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SEMI-INVARIANT SEMI-RIEMANNIAN SUBMERSIONS

MEHMET AKIF AKYOL AND YILMAZ GUNDUZALP

ABSTRACT. In this paper, we introduce semi-invariant semi-Riemannian sub-
mersions from para-Kéhler manifolds onto semi-Riemannian manifolds. We
give some examples, investigate the geometry of foliations that arise from
the definition of a semi-Riemannian submersion and check the harmonicity of
such submersions. We also find necessary and sufficient conditions for a semi-
invariant semi-Riemannian submersion to be totally geodesic. Moreover, we
obtain curvature relations between the base manifold and the total manifold.

1. INTRODUCTION

The theory of Riemannian submersion was introduced by O’Neill and Gray in
[19] and [13], respectively. Later, Riemannian submersions were considered between
almost complex manifolds by Watson in [26] under the name of almost Hermitian
submersion. He showed that if the total manifold is a Kédhler manifold, then the
base manifold is also a Kéhler manifold. Since then, Riemannian submersions have
been used as an effective tool to describe the structure of a Riemannian manifold
equipped with a differentiable structure. Presently, there is an extensive literature
on the Riemannian submersions with different conditions imposed on the total
space and on the fibres. For instance, Riemannian submersions between almost
contact manifolds were studied by Chinea in [5] under the name of almost contact
submersions. Riemannian submersions have been also considered for quaternionic
Kahler manifolds [14] and para-quaternionic Kéhler manifolds [4],[15]. This kind of
submersions have been studied with different names by many authors (see [1], [10],
[12], [21], [22], [23], [24] and more).

On the other hand, para-complex manifolds, almost para-Hermitian manifolds
and para-Kéhler manifolds were defined by Libermann [18] in 1952. In fact, such
manifolds arose in [25] (see also [6]). Indeed, Rashevskij introduced the properties
of para-Kahler manifolds, when he considered a metric of signature (m,m) defined
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from a potential function the so-called scalar field on a 2m—dimensional locally
product manifold called by him stratified space.

2. PRELIMINARIES

In this section, we define almost para-Hermitian manifolds, recall the notion of
semi-Riemannian submersions between semi-Riemannian manifolds and give a brief
review of basic facts of semi-Riemannian submersions.

An almost para-Hermitian manifold is a manifold M endowed with an almost
para-complex structure P # +1 and a semi-Riemannian metric g such that

P?=1, ¢g(PX,PY)=—g(X,Y) (2.1)

for X,Y tangent to M, where I is the identity map. The dimension of M is even
and the signature of ¢ is (m,m), where dimM = 2m. Consider an almost para-
Hermitian manifold (M, P, g) and denote by V the Levi-Civita connection on M
with respect to g. Then M is called a para-Kahler manifold if P is parallel with
respect to V, i.e.,

(VxP)YY =0 (2.2)

for X,Y tangent to M[17].

Let (M, g1) and (N, g2) be two connected semi-Riemannian manifolds of index
s(0 < s < dimM) and s'(0 < ¢ < dimN) respectively, with s > s'. A semi-
Riemannian submersion is a smooth map 7= : M — N which is onto and satisfies
the following conditions:

(i) Tup : TyM — Ty, N is onto for all p € M;

(ii) The fibres 771(q),q € N, are semi-Riemannian submanifolds of M

(iii) 7, preserves scalar products of vectors normal to fibres.

The vectors tangent to the fibres are called vertical and those normal to the fibres
are called horizontal. We denote by V the vertical distribution, by H the horizontal
distribution and by v and h the vertical and horizontal projection. A horizontal
vector field X on M is said to be basic if X is m—related to a vector field X, on N.
It is clear that every vector field X, on N has a unique horizontal lift X to M and
X is basic.

