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ON SOME SUBCLASSES OF M -FOLD SYMMETRIC
BI-UNIVALENT FUNCTIONS

ŞAHSENE ALTINKAYA AND SIBEL YALÇIN

Abstract. In this work, we introduce two new subclasses SΣm (α, λ) and
SΣm (β, λ) of Σm consisting of analytic and m -fold symmetric bi-univalent
functions in the open unit disc U . Furthermore, for functions in each of the
subclasses introduced in this paper, we obtain the coeffi cient bounds for |am+1|
and |a2m+1| .

1. Introduction

Let A denote the class of functions f which are analytic in the open unit disc
U = {z : z ∈ C and |z| < 1} , with in the form

f(z) = z +

∞∑
n=2

anz
n. (1.1)

Let S be the subclass of A consisting of the form (1.1) which are also univalent
in U. It is well known that every function f ∈ S has an inverse f−1, satisfying
f−1 (f (z)) = z, (z ∈ U) and f

(
f−1 (w)

)
= w,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
, where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. Let Σ denote the class of bi-univalent functions defined in the unit disc U.
For a brief history and interesting examples in the class Σ, see [11], (see also [1],
[3], [8], [9], [12], [15], [16], [20], [21]).
For each function f ∈ S, the function

h(z) = m
√
f(zm) (z ∈ U, m ∈ N) (1.3)
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is univalent and maps the unit disc U into a region with m-fold symmetry. A func-
tion is said to be m-fold symmetric (see [7], [10]) if it has the following normalized
form:

f(z) = z +

∞∑
k=1

amk+1z
mk+1 (z ∈ U, m ∈ N). (1.4)

We denote by Sm the class of m-fold symmetric univalent functions in U , which
are normalized by the series expansion (1.4). In fact, the functions in the class S
are one-fold symmetric.
Analogous to the concept of m-fold symmetric univalent functions, we here in-

troduced the concept of m-fold symmetric bi-univalent functions. Each function
f ∈ Σ generates an m-fold symmetric bi-univalent function for each integer m ∈ N.
The normalized form of f is given as in (1.4) and the series expansion for f−1,
which has been recently proven by Srivastava et al. [13], is given as follows:

g(w) = w − am+1w
m+1 +

[
(m+ 1)a2

m+1 − a2m+1

]
w2m+1

−
[

1

2
(m+ 1)(3m+ 2)a3

m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
w3m+1

+ · · · (1.5)

where f−1 = g. We denote by Σm the class of m-fold symmetric bi-univalent func-
tions in U . For m = 1, the formula (1.5) coincides with the formula (1.2) of the
class Σ. Some examples of m-fold symmetric bi-univalent functions are given as
follows: (

zm

1− zm

) 1
m

, [− log(1− zm)]
1
m ,

[
1

2
log

(
1 + zm

1− zm

) 1
m

]
.

Thus, following Altınkaya and Yalçın [3] constructed the subclasses SΣ(λ, α)
and SΣ(λ, β) of bi-univalent functions and obtained estimates on the coeffi cients
|a2| and |a3| for functions in these new subclasses. Furthermore, in [4], Altınkaya
and Yalçın obtained the second Hankel determinant, for the class SΣ(λ, β).
Recently, certain subclasses of m-fold bi-univalent functions class Σm similar to

subclasses of introduced and investigated by Altınkaya and Yalçın [2], (see also [13],
[14], [17], [18], [19]).
The aim of the this paper is to introduce two new subclasses of the function class

Σm and derive estimates on the initial coeffi cients |am+1| and |a2m+1| for functions
in these new subclasses of the function class Σ employing the techniques used earlier
by Srivastava et al. [11] (see also [6]).
Let P denote the class of functions consisting of p, such that

p(z) = 1 + p1z + p2z
2 + · · · = 1 +

∞∑
n=1

pnz
n,
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which are regular in the open unit disc U and satisfy <(p(z)) > 0 for any z ∈ U .
Here, p(z) is called Caratheodory function [5].
We have to remember the following lemma so as to derive our basic results:

Lemma 1. (see [10]) If p ∈ P , then
|pn| ≤ 2 (n ∈ N = {1, 2, . . .}) .

