
Commun.Fac.Sci.Univ.Ank.Series A1
Volume 67, Number 1, Pages 46—59 (2018)
DOI: 10.1501/Commua1_0000000829
ISSN 1303—5991

Available online: June 08, 2017

http://communications.science.ankara.edu.tr/index.php?series=A1

ON APPROXIMATION BY NÖRLUND AND RIESZ
SUBMETHODS IN VARIABLE EXPONENT LEBESGUE SPACES

UĞUR DEG̃ER

Abstract. In this study the results on the degree of approximation by the
Nörlund and the Riesz submethods of the partial sums of their Fourier series of
functions where in the variable exponent Lebesgue spaces are given by weak-
ening the monotonicity conditions of sequences in the submethods. Therefore
the results given in Güven and İsrafilov (2010) are generalized according to
both the monotonicity conditions and both the methods.

1. Background of the Problem and Some Notations

One of the basic problems in the theory of approximation of functions and the
theory of Fourier series is to examine the degree of approximation in given function
spaces by some certain methods. In this sense, one of the important results encoun-
tered belongs to Quade in [1]. He solved a problem related with approximation by
trigonometric polynomials on conjecture stated without proof by G. H. Hardy and
J. E. Littlewood in 1928. Before giving the results of Quade, we need to some
definitions.
Assume that f is a 2π periodic function and f ∈ L1(0, 2π) where L1(0, 2π)

consists of all measurable functions. Moreover, let

f ∼ ao
2

+

∞∑
k=1

(ak cos kx+ bk sin kx) ≡
∞∑
k=0

Ak(f ;x) (1.1)

be the Fourier series of a function f ∈ L1 and σn(f) denote the n-th term of the
(C, 1) transform the partial sums of Fourier series of a 2π periodic function f .
Furthermore, a function f belongs to the Lip(α, p) class if ωp(δ, f) = O(δα),

where
ωp(δ, f) = sup

|t|≤δ
||f(·+ t)− f(·)||p 0 < α ≤ 1; p ≥ 1,
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is the integral modulus of continuity of f ∈ Lp where ‖.‖p denote the Lp-norm with
respect to x defined as

‖f‖p :=

{
1

2π

∫ 2π

0

|f(x)|p dx
} 1

p

.

Quade, in [1], has shown that if f is a function in the class Lip(α, p), (0 < α ≤ 1,
p ≥ 1), then for either p > 1 and 0 < α ≤ 1 or p = 1 and 0 < α < 1,

‖f − σn‖p = O(n−α). (1.2)

He also showed that if p = α = 1, then

‖f − σn‖1 = O(n−1 log(n+ 1)).

There are several generalizations of (1.2) for p > 1 (see [2]-[5] and [8] ). In 2002,
Chandra gave some attractive results including sharper estimates than some results
of Quade by Nörlund and Riesz methods. Therefore, the work of Quade [1] was
improved by Chandra [15] for more general trigonometrical polynomials than σn(f)
to yield the same estimate as in (1.2). In 2005, Leindler[17] weakened the conditions
of monotonicity given by Chandra according to Nörlund and Riesz methods. We
know that Nörlund and Riesz methods generalize the well known Cesáro method
which has an important place in this theory. Naturally, there arises the question
how we can generalize these approximation methods. There are some possibilities in
this way. First it can be generalized by taking into account summability methods.
Secondly, it can be weakened the conditions of monotonicity owing to the sequences
in Nörlund and Riesz methods. The other one can be generalized with regard to
the given function spaces. In this work we shall consider these conditions and move
this direction.

1.1. Nörlund and Riesz Submethods. Suppose that {λ (n)}∞n=1 is a strictly
increasing sequence of positive integers. The Cesáro submethod Cλ is defined as

(Cλx)n =
1

λ (n)

λ(n)∑
k=1

xk, (n = 1, 2, ...) ,

where (xk) is a sequence of a real or complex numbers. Therefore, the Cλ-method
yields a subsequence of the Cesáro method C1, and hence it is regular for any λ.
Note that Cλ is obtained by deleting a set of rows from Cesáro matrix. The basic
properties of Cλ-method can be found in [6] and [12]. By considering this method
the following notions was given in [19]: Let (pn) be a positive sequence of real
numbers.

