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APPLICATION OF THE (G
′
/G)-EXPANSION METHOD FOR

SOME SPACE-TIME FRACTIONAL PARTIAL DIFFERENTIAL
EQUATIONS

MINE AYLIN BAYRAK

Abstract. In this paper, the (G
′
/G)-expansion method is presented for find-

ing the exact solutions of the space-time fractional traveling wave solutions
for the Joseph-Egri (TRLW) equation and Gardner equation. The fractional
derivatives are described by modified Riemann-Liouville sense. Many exact so-
lutions are obtained by the hyperbolic functions, the trigonometric functions
and the rational functions. This method is effi cient and powerful in perform-
ing a solution to the fractional partial differential equations. Also, the method
reduces the large amount of calculations.

1. Introduction

In recent years, fractional partial differential equations which are generalizations
of classical partial differential equations of integer order have been the focus of
many studies [1, 2, 3]. Many powerful methods for obtaining the exact solutions of
fractional partial differential equations, such as the fractional the (G

′
/G)-expansion

method [4, 5, 6, 7], the fractional first integral method [8, 9], the fractional exp-
function method [10, 11, 12], the fractional functional variable method [13] and the
fractional sub-equation method [14, 15] have been developed to find exact analytic
solutions.
In this paper, the (G

′
/G)-expansion method [16, 17] to solve nonlinear fractional

differential equations in the sense of modified Riemann-Liouville derivative by Ju-
marie is used [18]. The Jumarie’s modified Riemann-Liouville derivative of order α
is defined by
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Dα
t f(t) =


1

Γ(1−α)
d
dt

t∫
0

(t− ξ)−α(f(ξ)− f(0))dξ, 0 < α < 1

(f (n)(t))α−n , n ≤ α < n+ 1, n ≥ 1

(1)

Some important properties of the fractional modified Riemann-Liouville derivative
were given [19] as

Dα
t x

β =
γ(1 + β)

γ(1 + β − α)xβ−α
, β > 0 (2)

Dα
x (u(x)v(x)) = v(x)Dα

xu(x) + u(x)Dα
xv(x) (3)

Dα
x [f(u(x))] = f ′u(u)Dα

xu(x) (4)

Dα
x [f(u(x))] = Dα

uf(u)(u′α (5)

Consider the following general fractional partial differential equations

P (u,Dα
t u,D

β
xu,D

2α
t u,Dα

t D
β
xu,D

2β
x u, ...) = 0

0 < α, β < 1 (6)

where u = u(x, t) is an unknown function, and P is a polynomial of u = u(x, t)
and its partial fractional derivatives, in which the highest order derivatives and the
nonlinear terms are involved.
Li and He [20, 21] proposed a fractional complex transform to convert fractional

differential equations into ordinary differential equations, so all analytical methods
which are devoted to the advanced calculus can be easily applied to the fractional
calculus. By using traveling wave variable

u(x, t) = U(ξ) (7)

ξ =
cxβ

Γ(1 + β)
− kxα

Γ(1 + α)
(8)

where k and c are nonzero arbitrary constants, and Eq. (6) can be written as
follows:

Q(U,U ′, U ′′, U ′′′, ...) = 0. (9)

where the prime denotes the derivation with respect to ξ. If the possibility has,
then Eq.(9) can be integrated term by term one or more times.
Suppose that the solution of Eq.(9) can be expressed by a polynomial in (G′/G) in
the form:

U(ξ) =

m∑
i=0

ai

(G′

G

)i
, am 6= 0 (10)

where ai(i = 0, 1, 2, ...,m) are constants, while G(ξ) satisfies the following second-
order linear ordinary differential equation

G′′(ξ) + λG′(ξ) + µG(ξ) = 0 (11)

with λ and µ are being constants.
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The positive integer m can be found by balancing the homogeneous balance
between the highest order derivatives and the nonlinear terms appearing in Eq.(9).
Substituting Eq.(10) into Eq.(9) and using Eq.(11) and equating each coeffi cient of
the resulting polynomial to zero, a set of algebraic equations for ai(i = 0, 1, 2, ...,m),
λ, µ, k and c is obtained.
Solving the equation system, and substituting ai(i = 0, 1, 2, ...,m), λ, µ, k, c and

the general solutions of Eq.(11) into Eq.(10), a variety of exact solutions of Eq.(6)
can be obtained.

