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STRONGLY ∗-CLEAN PROPERTIES AND RINGS OF
FUNCTIONS

HUANYIN CHEN AND ABDULLAH HARMANCI

Abstract. A ∗-ring R is called a strongly ∗-clean ring if every element of
R is the sum of a unit and a projection that commute with each other. In
this paper, we explore strong ∗-cleanness of rings of continuous functions over
spectrum spaces. We prove that a ∗-ring R is strongly ∗-clean if and only if R
is an abelian exchange ring and C(X)

(
C∗(X)

)
is ∗-clean, if and only if R is

an abelian exchange ring and the classical ring of quotients q(C(X)) of C(X)

is ∗-clean, where X is a spectrum space of R.

1. Introduction

Let R be an associative ring with unity. A ring R is called clean if every element
of a ring R is the sum of an idempotent and a unit in R. If, in addition, these
elements are commute, then the ring is called strongly clean. Cleanness of a ring
is widely worked since 1977 in many aspects. In 2002, Azarpanah [1], and in 2003,
McGovern [11] consider this notion in topological aspects. Let C(X) denote the
ring of real valued continuous functions over a topological space X. Azarpanah
and McGovern independently prove that if X is a completely regular Hausdorff
space, then C(X) is clean if and only if X is strongly zero dimensional, if and only
if C∗(X) is clean where C∗(X) is the subring of C(X) consisting of all bounded
functions in C(X) [1]. On the other hand, in the first section of [12], commutative
clean rings are studied by using all maximal ideals and all prime ideals of the ring.
An involution of a ring R is an operation ∗ : R→ R such that (x+y)∗ = x∗+y∗,

(xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ R. A ring R with involution ∗ is called a
∗-ring, which has its roots in rings of operators, that is , ∗-algebras of operators on
a Hilbert space. An element p in a ∗-ring R is called a projection if p2 = p = p∗.
Recently Vas [14] consider cleanness for any ∗-ring. A ∗-ring R is called ∗-clean if
each of its elements is the sum of a unit and a projection, and R a strongly ∗-clean
if each of its elements is the sum of a unit and a projection that commute with each
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other. Also Li and Zhou [8] deal with these notions and answer some questions in
[14].
In this paper, we are concern with the topological properties of strongly ∗-clean

rings. Let Max(R) and Spec(R) be the sets of all maximal ideals and all prime
ideals of the ring R, respectively. Let J-spec(R) = {P ∈ Spec(R) | J(R) ⊆ P}.
These sets form topological spaces under Zariski topology. We call such topological
spaces the spectrum space of R. For a ∗-ring R, we endow the ring C(X) of contin-
uous functions on X with involution ∗, where X is a spectrum space of R. By the
help of this, the relationship between strongly ∗-clean rings and the corresponding
rings of continuous functions are developed. We then look at the special case of
rings of bounded functions. We shall prove that a ∗-ring R is strongly ∗-clean if
and only if R is an abelian exchange ring and C(X)

(
C∗(X)

)
is ∗-clean, where X is

a spectrum space of R. Along the way, we provide topological characterization of
a strongly ∗-clean ring in terms of the classical ring of quotients over its spectrum
spaces.
Throughout this paper all rings are associative with unity. We write J(R),

P (R) and U(R) for the Jacobson radical, the prime radical and the set of all
invertible elements of a ring R, respectively. Let C(X) denote the ring of real
valued continuous functions over a topological space X. Let S and T be two sets.
We use S t T to denote the set S ∪ T with S ∩ T = ∅

2. ∗-Spaces of Prime Ideals

As is well known, Spec(R) is a topological space with Zariski topology. Let
I be an ideal of R, and let ES(I) = {P ∈ Spec(R) | I * P}. Set VS(I) =
Spec(R)−ES(I), and VS(a) := VS(RaR) for any a ∈ R. Then VS(I) is a closed set
of Spec(R). We say that X is a ∗-space provided that C(X) is a ∗-ring.

Lemma 1. Let R be a ∗-ring. Then Spec(R) is a ∗-space.