Nλ
n (f ;x) =

1

Pλ(n)

λ(n)∑
m=0

pλ(n)−msm(f ;x),

Rλn(f ;x) =
1

Pλ(n)

λ(n)∑
m=0

pmsm(f ;x),
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where

sn(f ;x) =
1

π

∫ 2π

0

f (x+ t)Dn(t) dt,

and

Dn(t) =
sin(n+ 1

2 )t

2 sin
(
t
2

) .

Also,

Pλ(n) = p0 + p1 + p2 + ...+ pλ(n) 6= 0 (n ≥ 0),

and by convention p−1 = P−1 = 0. In case λ(n) = n, the methods Nλ
n (f ;x) and

Rλn(f ;x) give us classical known Nörlund and Riesz means. Provided that pn = 1
for all (n ≥ 0) both of them yield

σλn(f ;x) =
1

λ (n) + 1

λ(n)∑
m=0

sm(f ;x).

In addition to this, if λ(n) = n for σλn(f ;x), then it coincides with Cesáro method
C1.

1.2. Some Sequence Classes. The monotonicity conditions on the sequence (pn)
in Nörlund and Riesz submethods are quite important in determination of the
degree of approach. So let us recall the definitions of some classes of numerical
sequences discussed in detail in [13], [17] and [20]. Let u := (un) be a nonnegative

sequence and C := (Cn) = 1
n+1

n∑
m=0

um.

A sequence u is called almost monotone decreasing (briefly u ∈ AMDS) (in-
creasing (briefly u ∈ AMIS)), if there exists a constant K := K(u) which only
depends on u such that

un ≤ Kum (Kun ≥ um)

for all n ≥ m. If C ∈ AMDS (C ∈ AMIS), then we say that the sequence u
is almost monotone decreasing (increasing) mean sequence and denoted by C ∈
AMDMS (C ∈ AMIMS). A sequence u tending to zero is called a rest bounded
variation sequence (RBV S) (rest bounded variation mean sequence (RBVMS)),
if it has the property

∞∑
m=k

|∆um| ≤ K(u)uk (

∞∑
m=k

|∆Cm| ≤ K(u)Ck)

for all natural numbers k where ∆um = um − um+1. Leindler first raised the
rest bounded variation condition in [13]. A sequence u is called a head bounded
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variation sequence (HBV S) (head bounded variation mean sequence (HBVMS)),
if it has the property

k−1∑
m=0

|∆um| ≤ K(u)uk (

k−1∑
m=0

|∆Cm| ≤ K(u)Ck)

for all natural numbers k, or only for all k ≤ N if the sequence u has only finite
nonzero terms and the last nonzero term uN . It is clear that the following inclusions
are true for the above classes of numerical sequences:

RBV S ⊂ AMDS , RBVMS ⊂ AMDMS

and

HBV S ⊂ AMIS , HBVMS ⊂ AMIMS.

Moreover, Mohapatra and Szal showed that the following embedding relations
are true in [20]:

AMDS ⊂ AMDMS

and

AMIS ⊂ AMIMS.

Besides, it is obviously that the class of nonnegative and nondecreasing (nonincreas-
ing) sequences is a subset of the class of almost monotone decreasing (increasing)
sequences.

1.3. Generalized Lebesgue Spaces Lp(x). Let P := P(R) be the family of all
measurable 2π-periodic functions p : R→ [1,∞]. The space Lp(x) := Lp(x)([0, 2π])
is the set of all functions f which is measurable 2π-periodic defined on [0, 2π] such
that %p(λf) <∞ for some λ := λ(f) > 0 where

%p(f) :=


2π∫
0

|f(x)|p(x)dx , 1 ≤ p(x) <∞;

ess sup
x∈[0,2π]

|f(x)| , p(x) =∞

and p ∈ P. The generalized Lebesgue space Lp(x) is a Banach space with the norm
‖ · ‖p(x) defined by

‖f‖p(x) := inf{λ > 0 : %p(f/λ) ≤ 1}.