We recall that the sections of V, respectively H, are called the vertical vector
fields, respectively horizontal vector fields. A semi-Riemannian submersion 7 :
M — N determines two (1,2) tensor fields T and A on M, by the formulas:

T(E,F)=TgF = hV} ,oF + vV. hF (2.3)

and
A(E,F) = AgF = vV}phF + hV; poF (2.4)

for any E, F € I'(T'M), where v and h are the vertical and horizontal projections
(see [2],[8]). From (2.3) and (2.4), one can obtain

VEW = TyW + VyW; (2.5)
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ViX =Ty X +hVyX); (2.6)
VAU =o(VYU) + AxU; (2.7)
VLY = AxY + h(VLY), (2.8)

for any X,V € I'((kerm.)t), U W € T'(kerm,). Moreover, if X is basic then
h(VEX) = h(ViU) = AxU.

We note that for U,V € I'(kern.), Ty V coincides with the second fundamental form
of the immersion of the fibre submanifolds and for X,Y € I'((kerm.)*), AxY =
10[X, Y] reflecting the complete integrability of the horizontal distribution H. It
is known that A is alternating on the horizontal distribution: AxY = —Ay X, for
X,Y € T((kerm,)*) and T is symmetric on the vertical distribution: T,V = Ty U,
for U,V € I'(kerm,).

We now recall the following result which will be useful for later.

Lemma 2.1 (see [8],[20]). If 7 : M — N is a semi-Riemannian submersion and
X, Y basic vector fields on M, m—related to X, and Y, on N, then we have the
following properties

(1) gl(Xv Y) = g2(X*7Y*) o3

(2) h[X,Y] is a basic vector field and w.h[X,Y] = [X,, Y] om;

(3) (VYY) is a basic vector field m—related to (Vi_Yi), where V' and V? are

the Levi-Civita connection on M and N;
(4) [E,U] € T(kermy), for any U € T'(kerm.) and for any basic vector field E.

Let (M, g1) and (NN, g2) be (semi-)Riemannian manifolds and 7 : M — N is a
smooth map. Then the second fundamental form of 7 is given by

(VI )(X,Y) = VimY — m.(VyY) (2.9)

for XY € I'(T'M), where we denote conveniently by V the Levi-Civita connec-
tions of the metrics g and g/. Recall that 7 is called a totally geodesic map if
(Vr)(X,Y) =0 for X,Y € T'(T'M)[16]. It is known that the second fundamental
form is symmetric.

3. SEMI-INVARIANT SEMI-RIEMANNIAN SUBMERSIONS

In this section, we define semi-invariant semi-Riemannian submersions from a
para-Kdhler manifold onto a semi-Riemannian manifold, investigate the integrabil-
ity of distributions and obtain a necessary and sufficient condition for such submer-
sions to be totally geodesic map.

Definition 3.1. Let (M, g1, P) be an almost para-Hermitian manifold and (N, g2)
a semi-Riemannian manifold. A semi-Riemannian submersion 7 : M — N is called
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a semi-invariant semi-Riemannian submersion if there is a distribution D C kerm,
such that

kerm, = Dy ® Dy and PD; = Dy, P(Ds) C (kerm,)*

where D- is orthogonal complementary to Dy in kerm,.

We note that it is known that the distribution kerm, is integrable. Hence, De-
finition 3.1 implies that the integral manifold (fibre) 71, ¢ € B, of kerm, is a
CR-submanifold of M. For CR-submanifolds, see [7].

Note that given a semi-Euclidean space R2" with coordinates (21, ..., Z2,,) on R%",
we can naturally choose an almost para-complex structure P on R2" as follows:

7] 0 0 7]

= ) = b
8$2i 3332i—1 33?21‘—1 3$2i

P(

where i = 1, ...,n. Let R2" be a semi-Euclidean space of signature (+,-,+,-,...) with
respect to the canonical basis (8%1, - %2”).

