+71 SUPZQk &k where v, T 1, Vi1 > Wi, VE €N,
JENLS
= (& j)jen is the decreasing rearrangement of z,

D Qu=1, Qk lx0and Qx> Qyi1, Vk €N
k=1

Without loss of generality we can assume that the sequence (z,),, converges point-
wise to 0.

For each n € N, let z,, = (£});-

Note that, for every = € ¢y, there exists L > 1 such that ||z| > ||%H~ Now,
without loss of generality, by passing to a subsequence if necessary, we may assume

there exists s € N such that ||z > \Qailvl We can do this since for L > 1,
the sequence (), can be replaced with (%), so that the condition © respect to
newly defined norm is satisfied for null sequence (e,,), in (0,1) and so there exists
s € N such that e <1—ﬁ and ||z, > [|%|” > 1—e > Wivll

Now , there exists r € N s.t. £ # 0 and, as previously, since x5 € ¢, there exists
N®) € Nsuch that ||z, = |- Hence, take p = min{r | |£)] = |£ x|}

Now, let § = (Ql__l—v1+ﬂal 8la|(1+4]a]) .
’ el ) t6jafr+ (68428 ol (164 487, ) lal+ 2

(o)
Now, choose N1 > psothat > Q< (% +4|al)$ . Choose Ny € N so that
k=1+N,

En < min{l - Daiivll , (5} for all n > max {s, No} . Choose M > max {s, Na} so

that |2« — 74| |§;L’ < (%%4&) and |§ | < (”;rla“ |) for j =1,2,..., Ny and for
all n. > M. Note that 1 > ||z, and 1 > ||z,]|~ and so 1 > [£;| and 1 > |} | for
all j € N.
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Therefore, for each n > M,

||x’ﬂ||oo < ”xn”N
1 = * M = * T
< ol + 71 Y Qe €]+ 210> Qusup €7
71 1 1 jEN
') 20( 2
+y1, 5up Y Qx? (If"l + Ié“”l)
! jeN; g Y
1 o0
< ( n 4|a|) lealle + 21, S Qelel]
Y1 1
1 N1 0o
< (+4|a|) a4 20 S @l 12 S Qulel
g k=1 k=14+N;
1 %(%+4\a|>5 N oo
| .+ 2
< (Sl et Y k2 Y @
k=1 k=1+N1
1 1
1 L(L+ajal)s oy
< (+4|a|) lll,, + 2T +(+4|a|)5
71 4|04| 71
2
ERIK
- 4 n .
< (- alal) el + 2y

By the triangle inequality ||@,||., < 5 |0 + @sllo + 3 |20 — 24|/, and so either
20 + Zslloo = lZnllo O 20 — 2sll g = [0l -
If ||z, + x4l > |||, then we have

1=max{1,1} > |zs+x,|"
> 2«
s n s n\*
2 H$s+$n||oo+715uPZQk (§k+€k)*_7(£j+§j)
jeN 71
- 2| s n 2 s n ?
1 [sup Y QP&+ & — = (& +¢F)
JEN; 71
. s n\* 205 S n\*
> lzs+ 2l + 71 Y Q (€5 +E5) RGN
k=1 1
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Hence,
L = HxS"'anoo"'Ql|2a_71|(§i+€?)*
>l + Q1 120 — v, [ + &5
> |l + Q1 12a = 74| [£5] — Q1 [2a = 74| [&]]
(1+4m05
> n _—
Tl
+Q1 200 — 74| |ff;‘ — Q1|20 — 4| |§Z‘
> 71 (’Yl +4|a|)

5 4fa] I g
+Q1 — [2a — 74| |EZ|

1 1
> ,>—(”1+4|a|)5+c21—(”+4|a|)6
1+ 4|« " 4|« 8
1
1+ 4o 1o 8
1— v, +4|a
= 1 _—_—
O T
16|a|3—|—(36—|— )|a|2 (8+ —&-871) o + 2
8o (1 + 4[af)
> 149

which is not possible (contradiction).