2. The space-time fractional Joseph-Egri(TRLW) equation

Consider the following space-time fractional Joseph-Egri (TRLW) equation [22]

Dα
t u+Dβ

xu+ γuDβ
xu+Dβ

xD
2α
t u = 0, t > 0,

0 < α, β ≤ 1, x > 0 (12)

where γ is a constant.
Substituting Eqs.(7)-(8) into Eq.(12), the following ordinary differential equation

can be obtained
(c− k)U ′ + γcUU ′2U ′′′ = 0 (13)

where U ′ = dU
dξ . By once integrating and setting the constants of integration to

zero,

(c− k)U + γc
U2

2
+ ck2U ′′ = 0 (14)

is obtained.
For the linear term of highest order U ′′ with the highest order nonlinear term

U2, balancing the two term in Eq. (14) gives

m+ 2 = 2m (15)

so that
m = 2. (16)

Assuming that the solutions of Eq.(14) can be expressed by a polynomial in (G
′
/G)

as

U(ξ) = a0 + a1

(G′

G

)
+ a2

(G′

G

)2

, a2 6= 0 (17)

By using Eq.(11), from Eq.(17), it is derived that

U
′′
(ξ) = 2a2µ

2 + a1λµ+ (6a2λµ+ 2a1µ+ a1λ
2)
(G′

G

)
+(8a2µ+ 3a1λ+ 4a2λ

2)
(G′

G

)2

+(2a1 + 10a2λ)
(G′

G

)3

+ 6a2

(G′

G

)4

(18)
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and

U2(ξ) = a2
0 + 2a0a1

(G′

G

)
+ (2a0a2 + a2

1)
(G′

G

)2

+2a1a2

(G′

G

)3

+ a2
2

(G′

G

)4

(19)

Substituting Eqs.(17)-(19) into Eq.(14), collecting the coeffi cients of
(
G
′

G

)i
(i =

0, 1, 2) and set it to zero, the following system is obtained:

(c− k)a0 +
γ

2
ca2

0 + 2ck2a2µ
2 + ck2a1λµ = 0,

(c− k)a1 + γca0a1 + 6ck2a2λµ+ 2ck2a1µ+ ck2a1λ
2 = 0,

(c− k)a2 +
γ

2
ca2

1 + γca0a2 + 8ck2a2µ

+3ck2a1λ+ 4ck2a2λ
2 = 0,

γca1a2 + 2ck2a1 + 10ck2a2λ = 0,
γ

2
ca2 + 6ck2 = 0 (20)

Solving this system gives

a1 =
−12λc2

γ
√
−λ2c2 + 4µc2 + 1

, a2 =
−12c2

γ
√
−λ2c2 + 4µc2 + 1

,

a0 =
−2λ2c2 − 4µc2

γ
, k =

c

−λ2c2 + 4µc2 + 1
, c = c (21)

where λ and µ, are arbitrary constants.
By using Eq.(21) expression Eq.(17) can be written as

U(ξ) =
−2λ2c2 − 4µc2

γ
− 12λc2

γ
√
−λ2c2 + 4µc2 + 1

(G′

G

)
− 12c2

γ
√
−λ2c2 + 4µc2 + 1

(G′

G

)2

(22)

Substituting general solutions of Eq.(11) into Eq.(22) three types of traveling wave
solutions of the space-time fractional Joseph-Egri(TRLW) equation are obtained as
follows:
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When λ2 − 4µ > 0

U1,2(ξ) =
−2c2(λ2 + 2µ)

γ
+

3c2λ2

γ
√

1− c2(λ2 − 4µ)

− 3c2(λ2 − 4µ)

γ
√

1− c2(λ2 − 4µ)

(
K1sinh

√
λ2−4µ

2 ξ +K2cosh

√
λ2−4µ

2 ξ

K1cosh

√
λ2−4µ

2 ξ +K2sinh

√
λ2−4µ

2 ξ

)
(23)

where ξ = cxβ

Γ(1+β) −
c

1−c2(λ2−4µ)
tα

Γ(1+α) .

When λ2 − 4µ < 0

U3,4(ξ) =
−2c2(λ2 + 2µ)

γ
+

3c2λ2

γ
√

1 + c2(4µ− λ2)

− 3c2(4µ− λ2)

γ
√

1 + c2(4µ− λ2)

(
−K1sin

√
4µ−λ2

2 ξ +K2cos

√
4µ−λ2

2 ξ

K1cos

√
4µ−λ2

2 ξ +K2sin

√
4µ−λ2

2 ξ

)
(24)

where ξ = cxβ

Γ(1+β) −
c

1−c2(λ2−4µ)
tα

Γ(1+α) .

When λ2 − 4µ = 0

U5,6(ξ) =
−2c2(λ2 + 2µ)

γ
− 6c2λ2

γ
√

1− c2(λ2 − 4µ)

− 12c2

γ
√

1− c2(λ2 − 4µ)

K2

K1 +K2ξ
(25)

where ξ = cxβ

Γ(1+β) −
c

1−c2(λ2−4µ)
tα

Γ(1+α) .