Remark 3.1. Let (M, Py, g1) and (N, P, g2) be almost para-Hermitian manifolds.
A semi-Riemannian submersion 7w : M — N is called an almost para-Hermitian
submersion if 7 is an almost para-complex map, i.e. m, 0 P = Py om,.

We now give some examples of a semi-invariant semi-Riemannian submersion.

Example 3.1. Let 7 : Ry — R? be amap defined 7n(z1, ¥, 3, 74) = (%\/53, %\/5“)
Then it is easy to see that 7 is an almost para-Hermitian submersion. Every an al-
most para-Hermitian submersion from an almost para-Hermitian manifold onto an
almost para-Hermitian manifold is a semi-invariant semi-Riemannian submersion

with Dy = {0}.

Example 3.2. Every anti-invariant semi-Riemannian submersion from an almost
para-Hermitian manifold onto a semi-Riemannian manifold is a semi-invariant semi-
Riemannian submersion with Dy = {0}[11].

Example 3.3. Let 7 : R} — R} be a map defined 7(z1,xs, 73,24, T5,76) =
TatTe Xz+xTs

(21, VoR T) Then, by direct calculations

0 0 0 0 0
kerm. = =0y 9y 0 O
erm. = Spanila 0y v Oy +6-756 & s +8$5}
and
0 0 0 0 0
kerm. )t = Xi=—,Xo=—+——,Xg5= — +—}hL
( €T7T) Span{ ! 31‘1’ 2 (9£U4+82E5 3 32E3+(91‘5

Then it is easy to see that m is a semi-Riemannian submersion. Hence we have
PV, = V5 and PV; = X;. Thus it follows that D1 = span{V2,V3} and Dy =
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span{V1}. Moreover one can see that u = span{Xs, X3}. As a result, 7 is a semi-
invariant semi-Riemannian submersion.

Let 7 : (M,g1,P) — (N, g2) be a semi-invariant semi-Riemannian submersion
from a para-Kdhler manifold (M, g1, P) to a semi-Riemannian manifold (N, g2).
We denote the complementary distribution to PDy in (kerm,)* by . Then for
V € I'(kerm,), we write

PV = oV +uwV, (3.1)
where ¢V € I'(D;) and wV € T'(Dy). Also for X € I'((kerm.)t), we have
PX = BX + CX, (3.2)

where BX € I'(Dy) and CX € I'(). Then, by using (2.5), (2.6),(3.1) and (3.2) we
get

(VV(b)W = BT\/W - vaW, (va)W = CT\/W — Tv¢VV,
for VW € I'(kerm,), where

(Vyo)W = Vy oW — ¢V W and (Vyw)W = hVLwW — wVyW.

Lemma 3.1. Let m be a semi-invariant semi-Riemannian submersion from a
para-Kahler manifold (M, g1, P) to a semi-Riemannian manifold (N, g2). Then we
have

g(PTyV,X) = g(Tu PV, X),
for any U € T'(kerm,), V € T'(D;) and X € T'(p).

Proof. Since M is a para-Kahler manifold, then for any U € T'(kernm,) and V €
I'(D1) using (2.2) we have
PVLV =V PV.
On using (2.5) we get
P(TyV +VyV) = Ty PV + Vy PV.
Taking inner product with X € T'(u), we get
9(PTyV, X) +g(VuV, X) = g(Ty PV, X) + g(Vu PV, X). (33)

Since p is invariant under P, then the result follows from (3.3).

Now, we investigate the integrability of the distribution D; and Ds. Since fibers
of semi-invariant semi-Riemannian submersions from para-Kdhler manifolds are
CR-submanifolds and T is the second fundamental form of the fibers, we have the
following theorem.

Theorem 3.1. Let m be a semi-invariant semi-Riemannian submersion from a
para-Kahler (M, g1, P) to a semi-Riemannian manifold (N, g2). Then
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(i) the distribution D is integrable if and only if g(Ty PW — Tyw PV, PU) =0
for VW € I'(Dy) and U € I'(Dy),
(ii) the distribution D5 is integrable.