Similarly we arrive at a contradiction if we assume that |z, — 2| > [|2n] . O

Corollary 4.2. For z = (§,), € ¢co and for a € R, define |z||~

1
P

p
2|~ = — lim supy, Z' 31 +%bupZQk|£ g — g

Y1 P~ keN

where Tk Tk » V1 = Vi Vk € Na

x* = (£";)jen is the decreasing rearrangement of x,

ZQkZL Qk 1k 0 and Qk > Qiy1, Yk €N
k=1



16 VEYSEL NEZIR AND SIDDIK SADE

Clearly we can see || - ||” is equivalent to || - || ; moreover, if |o| > 1 and Q1 >
%‘ﬁ\al, then (co, ||+ ||™) does mot contain an asymptotically isometric copy of

Co.

5. MAIN RESULT: A SET IN ¢y HAVING FPP(FOR N.E. AND AFFINE MAPPINGS)
FOR AN EQUIVALENT NORM

Example 5.1. Fix b € (0,1). We define the sequence (f,)nen in ¢o by setting
fii=be1, fo:=bey, and f, := e,, for all integers n > 3. Next, define the closed,
bounded, convex subset E = Fj, of ¢y by

o
E::{Ztnfnzlztlthz-ztninO} :

n=1
Let us define the sequence (7),,)nen in E in the following way. Let n; := f1 and
N, = f1+ -+ fn, for all integers n > 2. It is straightforward to check that

E::{iannn: each «,, > 0 and ianzl} .

n=1 n=1
Then, in 2011, Lennard and Nezir [6] show that E = Ej, is the closed convex hull
of (1,,)nen which is an asymptotically isometric cp-summing basis respect to || - [|co
and that there exists an affine || - ||co-nonexpansive mapping U : E — E that is
fixed point free.

Theorem 5.2. Fizb € (0,1) and define the closed, bounded, convex subset E = E,
of co as in the example above. Define the equivalent norm ||.| on co as below:
For x = (&), € co and o > 0,

=

o = — lim supy iM +7 SupiQME* —ag’;|
V1 P—o0 ke = tien g !

= 2
+74 s_ugZkakk — agj’ where v, Tk 1, Yiopo > Vg1, Yk € N,
JEN k1

x* 1= (£";)jen is the decreasing rearrangement of x,

= 11—+ 4|
D Q=1 Qklr0 Qx> Qui1, VkEN and @ > —— -~
— 1+ 4]a|

Now, let v4 = 1. Then, there exist constants 0 < C <1 and o > % such that for
all b € (0,C) the set E defined as in the example above has the fixed point property
for ||.]|-nonexpansive affine mappings.

Proof. Let T : E — FE be an affine nonexpansive mapping. Then, there exists a
sequence (as(”))neN € E such that ||T2(™ —2™| — 0 and so
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||T:c(”) — :c(”)HOO — 0. Without loss of generality, passing to a subsequence if
n

necessary, there exists z € ¢ such that z(™) converges to z in weak topology. Then,
by lemma 2.6, there exists a further subsequence (x(”k))keN such that we get a

function s : ¢g — [0,00) given by Yy € ¢y,

m

1
— 3 a® gl Then, s(y) =5 (2) + Jly — 21|, ¥y € o
k=1

s (y) = limsup

m

—a (1%, 1! [e'e] [e’e]
Now, define W := E = Doy anm, : each oy > 0and >~ | ap, <1}
Case 1: z € L.
Then, we have s(Tz) = s(z) + ||Tz — z||.