If p(x) ≡ q is a constant (1 ≤ q <∞), then the above norm coincides with the usual
Lq norm. Some details and further references for the spaces Lp(x) can be found in
[11], [14], [9]. Given p ∈ P([0, 2π]) with

1 < p∗ := ess inf
x∈[0,2π]

p(x) ≤ p∗ := ess sup
x∈[0,2π]

p(x) <∞. (1.3)
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Let P∗([0, 2π]) be the set of all the functions p ∈ P([0, 2π]) with the condition (1.3).
The conjugate function of p ∈ P∗([0, 2π]) is defined by

p′(x) :=

{
p(x)
p(x)−1 , p(x) > 1,

∞ , p(x) = 1

and also p′ ∈ P∗([0, 2π]).
In [9, See, Theorem 2.3], it is known that for all functions f ∈ Lp(x) the norm

‖|f‖|p(x) = sup
%p′ (g)≤1

2π∫
0

|f(x)g(x)|dx

is equivalent to the norm ‖f‖p(x) with the inequalities
‖f‖p(x) ≤ ‖|f‖|p(x) ≤ rp‖f‖p(x)

where rp = 1 +
1

p∗
− 1

p∗ . Therefore the space L
p(x) consists of all measurable 2π−

periodic functions f with ‖|f‖|p(x) < ∞, as well. The Hardy-Littlewood maximal
operator M defined on L1 for each f ∈ L1 is denoted by the formula

Mf(x) = sup
I

1

|I|

∫
I

|f(t)|dt

where the supremum is taken over all intervals I containing x ∈ [0, 2π] and |I|
denotes the length of I. Informally, the value of the maximal function of f at x is
the largest average value of f on any interval I containing x.
In [16], it is shown that if p ∈ P∗([0, 2π]) and satisfies the local continuity con-

dition(or Dini-Lipshitz condition)

|p(x)− p(y)| ln 1

|x− y| = O(1) ; 0 < |x− y| ≤ 1/2,

then the maximal operator M is bounded on Lp(x). The set of all the functions
p ∈ P∗([0, 2π]) satisfying the local continuity condition will be denoted by Ploc.
Let p ∈ Ploc and 0 < α ≤ 1. In [18], the Lipschitz class Lip(α, p(x)) is defined

as
Lip(α, p(x)) = {f ∈ Lp(x) : Ωp(x)(f, δ) = O(δα), δ > 0}

where
Ωp(x)(f, δ) = sup

|h|≤δ
‖Th(f)‖p(x) (1.4)

is the integral modulus of continuity of the function f ∈ Lp(x) which is called moduli
of mean smoothness, and here

Th(f)(x) =
1

h

h∫
0

|f(x+ t)− f(x)|dt.
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The moduli of mean smoothness defined in form (1.4) has been given by N. X.
Ky [10] and the existence of Ωp(x)(f, δ) is based on that the maximal operator M
is bounded on Lp(x). This definition yields the basic properties of the modulus of
continuity.

2. Auxiliary Results

Lemma 1. [21] The following inequalities are valid:

Aλn :=

λ(n)∑
m=1

|∆m

{
m−1(Pλ(n) − Pλ(n)−m)

}
| = O(1)

λ(n)−1∑
m=0

|∆pm| (2.1)

and if
λ(n)−1∑
m=1

m|∆pm| = O(Pλ(n))

then

Aλn = O

(
Pλ(n)

λ(n)

)
. (2.2)

Lemma 2. [21] Let
(pn) ∈ AMDMS

or
(pn) ∈ AMIMS and satisfy (λ(n) + 1)pλ(n) = O(Pλ(n)).