Proof. (i) Since M is a para-Kdhler manifold, then for any V,W € I'(D;), then
(2.2) and (2.5) give
P[V,W] = PVLW - PV V
= VyPW -V}, PV
Ty PW — Ty PV + Vv PW — Vy, PV.

Therefore,

Ty PW — Ty PV = P[V,W] — Vy PW + Vy PV. (3.4)
Now if Dy is integrable then P[V,W] € I'(D;) as [V, W] € T'(D;). Hence in (3.4)
right hand side is vertical while the left hand side is horizontal. On comparing the
horizontal and vertical part we get

Ty PW =Tw PV,

for any V,W € I'(D;). In particular, we have
g(Tyv PW, PU) = g(Tw PV, PU).
Conversely, firstly using (3.4), i.e.,
¢(Ty PW — Ty PV, PU) = 0
which shows that
Ty PW — Ty PV € D(u).
Now for any X € I'(11), using Lemma 3.1 we have
g(Ty PW — Ty PV, X) = g(PTyW — PTy V. X) = 0,

which implies that Ty PW — Ty PV = 0, for any V,W € I'(D;). Thus from (3.4),
we get
P[V,W] = VyPW — Vy PV.
Since Vy PW — Vi PV lies in V,W € T'(kerm,), this implies that [V, W] lies in
I'(D;) and hence I'(D;) is integrable.
ii) Since M is a para-Kahler manifold, d? = 0. For any X € I'(D;) and Y, Z €
I'(Ds)
3dX,Y,Z) = XQ,Z)-YQX,Z)— ZQX,Y)

= Xgu(Y,JZ)-Ygu(X,JZ)— Zgu(X,JY)

- gM([Xa YL JZ) - gM(JY7 [Xv Z]) - 91\4(JX’ [Y7 Z])

= —gu(JX,[Y, 2]

= 07
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which gives the proof (ii). The proof of the following proposition is similar to the
proof of Theorem 5.1 in [3].

Proposition 3.1. Let 7 be a semi-invariant semi-Riemannian submersion from
a para-Kahler (M, g1, P) to a semi-Riemannian manifold (N, g2). Then the fibers
of m are locally product manifolds if and only if (Vy @)W =0 for V,W € T'(kerm.).

Now, we obtain necessary and sufficient conditions for a semi-invariant semi-
Riemannian submersion to be totally geodesic. We note that a differentiable map
7 between two semi-Riemannian manifolds is called totally geodesic if Vr, = 0.

Theorem 3.2. Let m be a semi-invariant semi-Riemannian submersion from a
para-Kahler manifold (M, g1, P) to a semi-Riemannian manifold (N, g2). Then w
s a totally geodesic map if and only if

(i) @ngY +TxwY and VxBZ+TxCZ belong to Dy
(ii) ViwY +Tx¢Y and TxBZ + hV5xCZ belong to PDy
for Z € T((kerm,)*) and X,Y € I'(kerr.).

Proof. First of all, since 7 is a semi-Riemannian submersion, we have
(V) (Z1,Z2) =0, Zy,Zy € T((kerm,)b). (3.5)
For X,Y € I'(kerr,), by using (2.2) we have (V7,)(X,Y) = —m,(PV%PY). Using
(3.1) we get (V) (X,Y) = —m,(PV4¢Y + PViwY). Then from (2.5) and (2.6)
we have
(Vi) (X,Y) = =1 (P(Vx Y + Tx Y 4+ hViwY 4+ TxwY)).
Using (3.1) and (3.2) in above equation we get
(VI )(X,Y) = —m(¢VxdY +wVxoY + BTx¢Y + CTx Y
+ BhVYWwY + ChVLWY + ¢TxwY + wTxwY).
Since ¢V x¢Y + BTx oY + BhViwY + ¢TxwY € I'(kerr,), we derive
(VI )(X,Y) = =7, (wVx @Y + CTx Y + ChViwY + wlxwY).
Then, since 7 is a linear isometry between (kerm,)t and TN, (Vr.)(X,Y) = 0 if