Also,
1 m
— Tims _ = (k)
s(Tz) = hmn?up Tz mZm
k=1
m 1m0 (k)
] 1 *) ] k1T
< limsup||Tz—-T —Zx + lim sup —
m m

T (G S 2 )

Thus, since T is affine

ey o)

1 m
s(Tz) < limsup||[Tz—-T|— E 2™ V|| + lim sup
m m m 1 m (k)
k=1 m Zk:l Tx
1 m
< limsup ||z — — ()
m k=1

Therefore, ||z —Tz|| <0 and so Tz = z.
Case 2: ze W\ E.
Then, z is of the form Y ° | ¢, such that > ° o, <1.

Define § :=1 — Z o, and next define

n=1

hy = (01 +A8)ny + (02 + (L = A)d)ny + Zgnnn-
n=3

We want h) to be in E, so we restrict values of A to be in [—%1, 2+ 1] , then
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CABSIPN *
lhx — 2| = L lim max {’yl<(b5)p+[l)\|b5]> ) 72|1—)\|b5}

Y1 p—oo 2

Q1]1 — a[bd + Q2|(1 — A\)bd — abd|
+(1 = Q1 — Q2)abd,

4y, max{ Qq]b6 — (1 — A\)bS| 4+ Q2|1 — a||1 — A|bS
+(1 — Ql — Q2)0é|1 — )\|b(5,

Q166 + Q2|1 — A[bo

Q121 — a*b26% + Q2>|(1 — \)bd — abé]?
+ 30 Qi a?b?s? ’

F Y, Qa1 - AR
V QP08+ QoL - AP

7, max \/ Q12[b6 — a(1 — M)bo|* + Q22[1 — af?|1 — A|2b25>

Therefore,

Iy =2l = 2] = A ol1 = )
Qlll - a\bé + Q2|(1 — )\)b5 — ab5|

+(1 - Ql - QQ)abda

+y,max{ Q1|b6 — a(l — \)bd| + Qa|1 — |1 — A[bd
+(1 — Ql — Q2)0é|]. — )\|b(5,

Q166 + Q2|1 — A[bo

Q121 — a’b26% + Q22| (1 — \)bd — abs|®
3% Qa2 ’

+7, max Q12166 — a(1 — MN)bd|* + Q22%[1 — af*[1 — A[Pb26?
+ 30 Qi1 — APp26?

V QP08+ QoL - AP

Define
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Hence (ignoring some cases for «),

Thus,

where

b6 max {1 : %} +7,Q16b

+71Q20b + v, 0bv/ Q17 + Q-7

bémax{l, X2
=

(= Q1 — Q)b

(@17 + @2°)(a—1)?
+715b\/ F3 01202

27,Q100
bd max {1 , 1—?}

+71(0 = Q1 — Q2)db

(Q12 + Q22)(a —1)?
+")/15b\/ + ZZOZS Qk2a2

2’71@151)
Y1 (e — Q1)db

Q1*(a—1)° + Q)%
+v,0b oo
" \/ + 200l Qi

r<r~

b6 + 2v,Q16b + 27,Q20b  if X €
b6 + 27y, (a — Q1 — Q2)0b  if M €

ifAe[-%,0)andi<a<1

if A e [—%, 0) and a > 1

if A € [0, 1] and a < 2Q;% 4+ 2Q2%(1 — \)
if A€ [0, 1] and a > 2Q1 +2Q2(1 — X)
if A e (1, 2 +1] and o < 2Q°

ifAe (1, 2 +1] and o > 2Q,

oL O) andégagl

-2
-, O) and a > 1

27, Q10b if A€ [0, 1] and a < 2Q12 + 2Q2%(1 — \)
b0 + 2y, (e — Q1 — Q2)6b  if A€ [0, 1] and o > 2Q;1 +2Q2(1 — A)
27,Q16b if A e (1, 22 +1] and o < 2Q,°