Then, for 0 < α < 1,

λ(n)∑
m=0

(m+ 1)−αpλ(n)−m = O((λ(n) + 1)−αPλ(n)). (2.3)

Lemma 3. [21] Let
(pn) ∈ AMIMS

or
(pn) ∈ AMDMS and satisfy (λ(n) + 1) = O(Pλ(n)).

Then, for 0 < α < 1,

λ(n)∑
m=0

(m+ 1)−αpm = O((λ(n) + 1)−αPλ(n)). (2.4)

Lemma 4. [18]. Let p ∈ Ploc and f ∈ Lip(α, p(x)) for 0 < α ≤ 1. Then the
estimate

‖f − sn(f)‖p(x) = O(n−α)

holds for n = 1, 2, . . ..
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Lemma 5. [18]. Let p ∈ Ploc and f ∈ Lip(1, p(x)). Then

‖σn(f)− sn(f)‖p(x) = O(n−1)

for n = 1, 2, . . ..

3. Degree of Approximation by Nörlund and Riesz Submethods in Lp(x)

Taking into Subsection 1.3. we shall extend the results given in [18] both by
weakening the monotonicity conditions and by using the Cλ-method of their Fourier
series of functions that belonging to the class Lp(x) for p : R→ [1,∞). Especially, we
consider the degree of approximation of f ∈ Lp(x) by trigonometrical polynomials
Nλ
n (f ;x) and Rλn(f ;x) under the perspective of [17, 18, 20]. We see that the results

obtained in this studying generalize the results in [15, 17, 18].

Theorem 1. Let p ∈ Ploc, f ∈ Lip(α, p(x)), 0 < α < 1 and let (pn) be a positive
sequence. If one of the following conditions satisfies
(i) (pn) ∈ AMIMS with

(λ(n) + 1)pλ(n) = O(Pλ(n)), (3.1)

(ii) (pn) ∈ AMDMS,
then ∥∥f −Nλ

n (f)
∥∥
p(x)

= O(λ(n)−α).

Proof. Due to the definition of Nλ
n (f, x), we know that

Nλ
n (f, x)− f(x) =

1

Pλ(n)

λ(n)∑
m=0

pλ(n)−m {sm(f, x)− f(x)} . (3.2)

Taking into account hypothesis and by using Lemma 2 and Lemma 4, we get∥∥Nλ
n (f)− f

∥∥
p(x)

≤ 1

Pλ(n)

λ(n)∑
m=0

pλ(n)−m ‖sm(f)− f‖p(x)

=
1

Pλ(n)

λ(n)∑
m=1

pλ(n)−m ‖sm(f)− f‖p(x) +
pλ(n)

Pλ(n)
‖s0(f)− f‖p(x)

=
1

Pλ(n)

λ(n)∑
m=1

pλ(n)−mO(m−α) +O(λ(n)−α)

=
1

Pλ(n)
O(λ(n)−αPλ(n)) +O(λ(n)−α) = O(λ(n)−α).

Thus, the proofs of the cases (i) and (ii) are completed together. �

Remark 1. Theorem 1 generalizes both cases of Theorem 1 given in [18] with
respect to both monotonicity condition and Cesáro submethod Cλ. Therefore, the
results of Chandra [15] and Leindler [17] are generalized in case p(x) ≡ 1.
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Since AMDS ⊂ AMDMS and AMIS ⊂ AMIMS, we can derive the following
result from Theorem 1.

Corollary 1. Suppose that p ∈ Ploc, f ∈ Lip(α, p(x)), 0 < α < 1 and let (pn) be a
positive sequence. If one of the following conditions satisfies
(i) (pn) ∈ AMIS and (3.1) holds,
(ii) (pn) ∈ AMDS,

then ∥∥f −Nλ
n (f)

∥∥
p(x)

= O(λ(n)−α).

Remark 2. This corollary will give us the result of Güven and İsrafilov in case
of λ(n) = n, [18, Theorem 1]. Moreover a similar corollary can be also written in
accordance with the classes HBVMS and RBVMS.