only and only if wV x¢Y +CTx ¢Y +ChViwY +wTxwY = 0. Thus (V7,)(X,Y) =
0 if and only if

w(VxoY 4+ TxwY) =0, C(Tx¢Y +hViwY) = 0. (3.6)
In a similar way for Z € T'((kerm.)*) and X € T'(kerr.), (V) (X, Z) = 0 if and
only if R

w(VxBZ +TxCZ)=0, C(IxBZ +hV5xCZ)=0. (3.7)
The proof comes from (3.5)-(3.7).
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Now, we investigate the geometry of leaves of the distribution (kerm,)= .

Theorem 3.3. Let m be a semi-invariant semi-Riemannian submersion from a
para-Kahler manifold (M, g1, P) to a semi-Riemannian manifold (N, g2). Then the
the distribution (kerm,)* defines a totally geodesic foliation if and only if

Az BZy+hVy CZy € T(p), Az, CZy +vVy Zy € T(D3)
for Zy, Zy € T((kerm.)t).
Proof. From (2.1) and (2.2) we obtain V}, Zo = PV} PZ, for Z1, Zo € T'((kerm.)t).
Using (2.7), (2.8) and (3.2) we have

VY, Zo = P(Az,BZs+ vV BZs) + P(Az,CZs + hVy CZs).
Then by using (3.1) and (3.2) we obtain
VY. Zo = BAz BZs+ CAyz,BZs+ ¢vVy BZs +woVy BZs + ¢Az CZs

+ wAz CZy+ BhVy, CZs + ChVy CZs.

Hence, we have V}, Z» € T'((kerr,)*t) if and only if
BAgz, BZs+ ¢vVy BZs + ¢Az, CZy + BhV Yy CZy = 0.

Thus VY, Z € T'((kerm,)*) if and only if

B(Az,BZy + hV CZy) =0, ¢(vVy, BZy+ Az CZs) =0,
which completes proof.
Theorem 3.4. Let m be a semi-invariant semi-Riemannian submersion from a

para-Kahler manifold (M, g1, P) to a semi-Riemannian manifold (N, g2). Then the
the distribution (kerm,) defines a totally geodesic foliation if and only if

Tx,¢X2 + hVy wXs € [(PD3), Tx,wXs + Vx, ¢Xz € T'(Dy)
for X1, X5 € T(kerm,).
Proof. From (2.1) and (2.2) we obtain Vﬁ(ng = PV, PX,for X1, X, € I'(kerm,).
Using (2.5), (2.6) and (3.1) we have
Vi, X2 = P(Tx,6Xo + Vx,6X2) + P(Tx,wXs + hV wX>).
Then by using (3.1) and (3.2) we obtain
Vi, Xo = BTx,¢Xs+ CTx,6Xs + ¢Vx, X2 +wVx, ¢ Xs + ¢Tx,wXo
+ wlx,wXs+ Bthleg + ChV&leg.
Hence, we have V%{l X, € T'(kerm,) if and only if
wl'x,wXs +wVx,¢Xs + CTx, ¢ X2 + ChV wXs = 0.
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Thus VY, X» € I'(kern,) if and only if
w(Tx,wXs + Vx,0X2) =0, C(Tx,pX2 + hV, wXs) =0,

which completes proof.
From Theorem 3.4, we have the following result.

Corollary 3.1. Let 7 be a semi-invariant semi-Riemannian submersion from a
para-Kahler manifold (M, g1, P) to a semi-Riemannian manifold (N, g2). Then the
distribution kerm, defines a totally geodesic foliation if and only if

gg(Vﬂ'*)(Xl,Xg),ﬂ'*PZ) = 0
g2(V7T*)(X17WX2)77T*W) = _gl(TX1VV7 ¢X2)
for X1, X5 € T'(kerny.), Z € T'(D3) and W € T'(u).