Proof. Let P be a prime ideal of R. Set P ∗ = {a ∈ R | a∗ ∈ P}. It is easy to check
that P ∗ is an ideal of R. If aRb ∈ P ∗, then b∗Ra∗ ⊆ P . As P is prime, we see that
b∗ ∈ P or a∗ ∈ P . Thus, a ∈ P ∗ or b ∈ P ∗. This implies that P ∗ is a prime ideal
of R. Construct a map ∗ : C

(
Spec(R)

)
→ C

(
Spec(R)

)
given by f 7→ f∗, where

f∗(P ) = f(P ∗) for any P ∈ Spec(R). Clearly, f∗ is continuous for any f ∈ C(X),
thus this map is well defined. It is easy to verify that ∗ is a ring morphism. If
f∗ = 0, then for any P ∈ Spec(R), f∗(P ∗) = 0, and so f(P ) = 0. Thus, f = 0.
That is, ∗ is injective. For any g ∈ C

(
Spec(R)

)
, we see that f∗ = g where f = g∗.

Therefore ∗ is an involution as C
(
Spec(R)

)
is commutative. �

A ring R is called abelian if every idempotent in R is central. A ring R is an
exchange ring provided that for any a ∈ R, there exists an idempotent e ∈ aR such
that 1 − e ∈ (1 − a)R. For general theory of exchange rings, we refer the reader
to [13].
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Lemma 2. Let R be a ∗-ring, let a ∈ R, and let e ∈ R be a projection. If R is an
abelian exchange ring, then the following are equivalent:

(1) a− e ∈ U(R), i.e. a is ∗-clean.
(2) VS(a− 1) ⊆ VS(e) ⊆ Spec(R)− VS(a).

Proof. (1) ⇒ (2) Set u := a − e ∈ U(R). Then 1 − a = 1 − e − u. For any
P ∈ VS(a−1), we have P 6∈ VS(1−e); otherwise, u = (1−e)+(a−1) ∈ P . As R is
abelian, Spec(R) = VS(e)

⊔
VS(1− e), and so P ∈ VS(e). Thus, VS(a− 1) ⊆ VS(e).

If P ∈ Spec(R) and P 6∈ Spec(R)− VS(a), then P ∈ VS(a). This implies that P 6∈
VS(e); otherwise, u = a−e ∈ P . As a result, VS(a−1) ⊆ VS(e) ⊆ Spec(R)−VS(a).
(2) ⇒ (1) Assume that VS(a − 1) ⊆ VS(e) ⊆ Spec(R) − VS(a). Let u = a − e.

Assume that RuR 6= R. Then there exists a maximal ideal M of R such that
RuR ⊆M ( R. Clearly, e ∈M or 1− e ∈M . Thus, M ∈ VS(e) or M ∈ VS(1− e).
If M ∈ VS(e), then a = e+u ∈M , whence, M ∈ VS(a). This gives a contradiction.
If M ∈ VS(1 − e), then a − 1 = (e − 1) + u ∈ M , whence, M ∈ VS(a − 1). This
implies that M ∈ VS(e), a contradiction. Thus RuR = R. Since R is an exchange
ring, analogously to [3, Proposition 17.1.9] that there exists an idempotent f ∈ R
such that RfR = R, where f ∈ uR. Since R is abelian, we derive f = 1, and so
u ∈ U(R). Therefore a− e ∈ R is invertible, hence the result holds. �
Let X be a topological space. As is well known, a subset U of X is a clopen

subset of X if and only if there exists an idempotent e ∈ C(X) such that e(x) = 1
for any x ∈ U and e(x) = 0 for any x ∈ X − U . We say that a subset U of a
∗-space X is ∗-clopen provided that there exists a projection e ∈ C(X) such that
e(x) = 1 for any x ∈ U and e(x) = 0 for any x ∈ X − U . A ∗-space X is strongly
∗-zero-dimensional provided that for any disjoint closed subsets A and B there
exists a ∗-clopen subset U of X such that A ⊆ U and B ⊆ X − U .
Theorem 1. Let R be a ∗-ring. Then R is strongly ∗-clean if and only if

(1) R is an abelian exchange ring;
(2) Spec(R) is strongly ∗-zero-dimensional.

Proof. Assume that R is strongly ∗-clean. In view of [8, Lemma 2.1], R is an abelian
exchange ring. Let A and B be disjoint closed sets of Spec(R). Then A

⋂
B = ∅.