3. The space-time fractional Gardner equation

Consider the following space-time fractional Gardner equation [23, 24]

Dα
t u = 6uDβ

xu+ 6ε2u2Dβ
xu+D3β

x u, t > 0,

0 < α, β ≤ 1, x > 0 (26)

where ε is a constant.
Substituting Eqs.(7)-(8) into Eq.(26) the ordinary differential equation can be

obtained as follows:

−kU ′ − 6cUU ′2cU2U ′3U ′′′ = 0 (27)

where U ′ = dU
dξ . By once integrating and setting the constants of integration to

zero,
kU + 3cU2 + 2ε2cU3 + c3U ′′ + C0 = 0 (28)
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is obtained.
For the linear term of highest order U ′′ with the highest order nonlinear term

U3, balancing the two term in Eq. (28) gives

m+ 2 = 3m (29)

so that
m = 1. (30)

Assuming that the solutions of Eq. (28) can be expressed by a polynomial in (G
′
/G)

as

U(ξ) = a0 + a1

(G′

G

)
, a1 6= 0 (31)

By using Eq.(11), from Eq.(31), it is derived that

U ′′(ξ) = a1λµ+ (2a1µ+ a1λ
2)
(G′

G

)
+ 3a1λ

(G′

G

)2

+ 2a1

(G′

G

)3

(32)

and

U2(ξ) = a2
0 + 2a0a1

(G′

G

)
+ a2

1

(G′

G

)2

(33)

and

U3(ξ) = a3
0 + 3a2

0a1

(G′

G

)
+ 3a0a

2
1

(G′

G

)2

+ a3
1

(G′

G

)3

(34)

Substituting Eqs.(32)-(34) into Eq.(28), collecting the coeffi cients of
(
G
′

G

)i
(i =

0, 1) and set it to zero, the following system is obtained:

ka0 + 3ca2
0 + 2ε2ca3

0 + c3a1λµ+ C0 = 0,

ka1 + 6ca0a1 + 6ε2ca2
0a1 + c3a1λ

2 + 2c3a1µ = 0,

3ca2
1 + 6ε2ca0a

2
1 + 3c3a1λ = 0,

2ε2ca3
1 + 2c3a1 = 0. (35)

Solving this system gives

a1 = ∓ci
ε
, a0 =

−1∓ cελi
2ε2

, k =
c3

4ε2
(λ2 − 4µ) +

c

4ε4
,

c = c, C0 =
c3

2
(λ2 − 4µ) +

3c

2ε2
(36)

where λ and µ, are arbitrary constants.
By using Eq.(36) expression Eq.(31) can be written as

U(ξ) =
−1∓ cελi

2ε2
∓ ci

ε

(G′

G

)
(37)

Substituting general solutions of Eq.(11) into Eq.(37) three types of traveling wave
solutions of the space-time fractional Gardner equation are obtained as follows:
When λ2 − 4µ > 0
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U1,2(ξ) =
−1

2ε2

∓ci
√
λ2 − 4µ

2ε

(
K1sinh

√
λ2−4µ

2 ξ +K2cosh

√
λ2−4µ

2 ξ

K1cosh

√
λ2−4µ

2 ξ +K2sinh

√
λ2−4µ

2 ξ

)
(38)

where ξ = cxβ

Γ(1+β) − [ c
3

4ε2 (λ2 − 4µ) + c
4ε4 ] tα

Γ(1+α) .

When λ2 − 4µ < 0

U3,4(ξ) =
−1

2ε2

∓ci
√

4µ− λ2

2ε

(
−K1sin

√
4µ−λ2

2 ξ +K2cos

√
4µ−λ2

2 ξ

K1cos

√
4µ−λ2

2 ξ +K2sin

√
4µ−λ2

2 ξ

)
(39)

where ξ = cxβ

Γ(1+β) − [ c
3

4ε2 (λ2 − 4µ) + c
4ε4 ] tα

Γ(1+α) .

When λ2 − 4µ = 0

U5,6(ξ) =
−1∓ cελi

2ε2
∓ ci

ε

K2

K1 +K2ξ
(40)

where ξ = cxβ

Γ(1+β) − [ c
3

4ε2 (λ2 − 4µ) + c
4ε4 ] tα

Γ(1+α) .

4. Conclusion

In this paper, three types of exact analytical solutions including the general-
ized hyperbolic, trigonometric and rational function solutions for the space-time
fractional Joseph-Egri(TRLW) and Gardner equation are presented by using the
(G

′
/G)-expansion method. It can be concluded that this method is very simple,

reliable and proposes a variety of exact solutions to space-time fractional partial
differential equation.
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