Proof. For X;,Xo € D(kerm,.), Tx,wXs + @XIQSXQ € T'(Dy) if and only if
1 (Tx,wXs + Vx,0X2,7) =0 for Z € T'(D3). Skew-symmetric T and (2.5) imply
that

91(Tx,wXo +Vx,0X0,2) = —g1(Tx,Z,wX>) + 91(Vy, X2, 2)
—91(Tx, Z,wX2) + 91(V, Z, $X2).

Using (2.5) again we obtain
91(Tx,wXs + Vx,0X2, Z) = —g1(Tx, Z,wXs) — 1(Vx, Z, PX5).
Hence we have
91(Tx,wXs + Vx,0X32, Z) = —g1(V, Z, PX3).
Then from (2.2) we derive
91(Tx,wX2 + Vx,6Xs, 7) = 91(V, PZ, X>).
Thus we have
91(Tx,wX> + Vx,0X2,Z) = —g1(Vi, Xo, PZ).
Then semi-Riemannian submersion 7 implies that
91 (Tx,wXs + Vx,0X2, Z) = —ga(m(V, X2), 7. (PZ)).
Using (2.9) we obtain
91 (Tx,wXs + Vx,0X2,Z) = go((Vr.) (X1, X2), 7. (PZ)). (3.8)

On the other hand, for X1, Xy € T'(kerm..), T'x, $ X2 + thleQ € I'(PDy,) if and
only if g1(Tx, ¢ X2 + hV,wX2, W) = 0 for W € T'(u). Since T is skew-symmetric,
we have

91(Tx, 0 X2 + WV, wXo, W) = —g1(Tx, W, 6X2) + g1 (hV, wXo, W).
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Since 7 is a semi-Riemannian submersion, we have

91(Tx, ¢ Xo + WV, wXo, W) = —g1 (Tx, W, $X2) + go(m. (hV , wXo), .. (W)).
Then from (2.9) we arrive at
91(Tx, pXo+hV wXo, W) = —g1(Tx, W, ¢X2)+g2(77*(—(V7T*)(X1,WX2),W*((‘g/z)))-

Thus the proof follow from (3.8),(3.9) and Theorem 3.4.
From Proposition 3.1 and Theorem 3.3 we have the following theorem.

Theorem 3.5. Let m be a semi-invariant semi-Riemannian submersion a para-
Kahler manifold (M, g1, P) onto a semi-Riemannian manifold (N, g2). Then M
is a locally product manifold Mp, x Mp, X Merr )1 if and only if (Vé) =0 on
kerm, and

Az BZy+hVy CZy € T(p), Az, CZs +vVy Zs € T(Ds)

for Zy, Zy € T((kerm,)™*), where Mp,, Mp, and Mkerm,)* are integral manifolds
of the distributions D1, Dy and (kerm,)*.
From Corollary 3.1 and Theorem 3.3 we have the following theorem.

Theorem 3.6. Let w be a semi-invariant semi-Riemannian submersion a para-
Kahler manifold (M, g1, P) onto a semi-Riemannian manifold (N, g2). Then M is
a locally product manifold Myerr, X Merr, )+ if and only if

92(Vrm) (X1, Xo),mPZ) = 0
G(Vr) (X1, wXo), mW) = —gi(Tx,W,¢X3)
and
Az BZy+hVy CZy € T(p), Az, CZs +vVy Zs € T(Ds)

for X1,Xy € U(kerm.), Z € T(D2), W € T'(n) and Z1,Z> € T((kerm.)t), where
Myern, and M(k'erw*)J- are integral manifolds of the distributions kerm, and (kerm,)*.