The next result is related with ones that more general than monotone sequences.
We note that if (pn) is nondecreasing with (3.1), then it is clear that

λ(n)−1∑
k=0

|∆pk| = O(Pλ(n)/λ(n)).

On the other hand, if (pn) is nonincreasing, then

λ(n)−1∑
k=1

k|∆pk| = O(Pλ(n)).

Theorem 2. Let p ∈ Ploc, f ∈ Lip(1, p(x)) and let (pn) be a positive sequence. If
one of the following conditions satisfies

(i)
λ(n)−1∑
k=0

|∆pk| = O(Pλ(n)/λ(n)) with (3.1),

(ii)
λ(n)−1∑
k=1

k|∆pk| = O(Pλ(n)),

then ∥∥f −Nλ
n (f)

∥∥
p(x)

= O(n−1).

Proof. Let us prove the case (i). Since

Nλ
n (f, x) =

1

Pλ(n)

λ(n)∑
m=0

Pλ(n)−mAm,

we have

sn(f, x)−Nλ
n (f, x) =

1

Pλ(n)

n∑
m=0

Uλ(n)m Am −
1

Pλ(n)

λ(n)∑
m=n+1

Pλ(n)−mAm.
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where Uλ(n)m = Pλ(n) − Pλ(n)−m. By Abel’s Transformation we have

sn(f, x)−Nλ
n (f, x) =

1

Pλ(n)

[
n−1∑
m=1

∆m(
U
λ(n)
m

m
)

m∑
k=0

kAk+
U
λ(n)
n

n

m∑
k=0

kAk

]
−I

=
1

Pλ(n)

[
n∑

m=1

∆m(
U
λ(n)
m

m
)

m∑
k=0

kAk+
U
λ(n)
n+1

n+ 1

m∑
k=0

kAk

]
−I

where I :=
1

Pλ(n)

λ(n)∑
m=n+1

ηmAm and ηm := Pλ(n)−m. Owing to the method in [21,

see p.53], we write ∥∥sn(f)−Nλ
n (f)

∥∥
p(x)

= O(n−1) (3.3)

by considering (2.1) of Lemma 1, Lemma 5 and the condition (i) of Theorem 2.
Herefrom, by using 3.3 and Lemma 4 we obtain∥∥f −Nλ

n (f)
∥∥
p(x)

= O(n−1).

for the case (i). Since the case (ii) is proved by similar way, we will omit its proof
here. �

Remark 3. In case λ(n) = n in the Theorem 2 this result coincides with the result
of [18, Theorem 2].

We know that if (pn) ∈ RBV S with condition (λ(n) + 1) = O(Pλ(n)), then

λ(n)−1∑
k=1

k|∆pk| = O(Pλ(n)).

Therefore due to Theorem 2-(ii) and above relation, we can write the following
result.

Corollary 2. Let p ∈ Ploc, f ∈ Lip(1, p(x)). If (pn) ∈ RBV S and the condition
(λ(n) + 1) = O(Pλ(n)), then∥∥f −Nλ

n (f)
∥∥
p(x)

= O(n−1).

Theorem 3. Let p ∈ Ploc, f ∈ Lip(α, p(x)), 0 < α < 1 and let (pn) be a positive
sequence. If one of the following conditions satisfies
(i) (pn) ∈ AMDMS with (λ(n) + 1) = O(Pλ(n)),
(ii) (pn) ∈ AMIMS,

then ∥∥f −Rλn(f)
∥∥
p(x)

= O(λ(n)−α).
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Proof. By the definition of Riesz submethod, we have

f(x)−Rλn(f ;x) =
1

Pλ(n)

λ(n)∑
m=0

pm(f(x)− sm(f, x)).

The expected result is obtained as follows from Lemma 3 and Lemma 4.

‖f −Rλn(f)‖p(x) ≤
1

Pλ(n)

λ(n)∑
m=1

pm‖f − sm(f)‖p(x) +
1

Pλ(n)
p0‖f − sm(f)‖p(x)

=
O(1)

Pλ(n)

λ(n)∑
m=0

pm(m+ 1)−α +O(
1

λ(n) + 1
) = O(λ(n)−α).

