Available online: June 04, 2017

ON SOME SUBCLASSES OF M-FOLD SYMMETRIC BI-UNIVALENT FUNCTIONS

ŞAHSENE ALTINKAYA AND SIBEL YALÇIN

Abstract

In this work, we introduce two new subclasses $S_{\Sigma_{m}}(\alpha, \lambda)$ and $S_{\Sigma_{m}}(\beta, \lambda)$ of Σ_{m} consisting of analytic and m-fold symmetric bi-univalent functions in the open unit disc U. Furthermore, for functions in each of the subclasses introduced in this paper, we obtain the coefficient bounds for $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$.

1. Introduction

Let A denote the class of functions f which are analytic in the open unit disc $U=\{z: z \in \mathbb{C}$ and $|z|<1\}$, with in the form

$$
\begin{equation*}
f(z)=z+\sum_{n=2}^{\infty} a_{n} z^{n} \tag{1.1}
\end{equation*}
$$

Let S be the subclass of A consisting of the form (1.1) which are also univalent in U. It is well known that every function $f \in S$ has an inverse f^{-1}, satisfying $f^{-1}(f(z))=z,(z \in U)$ and $f\left(f^{-1}(w)\right)=w,\left(|w|<r_{0}(f), r_{0}(f) \geq \frac{1}{4}\right)$, where

$$
\begin{equation*}
f^{-1}(w)=w-a_{2} w^{2}+\left(2 a_{2}^{2}-a_{3}\right) w^{3}-\left(5 a_{2}^{3}-5 a_{2} a_{3}+a_{4}\right) w^{4}+\cdots \tag{1.2}
\end{equation*}
$$

A function $f \in A$ is said to be bi-univalent in U if both f and f^{-1} are univalent in U. Let Σ denote the class of bi-univalent functions defined in the unit disc U. For a brief history and interesting examples in the class Σ, see [11], (see also [1], [3], [8], [9], [12], [15], [16], [20], [21]).

For each function $f \in S$, the function

$$
\begin{equation*}
h(z)=\sqrt[m]{f\left(z^{m}\right)} \quad(z \in U, \quad m \in \mathbb{N}) \tag{1.3}
\end{equation*}
$$

Received by the editors: January 27, 2017; Accepted: March 08, 2017.
2010 Mathematics Subject Classification. Primary 30C45; Secondary 30C50.
Key words and phrases. Analytic functions, m-fold symmetric bi-univalent functions, coefficient bounds.
is univalent and maps the unit disc U into a region with m-fold symmetry. A function is said to be m-fold symmetric (see [7], [10]) if it has the following normalized form:

$$
\begin{equation*}
f(z)=z+\sum_{k=1}^{\infty} a_{m k+1} z^{m k+1} \quad(z \in U, \quad m \in \mathbb{N}) \tag{1.4}
\end{equation*}
$$

We denote by S_{m} the class of m-fold symmetric univalent functions in U, which are normalized by the series expansion (1.4). In fact, the functions in the class S are one-fold symmetric.

Analogous to the concept of m-fold symmetric univalent functions, we here introduced the concept of m-fold symmetric bi-univalent functions. Each function $f \in \Sigma$ generates an m-fold symmetric bi-univalent function for each integer $m \in \mathbb{N}$. The normalized form of f is given as in (1.4) and the series expansion for f^{-1}, which has been recently proven by Srivastava et al. [13], is given as follows:

$$
\begin{align*}
g(w)= & w-a_{m+1} w^{m+1}+\left[(m+1) a_{m+1}^{2}-a_{2 m+1}\right] w^{2 m+1} \\
& -\left[\frac{1}{2}(m+1)(3 m+2) a_{m+1}^{3}-(3 m+2) a_{m+1} a_{2 m+1}+a_{3 m+1}\right] w^{3 m+1} \\
& +\cdots \tag{1.5}
\end{align*}
$$

where $f^{-1}=g$. We denote by Σ_{m} the class of m-fold symmetric bi-univalent functions in U. For $m=1$, the formula (1.5) coincides with the formula (1.2) of the class Σ. Some examples of m-fold symmetric bi-univalent functions are given as follows:

$$
\left(\frac{z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}, \quad\left[-\log \left(1-z^{m}\right)\right]^{\frac{1}{m}}, \quad\left[\frac{1}{2} \log \left(\frac{1+z^{m}}{1-z^{m}}\right)^{\frac{1}{m}}\right]
$$

Thus, following Altınkaya and Yalçın [3] constructed the subclasses $S_{\Sigma}(\lambda, \alpha)$ and $S_{\Sigma}(\lambda, \beta)$ of bi-univalent functions and obtained estimates on the coefficients $\left|a_{2}\right|$ and $\left|a_{3}\right|$ for functions in these new subclasses. Furthermore, in [4], Altınkaya and Yalçın obtained the second Hankel determinant, for the class $S_{\Sigma}(\lambda, \beta)$.