279, (e — @Q1)db ifAe (1, 2 +1] and a > 2Q,

Note that, we can conclude that if o > 2 while A € [=%t, 1] then [[hy — z| is
minimized with unique minimizer such that its minimum value would be less than or
equal to bd+27, (a—Q1—Q2)db; on the other hand, if 2Q1% < a < 2Q12+2Q2%(1-))
while A € [0, 1] then ||hy — 2| is minimized with unique minimizer such that its
minimum value would be 2v,Q16b. Therefore, firstly defining ||z||;) by

||$||(j) =

1
Y1 P~ keN

5 = ¢l
im sup -y, Z—
Jj=k J

iy D Qi€ — agy|”
k=1

3 =

oo
+7 Z Qk |§*k - 045*3‘|
k=1
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and next taking the following properties into consideration:

S Qe — a6, P> S Qitle, - ag,
k=1 k=1

o if 2% = (£}) e Is the rearrangement of the sequence & = (&) e, €™ —
il > (Ofgj —&)" > ‘afj —¢&| for any k,j € N

then we have the following cases:

Subcase 2.1: Consider v, +v4 —t1 —t2 > 0.

Now, (for now, if we consider b € (0,1)) fix y € E of the form > 7, ¢,7, such
that > ° ¢, =1 witht, >0, Vn e N.

Then, using the definition of the equivalent norm

ly =z > Iy -zl

(t1 —o1)b+ (t2 —o2)b+ (t3 —03) + (ta —04) + ...,
(t2—Ug)b+(t3—03)+(t4—0'4)+...,
= (t370'3)+(t470'4)+...,
(ts —04) +(ts —05) + ...,
(t5—0'5)+(t6—0'6)+...,... 1)
> |O’1-|-02+(5—t1—t2+(t1—0’1)b+(t2—0’2)b‘
+71 (@1 — @) {(1 = b) [o1 + 02 + 6 —t1 — t2] + b3} — 7, Q2b [tz — o2
—71Q22 \tj—0j|—71Q3Z \tj—0j|—’)’1Q4Z [tj —ojl—...
j=3 j=3 j=4
2 |01+02+5*t17t2+(t170’1)1)4’(152*0’2)1)‘
+71 (@1 —a) {(1 = b) [o1 + 02+ — t1 — to] + b}
1 (1=Q1) Y [tj —ojl.
j=2
Therefore,
== = (14 2 a-@)a-b)

Hor — ) (1 + 7 (e — Q1)) (1 - )
2
o2 = t2) (10— Q) (L =b) = 7= (2 =01 — 1),

Subcase 2.1.1: 01 —t; > 0 and 09 —t5 > 0.
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Note that since 1 > § > 0, there exists ¢ > 1 such that § > < L and then choose b

sothatb<manda> “% (so a > 2). Then,

ly—d| -1~ > 6(1+ +71(a—Ql)(l—b)—b(1+2vl[a—Q1—Qz}))

1+4a
(o1 —t1) (T +71(a = Q1)) (1= b)
o2 —t2) L+ (@ = Q) (1=b) = 7= (2 =01 — 1)
Z (5+01—t1+02—t2)'yl2(1+a—Q1)(1—b)
2
_mtel o
1—1—4040(2 o1~ t)
> (6+o01—ti+os—t2)y” (1+a—Q1)(1-Db)
2
—1’:{46&(54-0'1—tl+0'2—t2)(2—01—t1)
2c
> (0401 —t1+02—t2)7 (1+a—Q1)(1—b)—1+4a
2
> ﬂj‘a(ﬁal—t1+02—t2)[a(1—b)—gc]
> 0.

Subcase 2.1.2: Consider 01 —t; > 0 and o9 — t9 < 0.
Note that 01 —t1 + 02 —t3 > 0 yields 01 — t1 > t3 — 02 > 0 and note:

ly—zll = lly =zl

(tl—01)b+(t2—02)b+(t3—O’3)+(t4—0'4)+...,
_ (ta—02)b+ (t3 —03) + (ta —04) + ...,

(ts—0o3) + (ta—o0a) +...,

(t4*0’4)+(t5*0’5)+...,...