Clearly, there exist two ideals I and J such that A = VS(I) and B = VS(J); hence,
VS(I)

⋂
VS(J) = ∅. If I + J 6= R, then there exists a maximal ideal P of R such

that I+J ⊆ P $ R. Hence, P ∈ VS(I+J) = VS(I)
⋂
VS(J), a contradiction. This

implies that I + J = R. Write a + b = 1 where a ∈ I and b ∈ J . By hypothesis,
there exists a projection e ∈ R such that

VS(a− 1) ⊆ VS(1− e) ⊆ Spec(R)− VS(a).
It is easy to check that

B = VS(J) ⊆ VS(b)
= VS(a− 1) ⊆ VS(1− e) ⊆ Spec(R)− VS(a)
⊆ Spec(R)− VS(I) = Spec(R)−A.
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Clearly, B ⊆ VS(1 − e). As VS(1 − e) ⊆ Spec(R) − A, we see that A ⊆ VS(e).
Obviously, Spec(R) = VS(e)

⊔
VS(1−e). Define f : Spec(R)→ R given by f(P ) = 1

for any P ∈ VS(e) and f(P ) = 0 for any P ∈ VS(1 − e). Then f ∈ C
(
Spec(R)

)
.

Clearly, f2 = f . For any P ∈ VS(e), we have e ∈ P , and so e ∈ P ∗. This implies
that P ∗ ∈ VS(e). Thus, f∗(P ) = f(P ∗) = f(P ) = 1. Likewise, f∗(P ) = f(P ) = 0
for any P ∈ VS(1− e). Therefore f = f∗. This shows that VS(e) is a ∗-clopen set.
Therefore Spec(R) is strongly ∗-zero-dimensional.
Conversely assume that (1) and (2) hold. For any a ∈ R, we see that VS(a)

⋂
VS(1−

a) = ∅, and so there exists a ∗-clopen U such that VS(a−1) ⊆ U ⊆ Spec(R)−VS(a).
Thus, we have a projection f ∈ C

(
Spec(R)

)
such that f(P ) = 1 for any P ∈ U and

f(P ) = 0 for any P ∈ Spec(R)− U . As U is clopen and the prime radical P (R) is
nil, analogously to [3, Lemma 17.1.10], we can find an idempotent e ∈ R such that
U = VS(e).
Now we claim that e is a projection. For any P ∈ VS(e), we see that f(P ) = 1,

and so f∗(P ) = f(P ∗) = f(P ) = 1. This implies that P ∗ ∈ U = VS(e), and so
e ∈ P ∗. Hence, e∗ ∈ P , and then P ∈ VS(e∗). As a result, VS(e) ⊆ VS(e∗). For any
P ∈ VS(1 − e), we see that f(P ) = 0, and so f(P ∗) = f∗(P ) = f(P ) = 0, and so
P ∗ ∈ VS(1−e). This implies that 1−e ∈ P ∗, and so 1−e∗ ∈ P . Hence, P ⊆ VS(1−
e∗). This shows that VS(1 − e) ⊆ VS(1 − e∗). As Spec(R) = VS(e)

⊔
VS(1 − e) =

VS(e
∗)
⊔
VS(1 − e∗), we get VS(e) = VS(e

∗) and VS(1 − e) = VS(1 − e∗). For any
P ∈ Spec(R), if P ∈ VS(e), then P ∈ VS(e∗), and so e, e∗ ∈ P . Thus, e − e∗ ∈ P .
If P ∈ VS(1− e), then P ∈ VS(1− e∗), and so 1− e, 1− e∗ ∈ P . This implies that
e − e∗ = (1 − e∗) − (1 − e) ∈ P . Therefore e − e∗ ∈ P (R). As P (R) is nil, we see
that (e− e∗)n = 0 for some n ∈ N. As e− e∗ = (e− e∗)3, we see that e = e∗. That
is, e ∈ R is a projection. In view of Lemma 2, we complete the proof. �

Recall that two subsets A and B of X is said to be completely separated if there
exists f ∈ C(X) such that 0 ≤ f ≤ 1, f(x) = 0 for all x ∈ A and f(x) = 1
for all x ∈ B. Let X be a topological space, and let A be a subset of X. Then
A is a zero set in X provided that there exists an element f ∈ C(X) such that
A = {x ∈ X | f(x) = 0}, and denote A by Z(f). Every zero set is a closed set, but
the converse does not always hold.