�

Theorem 6. Let p ∈ Ploc, f ∈ Lip(α, p(x)), 0 < α ≤ 1 and let (pn) be a positive
sequence. If the following condition satisfies

λ(n)−1∑
m=0

|∆(
Pm
m+ 1

)| = O(
Pλ(n)

λ(n) + 1
)

then ∥∥f −Rλn(f)
∥∥
p(x)

= O(λ(n)−α).

Proof. We will consider the method which used in [19]. Let us start for 0 < α < 1.
Since

f(x)−Rλn(f ;x) =
1

Pλ(n)

λ(n)∑
m=0

pm(f(x)− sm(f, x))

we have

‖f −Rλn(f)‖p(x) ≤

=
1

Pλ(n)
p0‖f − s0(f)‖p(x) +

1

Pλ(n)

λ(n)∑
m=1

pm‖f − sm(f)‖p(x)

≤ O(
1

Pλ(n)
)

λ(n)∑
m=1

m−αpm (3.4)

by Lemma 4. By using Abel’s transformation, we get

λ(n)∑
m=1

m−αpm =

λ(n)−1∑
m=1

∆(m−α)Pm + (λ(n))−αPλ(n). (3.5)
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By considering (3.4), we write

λ(n)−1∑
m=1

∆(m−α)Pm ≤ (

λ(n)∑
k=1

k−α)[

λ(n)−1∑
m=1

∆(
Pm
m+ 1

) +
Pλ(n)

(λ(n) + 1)
]

≤ O[(λ(n))1−α
Pλ(n)

λ(n) + 1
] (3.6)

Taking into account of (3.4)-(3.6), we obtain∥∥f −Rλn(f)
∥∥
p(x)

= O(λ(n)−α).

Suppose that α = 1. If we apply Abel’s transformation to the sum Rλn(f ;x),
then we write

Rλn(f ;x) = − 1

Pλ(n)

λ(n)−1∑
m=0

PmAm+1(f, x) + sλ(n)(f ;x).

Since

sλ(n)(f ;x) = sn(f ;x) +

λ(n)∑
m=n+1

Am(f ;x),

we have

Rλn(f)− sn(f) = − 1

Pλ(n)

λ(n)∑
m=0

PmAm+1 +

λ(n)+1∑
m=n+1

Am.

In [19], we know that

‖Rλn(f)− sn(f)‖p(x) ≤
1

Pλ(n)

λ(n)−1∑
m=0

|∆(
Pm
m+ 1

)|‖
m∑
k=0

(k + 1)Ak+1‖p(x)

+

λ(n)∑
m=n+1

|∆(
1

m
)|‖

m∑
k=1

kAk‖p(x)+
1

n+ 1
‖

n∑
k=1

kAk‖p(x) .(3.7)

Since

‖
n∑
k=0

(k + 1)Ak+1(f, x)‖p(x) = O(1)

by Lemma 5, we have

‖Rλn(f)− sn(f)‖p(x) = O(n−1). (3.8)

from (3.4), (3.7) and the condition of Theorem 6. Therefore the expected result is
obtained by considering (3.8) and Lemma 4. �

Remark 4. Theorem 6 generalizes Theorem 3 given in [18] with respect to Riesz
submethod.
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4. Some Inclusions Related to Nörlund and Riesz Submethods

The purpose of this section is to reveal the importance of the submethods given
in Subsection 1.1. Now let us give some inclusions due to these methods. Assume
that E = {λ(n)}∞n=1 and F = {µ(n)}∞n=1 be infinite subsets of N.

Theorem 4. Nλ
n ⊆ Nµ

n if and only if F \ E is finite where pλ(n)/Pλ(n) → 0 and
pµ(n)/Pµ(n) → 0 as n→∞.