Recently, certain subclasses of m-fold bi-univalent functions class Σ_{m} similar to subclasses of introduced and investigated by Altınkaya and Yalçın [2], (see also [13], [14], [17], [18], [19]).

The aim of the this paper is to introduce two new subclasses of the function class Σ_{m} and derive estimates on the initial coefficients $\left|a_{m+1}\right|$ and $\left|a_{2 m+1}\right|$ for functions in these new subclasses of the function class Σ employing the techniques used earlier by Srivastava et al. [11] (see also [6]).

Let P denote the class of functions consisting of p, such that

$$
p(z)=1+p_{1} z+p_{2} z^{2}+\cdots=1+\sum_{n=1}^{\infty} p_{n} z^{n}
$$

which are regular in the open unit disc U and satisfy $\Re(p(z))>0$ for any $z \in U$. Here, $p(z)$ is called Caratheodory function [5].

We have to remember the following lemma so as to derive our basic results:
Lemma 1. (see [10]) If $p \in P$, then

$$
\left|p_{n}\right| \leq 2 \quad(n \in \mathbb{N}=\{1,2, \ldots\})
$$

2. Coefficient bounds for the function class $S_{\Sigma_{m}}(\alpha, \lambda)$

Definition 1. A function $f \in \Sigma_{m}$ is said to be in the class $S_{\Sigma_{m}}(\alpha, \lambda)$ if the following conditions are satisfied:

$$
\left|\arg \left[\frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\lambda}}\right)\right]\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1, \quad 0<\lambda \leq 1, \quad z \in U)
$$

and

$$
\left|\arg \left[\frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\lambda}}\right)\right]\right|<\frac{\alpha \pi}{2} \quad(0<\alpha \leq 1,0<\lambda \leq 1, w \in U)
$$

where the function $g=f^{-1}$.
Theorem 1. Let f given by (1.4) be in the class $S_{\Sigma_{m}}(\alpha, \lambda), 0<\alpha \leq 1$. Then

$$
\left|a_{m+1}\right| \leq \frac{4 \lambda \alpha}{m \sqrt{(1+\lambda)[4 \lambda \alpha+(1+\lambda)(1-\alpha)]+2 \alpha(1-\lambda)}}
$$

and

$$
\left|a_{2 m+1}\right| \leq \frac{2 \lambda \alpha}{m(1+\lambda)}+\frac{8(m+1) \lambda^{2} \alpha^{2}}{m^{2}(1+\lambda)^{2}}
$$

Proof. Let $f \in S_{\Sigma_{m}}(\alpha, \lambda)$. Then

$$
\begin{align*}
\frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\lambda}}\right) & =[p(z)]^{\alpha} \tag{2.1}\\
\frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\lambda}}\right) & =[q(w)]^{\alpha} \tag{2.2}
\end{align*}
$$

where $g=f^{-1}, p, q$ in P and have the forms

$$
p(z)=1+p_{m} z^{m}+p_{2 m} z^{2 m}+\cdots
$$

and

$$
q(w)=1+q_{m} w^{m}+q_{2 m} w^{2 m}+\cdots
$$

Now, equating the coefficients in (2.1) and (2.2), we get

$$
\begin{gather*}
\frac{m(1+\lambda)}{2 \lambda} a_{m+1}=\alpha p_{m} \tag{2.3}\\
\frac{m(1+\lambda)}{2 \lambda}\left(2 a_{2 m+1}-a_{m+1}^{2}\right)+\frac{m^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2}=\alpha p_{2 m}+\frac{\alpha(\alpha-1)}{2} p_{m}^{2}, \tag{2.4}
\end{gather*}
$$

and

$$
\begin{gather*}
-\frac{m(1+\lambda)}{2 \lambda} a_{m+1}=\alpha q_{m} \tag{2.5}\\
\frac{m(1+\lambda)}{2 \lambda}\left[(2 m+1) a_{m+1}^{2}-2 a_{2 m+1}\right]+\frac{m^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2}=\alpha q_{2 m}+\frac{\alpha(\alpha-1)}{2} q_{m}^{2} \tag{2.6}
\end{gather*}
$$