Lemma 3. Let X be a ∗-space. Then X is strongly ∗-zero-dimensional if and only
if

(1) C(X) is ∗-clean;
(2) Any two disjoint closed sets of X are completely separated.

Proof. Suppose thatX is strongly ∗-zero-dimensional. Then any disjoint closed sets
of X are completely separated. Let f ∈ C(X). Let A = f−1(0) and B = f−1(1).
Since every zero set of X is closed, we see that A and B are both disjoint closed
sets of X. By hypothesis, there exists a ∗-clopen set U of X such that A ⊆ U and
B ⊆ X − U . Let e ∈ C(X) be a projection such that e(x) = 1 for any x ∈ U and
e(x) = 0 for any x ∈ X − U . Let u = f − e. For any x ∈ U , e(x) = 1. If f(x) = 1,
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then x ∈ B, and so x ∈ X −U , a contradiction. Thus, f(x) 6= 1. This implies that
u(x) 6= 0 for any x ∈ U . If x ∈ X −U , then e(x) = 0. If f(x) = 0, then x ∈ A ⊆ U ,
a contradiction, and so f(x) 6= 0. This implies that u(x) 6= 0 for any x ∈ X − U .
Therefore u(x) 6= 0 for any x ∈ X. Hence u−1(x) := 1

u(x) for any x ∈ X. That is,
u ∈ C(X) is invertible. Therefore f = e+ u ∈ C(X) is ∗-clean.
Conversely, assume that (1) and (2) hold. Let A and B be disjoint closed sets.

Then A and B are completely separated. In light of [5, Theorem 1.15], A and B are
contained in disjoint zero sets. Thus, we can find some f1, f2 ∈ C(X) such that A ⊆
Z(f1), B ⊆ Z(f2) and Z(f1)

⋂
Z(f2) = ∅. This shows that |f1|+ |f2| > 0. Choose

h = |f1|
|f1|+|f2| ∈ C(X). Since C(X) is ∗-clean, there exist a projection e ∈ C(X) and

a unit u ∈ C(X) such that h = e + u. For any x ∈ X, e(x) · e(x) = e(x), and so
e(x) = 0 or e(x) = 1. Set U = {x ∈ X | e(x) = 0} and V = {x ∈ X | e(x) = 1}.
Then X = U

⊔
V . As U and V are closed, and so V is clopen. Further, V is

∗-clopen. As u ∈ C(X) is a unit, we see that u(x) 6= 0 for all x ∈ X. For any
x ∈ A, we see that f1(x) = 0, and so h(x) = 0. Thus, e(x) 6= 0 as u(x) 6= 0, and
then x ∈ V . That is, A ⊆ V . For any x ∈ B, f2(x) = 0, and so h(x) = 1. This
implies that e(x) = 0; hence, x ∈ X − V . Thus, B ⊆ X − V . Therefore X is
strongly ∗-zero-dimensional. �
Theorem 2. Let R be a ∗-ring. Then R is strongly ∗-clean if and only if

(1) R is an abelian exchange ring;
(2) C

(
Spec(R)

)
is ∗-clean.

Proof. If R is strongly ∗-clean, then (1) and (2) follows from Theorem 1 and
Lemma 3.
Conversely, assume that (1) and (2) hold. Then R is strongly clean. In view of

[3, Lemma 17.1.12], Spec(R) is strongly zero dimensional. Thus, for any disjoint
closed sets A and B of Spec(R), there exists a clopen U such that A ⊆ U and
B ⊆ Spec(R) − U . It follows from Urysohn’s Lemma, there exists a continuous
function f : Spec(R)→ [0, 1] such that f(x) = 0 for all x ∈ A and f(x) = 1 for all
x ∈ B. Thus, A and B are completely separated. By virtue of Lemma 3, Spec(R) is
strongly ∗-zero-dimensional. Therefore we complete the proof from Theorem 1. �
The condition “C

(
Spec(R)

)
is ∗-clean" in Theorem 2 is necessary, as the follow-

ing shows.