Proof. If the set F \E is finite then there exists an integerN such that {µ(n)}∞n=N ⊂
E. Let {k(n)} be a sequence such that for n ≥ N , µ(n) = λk(n). Hence {k(n)}
is an increasing sequence and k(n) → ∞ as n → ∞. Since pλ(n)/Pλ(n) → 0 and
pµ(n)/Pµ(n) → 0 as n → ∞, Nλ

n → ` implies Nλ
k(n) → `, and therefore we get

Nµ
n → ` from definition of Nörlund method. Now, suppose that Nλ

n ⊆ Nµ
n but the

set F \ E is infinite. The proof of the theorem will be complete if we can show
that there is a sequence {sm} which converges to 0 meaning Nλ

n , but not converges
meaning Nµ

n . Since the set F \ E is infinite, there is a strictly increasing sequence
{µn(k)} such that µn(k) /∈ E for k = 1, 2, . . . . If now

cn =


0, n 6= µn(k);

(−1)k, n = µn(k),

and {sm} is the sequence corresponding to {cn} then clearly sm → 0 meaning
Nλ
n , but not converges meaning N

µ
n as n → ∞ which contradicts the fact that

Nλ
n ⊆ Nµ

n . �

Taking into account of Theorem 4 since E4F = (E \F )∪ (F \E), we can write
the following result.

Theorem 5. Nλ
n ∼ Nµ

n if and only if F4E is finite where pλ(n)/Pλ(n) → 0 and
pµ(n)/Pµ(n) → 0 as n→∞.

Remark 5. Especially, we see that Nn ⊆ Nµ
n for any µ. For, the set F \{0, 1, 2, . . .}

is empty.

Remark 6. The similar results can be also written for the Riesz submethod. In this
case we note that Pλ(n) →∞ and Pµ(n) →∞ as n→∞ instead of pλ(n)/Pλ(n) → 0
and pµ(n)/Pµ(n) → 0 as n→∞ in Theorem 4 and Theorem 5, respectively.

Theorem 6. Let {pn} be a positive nonincreasing sequence. If

lim sup
n→∞

λ(n+ 1)− λ(n)

Pλ(n)
= 0 (4.1)

then the Nλ
n -method is equivalent to the Nn-method for bounded sequences.
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Proof. Let {pn} be a positive nonincreasing sequence, {sn} be a bounded sequence,
and Nn be Nörlund transform of {sn}. Therefore, for every n and k, we have

|Nn −Nn+k| =
∣∣∣∣∣ 1

Pn

n∑
m=0

pn−msm −
1

Pn+k

n+k∑
m=0

pn+k−msm

∣∣∣∣∣
≤

n∑
m=0

M

∣∣∣∣pn−mPn
− pn+k−m

Pn+k

∣∣∣∣+M

n+k∑
m=n+1

pn+k−m
Pn+k

.

Since {pn} is a positive nonincreasing sequence, we get

|Nn −Nn+k| ≤M
(

1−
n∑

m=0

pn+k−m
Pn+k

)
+M

n+k∑
m=n+1

pn+k−m
Pn+k

= 2M

n+k∑
m=n+1

pn+k−m
Pn+k

≤ 2Mp0k

Pn+k
. (4.2)

Assume that {sn} is summable by means of the Nλ
n -method. Let ε > 0. Then there

is a k such that |Nλ
k −Nλ

j | < ε
2 for every j > k. On the other hand, we obtain

|Nλ
j −Nn| <

2Mp0(n− λ(j))

Pn
<

2Mp0(λ(j + 1)− λ(j))

Pλ(j)
<
ε

2

by virtue of (4.1) and (4.2) where λ(j) ≤ n < λ(j + 1). Therefore it is concluded
that |Nλ

k −Nn| < ε for every n > λ(k). Hence {sn} is summable by the Nn-method.
We know that Nn ⊆ Nλ

n for any λ. So the proof of the theorem is completed. �

Remark 7. The similar theorem for Riesz method can be written by taking

lim sup
n→∞

Pλ(n+1) − Pλ(n)
Pλ(n)

= 0

instead of the condition (4.1) in Theorem 6. In this case, we don’t need put any
monotonicity condition on the sequence {pn}.
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