(2)
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Hence,

ly—zl| > |or+o240—t1—ta+ (t1 —o1)b+ (t2 — 02)b|

" (@Qr—a)(1—=0)[o1 +02+ 0 —t1 — t2]
T 4 (Q1— )b + (Q2 — ) (ta — 32)b — abloy + 02 — £y — L]
11 Q2 It — o4l - 1QSZ tj—ojl = 11Qa > |t; — o
Jj=3 j=4
_716252 [t —oj| —...
Jj=5
Z 5+(1—b)[(0’1—t1)+(0’2—t2)}
(Oé*Ql)(lfb)[O'l+02+57t17t2]
+71 | +(a—Q1)bd + afta — 02)b
+Oéb[0’1 +02—t1—t2]
- 712 (270’1767t1)
1+4a
> 64+ (1=0)[(o1 —t1) + (02 — t2)]

(a—=Q1)(1—=0b)[or +02+0—t1 — o]
™ ( +(Oé—1621)b(5+04(;2 —;g)b ' ’ >

”/12
— 2—01—060—11).
1—|—4a( It 1)

Now, similiarly to the subcase 2.1.1 there exists ¢ > 1 such that § > % and then
choose b so that b < m and a > 25 (so a > 2).
Thus,

Y

+(1=b)[(o1 —t1) + (02 — t2)]
+%< (0= Q1) (1 =b)[o1 + 02+ —t1 —ta] )

ly — =l -

+(Oz — Ql)b(5+a(t2 — 0'2)b

712
—1+4a(2—01—5—t1)—(1+0¢—Q1—Q2)b5
> 5(1+171 +71(a—Q1)(1—b)—b(1+271[04—Q1—QzD)
+(o1 —t1) (147, (@ — Q1)) (1 - b)
+(ts — 02) [r1ab — (1+71(a— Q1) (1= b)] — —— (2= 01 — 11).

1+4a
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Therefore,

ly =2l - >
>
>
>
>

2
5<1+ 14 +7l(aQ1)(1b)b(1+271[04Q1QzD)

+(t2 —02) (1 +71(a = Q1)) (1-b)

2

H(t2 = o2 [nab = (L y1(a = QU) (1= b)] - 2= (2= 01 — 1)

cy? 1
5(1+71(04—Q1))(1—b)—m* (2—01—t1)

2

5y 2 (1 4a—Qu)(1—b)— 121142
7120‘
1+4a5[a(1 —b) —2¢
0.

Subcase 2.1.3: Consider 01 —t; < 0 and o9 — t9 > 0.
Then, since 01 —t1 + 09 —to > 0, 092 —ts > t1 — 01 > 0 and again by the same
assumptions of the previous two subcases; i.e., if § > % and if we choose b so that

b <
ly ==l =T~ =
>
>
>

St 3y and a > 2% (so o > 2), then we get

(14 12+ - @ a-b)

Ho1—t1) (1 +71(a = Q1)) (1 = b)
(02 - ﬁz) (I+71(a=@Q1))(1-0b)
(

1 —o1— 1) = (1+ 27, [a — Q1 — Qa))bé
+(t1

oy (o= Q) (1= ) — b1+ 23 o — Q1 — QzD)

4
o) [ 1+vl<a—cz1>><1—b>]
,y2
+(t1—o1) (147 (a=Q1)) (1 -b) — 1+14a (2 —201)
,YQ
$(1 T (@ = Q) =) -+ 2 - Q- Q2
H(t — o) n' o m’ (2 - 201)

14+4a 1+4a
2¢ 1
572 (1+a—Q1)(1—b)— 2152 (2 24y).




24 VEYSEL NEZIR AND SIDDIK SADE

Thus,
2 ’7120
ly =2l =% = oy (I+a=Q)1=b)~ ;o0 (2-201)
> 6y, (L a—Qu)(1—b) — —=
= M ! 1+ 4a
2
V1o
> AR
> 1+4a§[a(1 b) — 2¢]
> 0.