Example 1. Let R = Z2 ⊕ Z2. Then the map ∗ : R → R, (a, b)∗ = (b, a) is an
involution. Obviously, R is an abelian exchange ring. Further, R is a commutative
∗-ring. But R is not strongly ∗-clean, as the idempotent e = (1, 0) ∈ R is not a
projection (see [8, Theorem 2.2]).

3. Extensions to ∗-Subspaces

Let I be an ideal of a ∗-ring R, and let EM (I) = {P ∈ Max(R) | I * P}.
Set VM (I) = Max(R) − EM (I). Then Max(R) is a topological space with closed
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sets VM (I). Denote M∗ = {a ∈ R | a∗ ∈ M} for a maximal ideal M . Clearly,
M ∈ Max(R) if and only if M∗ ∈ Max(R). Construct a map ∗ : C

(
Max(R)

)
→

C
(
Max(R)

)
given by f 7→ f∗, where f∗(M) = f(M∗) for any M ∈ Max(R). As

in the proof of Lemma 1, ∗ is an anti-automorphism of C
(
Max(R)

)
. Therefore

Max(R) is a ∗-space.
Lemma 4. Let R be a ∗-ring. Then R is strongly ∗-clean if and only if

(1) R is an abelian exchange ring;
(2) Max(R) is strongly ∗-zero-dimensional.

Proof. Suppose that R is strongly ∗-clean. Then it is an abelian exchange ring.
As in the proof of Lemma 1, a − e ∈ U(R) and only if VM (a − 1) ⊆ VM (e) ⊆
Max(R)−VM (a), where e ∈ R is a projection. Let A and B be disjoint closed sets
of Max(R). Analogously to the discussion in Theorem 1, there exists a projection
e ∈ R such that A ⊆ VM (e) and B ⊆ VM (1 − e). Define f : Max(R) → R given
by f(M) = 1 for any M ∈ VM (e) and f(M) = 0 for any M ∈ VM (1 − e). Then
f ∈ C

(
Max(R)

)
. Similar to the consideration in Theorem 1, VS(e) is a ∗-clopen

set. Therefore Max(R) is strongly ∗-zero-dimensional.
Conversely, assume that (1) and (2) hold. Then R is clean. In view of [3,

Theorem 17.1.13], R is a pm ring, where a ring is a pm ring provided that each
prime ideal is contained in exactly one maximal ideal. Thus, there exists a map
ϕ : Spec(R) → Max(R), ϕ(P ) = M , where M is the unique maximal ideal such
that P ⊆ M . It is easy to check that ϕ

(
VS(I)

)
= VM (I). This shows that ϕ is

continuous. For any disjoint closed sets A,B ⊆ Spec(R), there exist two ideals I
and J of R such that A = VS(I) and B = VS(J). Hence, ϕ(A) and ϕ(B) are both
closed. As VS(I)

⋂
VS(J) = ∅, we see that VS(I + J) = ∅; hence, I + J = R. Thus,

we infer that VM (I)
⋂
VM (J) = VM (I + J) = VM (R) = ∅. This shows that ϕ(A)

and ϕ(B) are disjoint closed sets of Max(R). By hypothesis, Max(R) is strongly
∗-zero-dimensional, there exist disjoint ∗-clopen sets U, V ⊆ Max(R) such that
VM (I) ⊆ U, VM (J) ⊆ V . Clearly, A ⊆ ϕ←ϕ(A) ⊆ ϕ←(U) and B ⊆ ϕ←ϕ(B) ⊆
ϕ←(V ). Clearly, ϕ←(U) and ϕ←(V ) are clopen. For any P ∈ ϕ←(U)

⋂
ϕ←(V ),

there exists a unique M ∈ Max(R) such that P ⊆ M . Hence, M ∈ U
⋂
V , a

contradiction. This shows that ϕ←(U)
⋂
ϕ←(V ) = ∅.