Making use of (2.3) and (2.5), we obtain

$$
\begin{equation*}
p_{m}=-q_{m} \tag{2.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{m^{2}(1+\lambda)^{2}}{2 \lambda^{2}} a_{m+1}^{2}=\alpha^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{2.8}
\end{equation*}
$$

Also from (2.4), (2.6) and (2.8) we have

$$
\begin{aligned}
{\left[\frac{m^{2}(1+\lambda)}{\lambda}+\frac{m^{2}(1-\lambda)}{2 \lambda^{2}}\right] a_{m+1}^{2} } & =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}+q_{m}^{2}\right) \\
& =\alpha\left(p_{2 m}+q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2} \frac{m^{2}(1+\lambda)^{2}}{2 \lambda^{2} \alpha^{2}} a_{m+1}^{2}
\end{aligned}
$$

Therefore, we have

$$
\begin{equation*}
a_{m+1}^{2}=\frac{4 \lambda^{2} \alpha^{2}\left(p_{2 m}+q_{2 m}\right)}{m^{2}\{(1+\lambda)[4 \lambda \alpha+(1+\lambda)(1-\alpha)]+2 \alpha(1-\lambda)\}} . \tag{2.9}
\end{equation*}
$$

Applying Lemma 1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \frac{4 \lambda \alpha}{m \sqrt{(1+\lambda)[4 \lambda \alpha+(1+\lambda)(1-\alpha)]+2 \alpha(1-\lambda)}}
$$

Next, in order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (2.6) from (2.4), we get

$$
\frac{2 m(1+\lambda)}{\lambda} a_{2 m+1}-\frac{m(m+1)(1+\lambda)}{\lambda} a_{m+1}^{2}=\alpha\left(p_{2 m}-q_{2 m}\right)+\frac{\alpha(\alpha-1)}{2}\left(p_{m}^{2}-q_{m}^{2}\right)
$$

Then, in view of (2.7) and (2.8), and applying Lemma 1 for the coefficients $p_{2 m}, p_{m}$ and $q_{2 m}, q_{m}$, we have

$$
\left|a_{2 m+1}\right| \leq \frac{2 \lambda \alpha}{m(1+\lambda)}+\frac{8(m+1) \lambda^{2} \alpha^{2}}{m^{2}(1+\lambda)^{2}}
$$

which completes the proof of Theorem 1.

3. Coefficient bounds for the function Class $S_{\Sigma_{m}}(\beta, \lambda)$

Definition 2. A function $f \in \Sigma_{m}$ given by (1.4) is said to be in the class $S_{\Sigma_{m}}(\beta, \lambda)$ if the following conditions are satisfied:

$$
\begin{equation*}
\Re\left\{\frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\lambda}}\right)\right\}>\beta, \quad(0 \leq \beta<1, \quad 0<\lambda \leq 1, \quad z \in U) \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\Re\left\{\frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\lambda}}\right)\right\}>\beta, \quad(0 \leq \beta<1, \quad 0<\lambda \leq 1, \quad w \in U) \tag{3.2}
\end{equation*}
$$

where the function $g=f^{-1}$.
Theorem 2. Let f given by (1.4) be in the class $S_{\Sigma_{m}}(\beta, \lambda), 0 \leq \beta<1$. Then

$$
\left|a_{m+1}\right| \leq \frac{2 \lambda}{m} \sqrt{\frac{2(1-\beta)}{2 \lambda^{2}+\lambda+1}}
$$

and

$$
\left|a_{2 m+1}\right| \leq \frac{8(m+1) \lambda^{2}(1-\beta)^{2}}{m^{2}(1+\lambda)^{2}}+\frac{2 \lambda(1-\beta)}{m(1+\lambda)}
$$

Proof. Let $f \in S_{\Sigma_{m}}(\beta, \lambda)$. Then

$$
\begin{align*}
& \frac{1}{2}\left(\frac{z f^{\prime}(z)}{f(z)}+\left(\frac{z f^{\prime}(z)}{f(z)}\right)^{\frac{1}{\lambda}}\right)=\beta+(1-\beta) p(z) \tag{3.3}\\
& \frac{1}{2}\left(\frac{w g^{\prime}(w)}{g(w)}+\left(\frac{w g^{\prime}(w)}{g(w)}\right)^{\frac{1}{\lambda}}\right)=\beta+(1-\beta) q(w) \tag{3.4}
\end{align*}
$$