Let m be a semi-invariant semi-Riemannian submersion a para-Kihler manifold
(M, g1, P) onto a semi-Riemannian manifold (N, g2). Then there is a distribution
D, C kerm, such that

kerm, = Dy ® Dy and PD; = Dy, P(Ds) C (kerm,)*

where D- is orthogonal complementary to D; in kerm.,.
We choose a local orthonormal frame {vy,...,v;} of D2 and a local orthonormal
frame {ey, ..., eax} of Dy such that ey; = Peg;—q for 1 <i < k.
Since T (Vpey,_; Pe2i—1) = Tu(Vey_ €2i—1), 1 < i < k, we easily have
1
trace(Vm,) =0 < Z TV, v;).

j=1
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Thus, we obtain

Theorem 3.7. Let m be a semi-invariant semi-Riemannian submersion from a
para-Kahler manifold (M, g1, P) onto a semi-Riemannian manifold (N, gs). Then
7 is a harmonic map if and only if trace(Vm,) =0 on Ds.

Corollary 3.2. Let m be a semi-invariant semi-Riemannian submersion from
a para-Kahler manifold (M, g1, P) onto a semi-Riemannian manifold (N, g2) such
that kerm, = D1. Then 7 is a harmonic map.

Let m : (M, g1) — (N, g2) be a semi-Riemannian submersion. The map 7 is
called a semi-Riemannian submersion with totally umbilical fibers if

TxY =q(X,Y)H for X,Y € I'(kerm.),

where H is the mean curvature vector field of the fiber.

Proposition 3.2. Let 7w be a semi-invariant semi-Riemannian submersion from a
para-Kahler (M, g1, P) to a semi-Riemannian manifold (N, g2). Then H € T(PDs).

Proof. For XY € I'(D;) and W € I'(u) we have

TxPY + VxPY = VL PY = PVLY
= BTXY +CTXY 4+ ¢VxY +wVyY

so that
g1 (Tx PY, W) = 1 (CTxY,W).

By the assumption, with some computations we get
g (X, PY)g1(HW) = —g1(X,Y) g1 (H, PW).
Interchanging the role of X and Y, we obtain
9 (Y, PX)g1(H,W) = —g:(Y, X)g1(H, PW).
so that combining the above two equations, we have
91(Y, X)g:(H, PW) = 0,
which means H € I'(PDs), since Pu = p.
Finally, we are going to obtain curvature relations of semi-invariant semi-Riemannian

submersion from a para-Kihler manifold (M, g1, P) onto a semi-Riemannian man-
ifold (N, g2).
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Let (M,g) be a semi-Riemannian manifold. The sectional curvature K of a
2-plane in T, M, p € M, spanned by {X,Y}, is defined by:

R(X,Y,X,Y)
g(X7X)g(Y7Y) _g(Xv Y)Q.

It is clear that the above definition makes sense only for non-degenerate planes, i.e.
those satisfying Q(X,Y) = g(X, X)g(Y,Y) — g(X,Y)? # 0.

As we know, the para-holomorphic sectional curvatures determine the Riemannian
curvature tensor in a para-Kihler manifold.

Given a plane D invariant by P in T,M, p € M, there is an orthonormal basis
{X,PX} of D. Denote by K(D), K.(D) and K (D) the sectional curvatures of the
plane D in M, N and the fiber 7—1(7(p)), respectively, where K,(D) denotes the
sectional curvature of the plane D, =< 7, X, 7, PX > in N. Using of Corollary 1
in [19], we get the following,

K(X,Y)=

(i) If D C (D1)p, then with some computations we have
K(D)=K(D)+ |TxX|> — |Tx PX|* + ex g1 (Tx X, P[PX, X]).
(ii) If D C (Dy ® PD,), with X € (D3),, then we obtain
K(D) = —(u((Vhx T)x X, PX) + [RPVY X[? — [uPVA X[,
(iii) If D C (u)p, then we get
K(D) = K.(D) + 3[vPVxX|?
where ex = g(X, X) € {£1}.
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