As U is a ∗-clopen set of Max(R), there exists a projection e ∈ C
(
Max(R)

)
such that e(x) = 1 for any x ∈ U and e(x) = 0 for any x ∈Max(R)−U . Construct
a function f : Spec(R) → R given by P 7→ eϕ(P ) for any P ∈ Spec(R). Then
f ∈ C

(
Spec(R)

)
is a projection. Further, we see that f(y) = eϕ(y) = 1 for any

y ∈ ϕ←(U) and f(y) = eϕ(y) = 0 for any y ∈ Spec(R)−ϕ←(U). This implies that
ϕ←(U) is ∗-clopen. Likewise, ϕ←(V ) is ∗-clopen. Therefore Spec(R) is strongly
∗-zero-dimensional, and thus completing the proof by Theorem 1. �
Theorem 3. Let R be a ∗-ring. Then R is strongly ∗-clean if and only if

(1) R is an abelian exchange ring;
(2) C

(
Max(R)

)
is ∗-clean.
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Proof. Suppose that R is strongly ∗-clean. In view of Lemma 4, R is an abelian
exchange ring and Max(R) is strongly ∗-zero-dimensional. According to Lemma 3,
C
(
Max(R)

)
is strongly ∗-clean.

Conversely, as R is an abelian exchange ring, it is clean. In view of [3, Theorem
17.1.13], Max(R) is strongly zero-dimensional. As in the proof of Theorem 2, by
Urysohn’s Lemma, any two disjoint closed sets ofMax(R) are completely separated.
According to Lemma 3,Max(R) is strongly ∗-zero-dimensional. This completes the
proof by Lemma 4. �
The following observation is crucial.

Example 2. Let R = {mn ∈ Q | m,n ∈ Z, (n, 6) = 1}. We choose the involution
as the identity. Then R is a commutative ring. Clearly, Max(R) = {2R, 3R}. As
Max(R) is a finite set, it follows from [5, Remark 2.3] that C

(
Max(R)

)
is ∗-clean.

But R is not strongly ∗-clean. In fact, R is not an exchange ring.

Clearly, the Jacobson radical J(R) is semiprime, and so J(R) is the intersection
of some prime ideals. Thus, J(R) =

⋂
P∈J-spec(R)

P . Let I be an ideal of R, and

let F (I) = {P ∈ J-spec(R) | I 6⊆ P}. Then F (R) = J-spec(R), F (0) = ∅, F (I) ∩
F (J) = F

(
IJ
)
and

⋃
i

F (Ii) = F
(∑
i

Ii
)
. So J-spec(R) is a topological subspace

of Spec(R), where {F (I) | I E R} is the collection of its open sets. Let W (I) =
J-spec(R) − F (I). Then W (I) = {P ∈ J-spec(R) | I ⊆ P} is the collection of its
closed sets. Let R be a ∗-ring. As in the proof of Lemma 1, J-spec(R) is a ∗-space.
The next aim is to investigate strong ∗-cleanness of ∗-rings by such ∗-subspaces.
The following observation will clear our path.

Lemma 5. Let R be a ∗-ring. Then R is strongly ∗-clean if and only if
(1) R is an abelian exchange ring;
(2) R/J(R) is strongly ∗-clean.

Proof. One direction is obvious. Conversely, assume that (1) and (2) hold. For any
a ∈ R, there exists a projection f = f + J(R) ∈ R/J(R) and a unit u ∈ R/J(R)
such that a = f + u. As f − f2 ∈ J(R), by hypothesis, there exists an idempotent
e ∈ R such that f − e ∈ J(R). Since every unit lifts modulo J(R), we may assume
that u ∈ U(R). Thus, a = e + u + r for some r ∈ J(R). Set v = u + r. Then
a = e + v with e = e2 ∈ R, v ∈ U(R). As R is abelian, ae = ea and ae∗ = e∗a.
Further, e− e∗ ≡ f − f∗ ∈ J(R).
Let p = 1+(e∗−e)∗(e∗−e). As ae = ea, ae∗ = e∗a, we see that ap = pa. Clearly,