Subcase 2.2: Consider o1 + 09 —t1 — t9 < 0.
Subcase 2.2.1: Here, first we consider § < t1 — o1 + t3 — 09.
Since 1 —§ > t; — o1 +ty — o9 — I > 0, there exists d > 1 such that

744/49+16(3+2d
ti—o1+ts—02—06 > 1. Now, assume o > % (

4’)’12 ’Y12
b < ez (50 b < gootary)

the following inequalities.

so o > 2) and assume

. Then, we use another property of the norm and get

ly ==l = [y ==l

(t1—o1)b+ (t2 —02)b+ (I3 —03) + (ta —04) + ...,
(t2—02)b+ (t3 —03) + (ta —04) + ...,

= (t3 —03) +(ta —0o4) +...,
(ta—oa) +(ts —05) +...,

(t5—0’5)—|—(t6—0'6)+...,... 3)

> |(t1 —o1)b+ (ta —02)b+ (t3 —03) + (ta —04) + ... |
Q1 [(t1 —o1)b+ (t2 — 02)b] + Q2(ta — 02)b
71| H[Q1+ Q2 — o] Y stk — ok)
+Q3 20tk — k) + Qu 3y (e — o) + ...
> yi(a=Q1—Q2—1)|6 — (t1 — 01 +t2 — 02)]
+716(1 = Q1)(t1 — 01 + 12 — 02) — 71 Q2(t2 — 02)b
111 =Q1—Q2)(2— [0 +01+02+ 11 +12])
> y(a=Q1—Q2—1)[0 — (t1 — 01 + 12 — 02|

71 (1= Q1= Q2)(2— [0 + 01+ 02+ t1]).
Thus,

ly—z|-T~ > y(a—Q1—Q2—1)(t1 —o1+1t2 —02—90)

2
1114a(2 =0+ o1+ oz +t]) = b3(1+27[a — Q1 — Q2)).
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Hence,
ly =z =T > ~(a=Q1—Qzx—1)(t1 —01 412 — 02 — )
_ 27,2 1 [’Y 2 —b(80&2+40£+1)} 5
1+4a ' 1+4a 't
> y(a—Q1—Q2—1)(t1 —o1 +t2 — 02— 0)
2d7121
1+4ad
> 7i(a=Q1—Q2—1)(t1 —o1+1t2 — 02— )
2d’y12
- t) — ty—09 =0
1—|—4a(1 01+ 1ty — 02 )
2 la—Q1—Qa—1— 2d Yt — 01 +ty — 09 —6)
Z T\« 1 2 1+ 4o 1 1 2 2
1 2d
> (a—2-— - t— ty — g9 — 0
z (o TTda 1ida)i-ortt—02=9)
<t1—01+t2—0'2—5) 9
= 4o — T — (3 + 2d
1+4a [a a—(3+ )]
> 0.

Subcase 2.2.2: Consider § =t; — o1 +to — 09 > 0.
Then, assume 2Q;% < o < 2Q1? 4 2Q2%(1 — \) for A € [0,1] so the minimum
value for ||hy — z|| is T = 27, Q16b. Thus,

ly = 2ll gy + lly = =l ay
2

Y]

lly — =

0b + (@1 +Q1%)|1 — afdb
+71(Q2 + Q22)|(t2 — 02)b — adh]
+71(Qs + Q32 )adb
+71(Qu+ Qu ) IRy (1 — ox) — bl
+71(@s + Q5%) [3245 (8 — on) — add]
> % | +71(Qs + Q62) 132526 (te — k) — adb| + -
= +
b+71(Q1 4 Q12)6b
+71(Q2 +3Q2%)|t2 —o2[b
+71(Qa + Q4§) > key (tr — o)
+71(@s "‘3@55) > kzs (ti — o)
+71(Q6 + Q62) 2026 (ts — ar)| + -+

Hence,
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Thus,

ly ==l =T~ > b+
> 0.

adbry ary
S~ 27,66Q1 = 0b (71 r1- 2%@1)

Now, consider the final case:

Subcase 2.2.3: § >t; — 01 +t3 — 0oy > 0.