2. Coefficient bounds for the function class SΣm(α, λ)

Definition 1. A function f ∈ Σm is said to be in the class SΣm(α, λ) if the
following conditions are satisfied:∣∣∣∣arg

[
1
2

(
zf ′(z)
f(z) +

(
zf ′(z)
f(z)

) 1
λ

)]∣∣∣∣ < απ

2
(0 < α ≤ 1, 0 < λ ≤ 1, z ∈ U)

and ∣∣∣∣arg

[
1
2

(
wg′(w)
g(w) +

(
wg′(w)
g(w)

) 1
λ

)]∣∣∣∣ < απ

2
(0 < α ≤ 1, 0 < λ ≤ 1, w ∈ U)

where the function g = f−1.

Theorem 1. Let f given by (1.4) be in the class SΣm(α, λ), 0 < α ≤ 1. Then

|am+1| ≤
4λα

m
√

(1 + λ) [4λα+ (1 + λ)(1− α)] + 2α(1− λ)

and

|a2m+1| ≤
2λα

m (1 + λ)
+

8(m+ 1)λ2α2

m2(1 + λ)2
.

Proof. Let f ∈ SΣm(α, λ). Then

1

2

(
zf ′(z)

f(z)
+

(
zf ′(z)

f(z)

) 1
λ

)
= [p(z)]

α (2.1)

1

2

(
wg′(w)

g(w)
+

(
wg′(w)

g(w)

) 1
λ

)
= [q(w)]

α (2.2)

where g = f −1, p, q in P and have the forms

p(z) = 1 + pmz
m + p2mz

2m + · · ·
and

q(w) = 1 + qmw
m + q2mw

2m + · · · .
Now, equating the coeffi cients in (2.1) and (2.2), we get

m(1 + λ)

2λ
am+1 = αpm, (2.3)

m(1 + λ)

2λ

(
2a2m+1 − a2

m+1

)
+
m2(1− λ)

4λ2 a2
m+1 = αp2m + α(α−1)

2 p2
m, (2.4)
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and

−m(1 + λ)

2λ
am+1 = αqm, (2.5)

m(1 + λ)

2λ

[
(2m+ 1)a2

m+1 − 2a2m+1

]
+
m2(1− λ)

4λ2 a2
m+1 = αq2m + α(α−1)

2 q2
m. (2.6)

Making use of (2.3) and (2.5), we obtain

pm = −qm. (2.7)

and
m2(1 + λ)2

2λ2 a2
m+1 = α2(p2

m + q2
m). (2.8)

Also from (2.4), (2.6) and (2.8) we have[
m2(1+λ)

λ + m2(1−λ)
2λ2

]
a2
m+1 = α (p2m + q2m) + α(α−1)

2 (p2
m + q2

m).

= α (p2m + q2m) + α(α−1)
2

m2(1+λ)2

2λ2α2
a2
m+1.

Therefore, we have

a2
m+1 =

4λ2α2 (p2m + q2m)

m2 {(1 + λ) [4λα+ (1 + λ)(1− α)] + 2α(1− λ)} . (2.9)

Applying Lemma 1 for the coeffi cients p2m and q2m, we obtain

|am+1| ≤
4λα

m
√

(1 + λ) [4λα+ (1 + λ)(1− α)] + 2α(1− λ)
.

Next, in order to find the bound on |a2m+1| , by subtracting (2.6) from (2.4), we
get

2m(1 + λ)

λ
a2m+1 −

m(m+ 1)(1 + λ)

λ
a2
m+1 = α (p2m − q2m) + α(α−1)

2 (p2
m − q2

m).

Then, in view of (2.7) and (2.8) , and applying Lemma 1 for the coeffi cients p2m, pm
and q2m, qm , we have

|a2m+1| ≤
2λα

m (1 + λ)
+

8(m+ 1)λ2α2

m2(1 + λ)2
.

which completes the proof of Theorem 1. �

3. Coefficient bounds for the function class SΣm(β, λ)

Definition 2. A function f ∈ Σm given by (1.4) is said to be in the class SΣm(β, λ)
if the following conditions are satisfied:

<
{

1

2

(
zf ′(z)

f(z)
+

(
zf ′(z)

f(z)

) 1
λ

)}
> β, (0 ≤ β < 1, 0 < λ ≤ 1, z ∈ U) (3.1)
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and

<
{

1

2

(
wg′(w)

g(w)
+

(
wg′(w)

g(w)

) 1
λ

)}
> β, (0 ≤ β < 1, 0 < λ ≤ 1, w ∈ U) .