where $p, q \in P$ and $g=f^{-1}$.
It follows from (3.3) and (3.4) that

$$
\begin{gather*}
\frac{m(1+\lambda)}{2 \lambda} a_{m+1}=(1-\beta) p_{m} \tag{3.5}\\
\frac{m(1+\lambda)}{2 \lambda}\left(2 a_{2 m+1}-a_{m+1}^{2}\right)+\frac{m^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2}=(1-\beta) p_{2 m} \tag{3.6}
\end{gather*}
$$

and

$$
\begin{gather*}
-\frac{m(1+\lambda)}{2 \lambda} a_{m+1}=(1-\beta) q_{m} \tag{3.7}\\
\frac{m(1+\lambda)}{2 \lambda}\left[(2 m+1) a_{m+1}^{2}-2 a_{2 m+1}\right]+\frac{m^{2}(1-\lambda)}{4 \lambda^{2}} a_{m+1}^{2}=(1-\beta) q_{2 m} \tag{3.8}
\end{gather*}
$$

Then, by making use of (3.5) and (3.7), we get

$$
\begin{equation*}
p_{m}=-q_{m} \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{m^{2}(1+\lambda)^{2}}{2 \lambda^{2}} a_{m+1}^{2}=(1-\beta)^{2}\left(p_{m}^{2}+q_{m}^{2}\right) \tag{3.10}
\end{equation*}
$$

Adding (3.6) and (3.8), we have

$$
\left[\frac{m^{2}(1+\lambda)}{\lambda}+\frac{m^{2}(1-\lambda)}{2 \lambda^{2}}\right] a_{m+1}^{2}=(1-\beta)\left(p_{2 m}+q_{2 m}\right)
$$

Therefore, we obtain

$$
a_{m+1}^{2}=\frac{2 \lambda^{2}(1-\beta)\left(p_{2 m}+q_{2 m}\right)}{m^{2}\left(2 \lambda^{2}+\lambda+1\right)}
$$

Applying Lemma 1 for the coefficients $p_{2 m}$ and $q_{2 m}$, we obtain

$$
\left|a_{m+1}\right| \leq \frac{2 \lambda}{m} \sqrt{\frac{2(1-\beta)}{2 \lambda^{2}+\lambda+1}}
$$

Next, in order to find the bound on $\left|a_{2 m+1}\right|$, by subtracting (3.8) from (3.6), we obtain

$$
\frac{2 m(1+\lambda)}{\lambda} a_{2 m+1}-\frac{m(m+1)(1+\lambda)}{\lambda} a_{m+1}^{2}=(1-\beta)\left(p_{2 m}-q_{2 m}\right)
$$

Then, in view of (3.9) and (3.10), applying Lemma 1 for the coefficients $p_{2 m}, p_{m}$ and $q_{2 m}, q_{m}$, we have

$$
\left|a_{2 m+1}\right| \leq \frac{8(m+1) \lambda^{2}(1-\beta)^{2}}{m^{2}(1+\lambda)^{2}}+\frac{2 \lambda(1-\beta)}{m(1+\lambda)}
$$

which completes the proof of Theorem 2.
If we set $\lambda=1$ in Theorems 1 and 2 , then the classes $S_{\Sigma_{m}}(\alpha, \lambda)$ and $S_{\Sigma_{m}}(\beta, \lambda)$ reduce to the classes $S_{\Sigma_{m}}^{\alpha}$ and $S_{\Sigma_{m}}^{\beta}$ and thus, we obtain the following corollaries:

Corollary 1. (see [2]) Let f given by (1.4) be in the class $S_{\Sigma_{m}}^{\alpha}(0<\alpha \leq 1)$. Then

$$
\left|a_{m+1}\right| \leq \frac{2 \alpha}{m \sqrt{\alpha+1}}
$$

and

$$
\left|a_{2 m+1}\right| \leq \frac{\alpha}{m}+\frac{2(m+1) \alpha^{2}}{m^{2}}
$$

Corollary 2. (see [2]) Let f given by (1.4) be in the class $S_{\Sigma_{m}}^{\beta}(0 \leq \beta<1)$. Then

$$
\left|a_{m+1}\right| \leq \frac{\sqrt{2(1-\beta)}}{m}
$$

and

$$
\left|a_{2 m+1}\right| \leq \frac{2(m+1)(1-\beta)^{2}}{m^{2}}+\frac{1-\beta}{m}
$$

Remark 1. For one-fold symmetric bi-univalent functions, if we put $\lambda=1$ in our Theorems, then we obtain the Corollary 1 and Corollary 2 which were proven earlier by Murugunsundaramoorthy et al. [9].