Then, consider the conditions like in the subcase 2.1.1; i.e., since § — (t; — o1 +
to — og) > 0, there exists e > 1 such that § — (t1 — 01 + to — 02) > % and then
choose b so that b < ﬁ and a > 2% (so @ > 2 and 2o > 25 — 1); then get

1-b
ly—=z-T" = fly—=zly -~
> |O'1+O'2-|—6—t1—tz+(t1—0’1)b+(t2—0’2)b|
+71 (@1 — @) {(1 = b) [o1 + 02 + 6 — t1 — t2] + b}
—71(1 = Q1) Z [t — 0] = b0(1 4 27, [a — Q1 — Q2])
j=2
> (I+mla=@Qi) @ =b)(6 = (tr — o1+t — 02))
v 2
_1+14a (2_01_t1)
+< "o, b(a—Q))5
1+ 4o 71 1
> (14+7fa=Q1]) (1 =0)(0 = (t1 — 01 +t2 — 02))
2
—121142 (6 — (t1 — 01 + ts — 02))
1—’:14a (71 — 2b(40” — 3a))
2
Z "}/12 |:(1+05Q1)(1b)1+e4a:| (57(t170'1+t270'2))
2
> ﬁj@ [(1 —b) —2¢] (6 — (t1 — o1 + to — 02))
> 0.

In conclusion, from all cases, we see that there exist constant 0 < C' < 1 and there
exist b € (0,C) and a > § such that when X is choosen to be in [—, 22 + 1], for
any y € E and for z € W\ E, ||y — z|| > T" where

I:= min lhx — =]
Ae[-FE, Z2+1]

Then, define



THE ABUNDANCE OF EQUIVALENT NORMS ON ¢y WITH FPP 27

Note that A C E is compact as it is the continuous image of compact set [ %+, % + 1]
and there exists unique A\g € A such that ||hy, — z|| is minimizer of T". Now we can
see that for h € T,

s(Th) = limsup Thf—z (k)

m

1

m ZZL:1 z®)
x) -

+ lim sup
T (R 2 )

IN

3=
Ms

limsup (|Th —T (

m

b
I

1

(since T is affine)

= lim ﬁfup ( i

m

1
< lim h——> a®
= neup m .

m

+ lim sup
m

3=

Ly g
m k=1
m(@) —

1 ZZL:I T (k)

m

= s(h).
Also, s(Th) = z+ ||z — Th|| and s(h) = z + ||z — h||. Hence,

|z =Th||<|lz—h| = |[lz—Th|=|z-nh|
= TheA.

Therefore, T'(A) C A and since T is continuous, Brouwer’s Fixed Point Theorem
[1] tells us that T has a fixed point such that h = hy, is the unique minimizer of
ly—2z|| : yeEand Th=h.

Hence, E has FPP (n.e.) as desired. O

Then, the following corollary is immediate such that its proof is similiar to the
proof of our main theorem above.

Corollary 5.3. Fizb € (0,1) and define the closed, bounded, conver subset E = E,
of co as in Example 5.1. Define the equivalent norm ||-||~ on ¢y as below:
For x = (&), € co and o > 0,

bS]
Sl

mwz—meZm

V1 P keN J

o0
+ysup > Qr|Ery — ot
JjEN h—1

where Y Tk 1, Yeyo > Vg1, VE €N,

x* = (£";)jen is the decreasing rearrangement of x,

> 1— v+ 2]a
S Q=1 Qi k0 Q> Qper, YheNand @ > L2l
Pt 1+ 2|a]
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Now, let v4 = ;. Then, there exist constants 0 < C <1 and o > % such that for
allb € (0,C) the set E defined as in the example above has the fixed point property
for |||~ -nonezpansive affine mappings.
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