(3.2)
where the function g = f−1.

Theorem 2. Let f given by (1.4) be in the class SΣm(β, λ), 0 ≤ β < 1. Then

|am+1| ≤
2λ

m

√
2 (1− β)

2λ2 + λ+ 1

and

|a2m+1| ≤
8(m+ 1)λ2 (1− β)

2

m2(1 + λ)2
+

2λ (1− β)

m (1 + λ)
.

Proof. Let f ∈ SΣm(β, λ). Then

1

2

(
zf ′(z)

f(z)
+

(
zf ′(z)

f(z)

) 1
λ

)
= β + (1− β)p(z) (3.3)

1

2

(
wg′(w)

g(w)
+

(
wg′(w)

g(w)

) 1
λ

)
= β + (1− β)q(w) (3.4)

where p, q ∈ P and g = f −1.
It follows from (3.3) and (3.4) that

m(1 + λ)

2λ
am+1 = (1− β)pm, (3.5)

m(1 + λ)

2λ

(
2a2m+1 − a2

m+1

)
+
m2(1− λ)

4λ2 a2
m+1 = (1− β)p2m, (3.6)

and

−m(1 + λ)

2λ
am+1 = (1− β)qm, (3.7)

m(1 + λ)

2λ

[
(2m+ 1)a2

m+1 − 2a2m+1

]
+
m2(1− λ)

4λ2 a2
m+1 = (1− β)q2m. (3.8)

Then, by making use of (3.5) and (3.7), we get

pm = −qm. (3.9)

and
m2(1 + λ)2

2λ2 a2
m+1 = (1− β)2(p2

m + q2
m). (3.10)

Adding (3.6) and (3.8), we have[
m2(1 + λ)

λ
+
m2 (1− λ)

2λ2

]
a2
m+1 = (1− β) (p2m + q2m) .
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Therefore, we obtain

a2
m+1 =

2λ2(1− β) (p2m + q2m)

m2(2λ2 + λ+ 1)
.

Applying Lemma 1 for the coeffi cients p2m and q2m, we obtain

|am+1| ≤
2λ

m

√
2 (1− β)

2λ2 + λ+ 1
.

Next, in order to find the bound on |a2m+1| , by subtracting (3.8) from (3.6), we
obtain

2m(1 + λ)

λ
a2m+1 −

m(m+ 1)(1 + λ)

λ
a2
m+1 = (1− β) (p2m − q2m) .

Then, in view of (3.9) and (3.10) , applying Lemma 1 for the coeffi cients p2m, pm
and q2m, qm, we have

|a2m+1| ≤
8(m+ 1)λ2 (1− β)

2

m2(1 + λ)2
+

2λ (1− β)

m (1 + λ)
.

which completes the proof of Theorem 2. �

If we set λ = 1 in Theorems 1 and 2, then the classes SΣm(α, λ) and SΣm(β, λ)

reduce to the classes SαΣm and S
β
Σm
and thus, we obtain the following corollaries:

Corollary 1. (see [2]) Let f given by (1.4) be in the class SαΣm (0 < α ≤ 1).
Then

|am+1| ≤
2α

m
√
α+ 1

and

|a2m+1| ≤
α

m
+

2(m+ 1)α2

m2
.

Corollary 2. (see [2]) Let f given by (1.4) be in the class SβΣm (0 ≤ β < 1). Then

|am+1| ≤
√

2 (1− β)

m

and

|a2m+1| ≤
2(m+ 1)(1− β)2

m2
+

1− β
m

.

Remark 1. For one-fold symmetric bi-univalent functions, if we put λ = 1 in our
Theorems, then we obtain the Corollary 1 and Corollary 2 which were proven earlier
by Murugunsundaramoorthy et al. [9].
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Current address : Şahsene Altınkaya: Department of Mathematics, Faculty of Arts and Science,
Uludag University, 16059 Bursa, Turkey.

E-mail address : sahsene@uludag.edu.tr
Current address : Sibel Yalçın: Department of Mathematics, Faculty of Arts and Science,

Uludag University, 16059 Bursa, Turkey.
E-mail address : syalcin@uludag.edu.tr