References

[1] Altınkaya, Ş. and Yalçın, S., Coefficient Estimates for Two New Subclasses of Bi-univalent Functions with respect to Symmetric Points, Journal of Function Spaces Article ID 145242, (2015), 5 pp.
[2] Altınkaya, Ş. and Yalçın, S., Coefficient bounds for certain subclasses of m-fold symmetric bi-univalent functions, Journal of Mathematics Article ID 241683, (2015), 5 pp.
[3] Altınkaya, S. and Yalçın, S., Coefficient bounds for certain subclasses of bi-univalent functions, Creat. Math. Inform. 24 (2015), 101-106.
[4] Altınkaya, Ş. and Yalçın, S., Construction of second Hankel determinant for a new subclass of bi-univalent functions, Turk. J. Math. (2017), to appear.
[5] Duren, P. L., Univalent Functions, Grundlehren der Mathematischen Wissenschaften, Springer, New York, USA, 259, 1983.
[6] Frasin, B. A. and Aouf, M. K., New subclasses of bi-univalent functions, Appl. Math. Lett. 24 (2011), 1569-1573.
[7] Koepf, W., Coefficient of symmetric functions of bounded boundary rotations, Proc. Amer. Math. Soc. 105 (1989), 324-329.
[8] Magesh, N. and Yamini, J., Coefficient bounds for certain subclasses of bi-univalent functions, Int. Math. Forum, 8 (27) (2013), 1337-1344.
[9] Murugusundaramoorty, G., Magesh N., Prameela, V., Coefficient bounds for certain classes of bi-univalent function, Abstr. Appl. Anal. Article ID 573017, (2013), 3 pp.
[10] Pommerenke, Ch., Univalent Functions, Vandenhoeck \& Ruprecht, Göttingen, 1975.
[11] Srivastava, H. M., Mishra, A. K. and Gochhayat, P., Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett. 23 (2010), 1188-1192.
[12] Srivastava, H. M., Bulut, S., Çağlar, M., Yağmur, N., Coefficient estimates for a general subclass of analytic and bi-univalent functions, Filomat 27 (2013), 831-842.
[13] Srivastava, H. M., Sivasubramanian, S., Sivakumar, R., Initial coefficient bounds for a subclass of m-fold symmetric bi-univalent functions, Tbilisi Math. J. 7 (2014), 1-10.
[14] Srivastava, H. M., Gaboury, S., Ghanim, F., Coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Universitatis Apulensis 41 (2015), 153-164.
[15] Srivastava, H. M., Sümer Eker, S., Ali, R. M., Coefficient bounds for a certain class of analytic and bi-univalent functions, Filomat 29 (2015), 1839-1845.
[16] Srivastava, H. M., Bansal, D., Coefficient estimates for a subclass of analytic and bi-univalent functions, J. Egyptian Math. Soc. 23 (2015), 242-246.
[17] Srivastava, H. M., Gaboury, S., Ghanim, F., Initial coefficient estimates for some subclasses of m-fold symmetric bi-univalent functions, Acta Mathematica Scientia 36B (2016), 863-871.
[18] Sümer Eker, S., Coefficient bounds for subclasses of m-fold symmetric bi-univalent functions, Turk. J. Math. 40 (2016), 641-646.
[19] Tang, H., Srivastava, H. M., Sivasubramanian, S., Gurusamy, P., The Fekete-Szegö functional problems for some subclasses of m-fold symmetric bi-univalent functions, Journal of Mathematical Inequalities 10 (2016), 1063-1092.
[20] Xu, Q.-H., Gui, Y.-C., Srivastava, H. M., Coefficient estimates for a certain subclass of analytic and bi-univalent functions, Appl. Math. Lett. 25 (2012), 990-994.
[21] Xu, Q.-H., Xiao, H.-G., Srivastava, H. M., A certain general subclass of analytic and biunivalent functions and associated coefficient estimates problems, Appl. Math. Comput. 218 (2012), 11461-11465.

Current address: Şahsene Altınkaya: Department of Mathematics, Faculty of Arts and Science, Uludag University, 16059 Bursa, Turkey.

E-mail address: sahsene@uludag.edu.tr
Current address: Sibel Yalçın: Department of Mathematics, Faculty of Arts and Science, Uludag University, 16059 Bursa, Turkey.

E-mail address: syalcin@uludag.edu.tr