p ∈ U(R). Write q = p−1. Then p∗ = p, and so q∗ = q. Further, ep = e(1−e−e∗+
ee∗ + e∗e) = ee∗e = (1− e− e∗ + ee∗ + e∗e)e = pe. Thus, we see that eq = qe and
e∗q = qe∗. Set g = ee∗q. Then g2 = ee∗qee∗q = qee∗ee∗q = qpee∗q = ee∗q = g. In
addition, g∗ = q∗ee∗ = ee∗q = g, i.e., g ∈ R is a projection. As aq = qa, we see
that ag = ga. One easy check that eg = g and ge = ee∗qe = ee∗eq = epq = e. This
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implies that e−g = e−ee∗q = e(ep−ee∗)q = e(ee∗e−ee∗)q = ee∗(e−e∗)q ∈ J(R).
Therefore a = e+v = g+(e−g)+v. Clearly, (e−g)+v ∈ U(R). Let w = (e−g)+v.
Then a = g + w, g2 = g = g∗, w ∈ U(R) and ag = ga. Therefore R is strongly
∗-clean. �

Theorem 4. Let R be a ∗-ring. Then R is strongly ∗-clean if and only if
(1) R is an abelian exchange ring;
(2) C

(
J-spec(R)

)
is ∗-clean.

Proof. Construct a map ϕ : J-spec(R) → Spec
(
R/J(R)

)
given by P 7→ P for any

P ∈ J-spec(R). Then ϕ is a continuous map. If ϕ(P ) = ϕ(Q), then P = Q.
For any p ∈ P , write p + J(R) = q + J(R) for some q ∈ Q. This implies that
p ∈ q + J(R) ⊆ Q, and so P ⊆ Q. Likewise, Q ⊆ P . Hence, P = Q, and
so ϕ is injective. For any P ∈ Spec

(
R/J(R)

)
, then P ∈ J-spec(R), and then ϕ

is surjective. That is, ϕ is bijective. Further, one can easily check that ϕ is a
homeomorphism. Construct a map φ : C

(
J-spec(R)

)
→ C

(
Spec(R/J(R))

)
given

by f 7→ fϕ−1 for any f ∈ C
(
J-spec(R)

)
. In addition, ϕ(f∗) =

(
ϕ(f)

)∗
. Therefore

C
(
J-spec(R)

)
and C

(
Spec(R/J(R))

)
are ∗-isomorphic.

If R is strongly ∗-clean, then R is an abelian exchange ring. In view of Lemma 5,
R/J(R) is strongly ∗-clean. It follows from Theorem 2, C

(
Spec(R/J(R))

)
is

strongly ∗-clean, and therefore so is C
(
J-spec(R)

)
. Conversely, assume that (1)

and (2) hold. Then R/J(R) is an abelian exchange ring and C
(
Spec(R/J(R))

)
is

strongly ∗-clean. In light of Theorem 2, R/J(R) is strongly ∗-clean. Therefore R
is strongly ∗-clean by Lemma 5. �

Corollary 1. Let R be a ∗-ring. Then R is strongly ∗-clean if and only if
(1) R is an abelian exchange ring;
(2) J-spec(R) is strongly ∗-zero-dimensional.

Proof. Suppose that R is strongly ∗-clean. Then R is an abelian exchange ring.
It follows by Theorem 4 that C

(
J-spec(R)

)
is ∗-clean. Analogously to the proof

of Theorem 2, any two disjoint closed sets of J-spec(R) are completely separated.
Therefore J-spec(R) is strongly ∗-zero-dimensional from Lemma 3.
Conversely, assume that (1) and (2) hold. In view of Lemma 3, C

(
J-spec(R)

)
is

∗-clean. Hence the result follows by Theorem 4. �

Combining Theorems 2, 3 and 4, we come now to the following main result.

Theorem 5. Let R be a ∗-ring, and let X be a spectrum space of R. Then R is
strongly ∗-clean if and only if

(1) R is an abelian exchange ring;
(2) C(X) is ∗-clean.



110 HUANYIN CHEN AND ABDULLAH HARMANCI

4. The Ring of Bounded Continuous Functions

Let X be a topological space. C∗(X) denote the subring of C(X) of all bounded
functions. In the following lemma we follow the technique of [1, Lemma 2.1].

Lemma 6. Let X be a ∗-space. Then f ∈ C(X) is ∗-clean if and only if there
exists a ∗-clopen set U in X such that f−1(1) ⊆ U ⊆ X − Z(f).

Proof. Let f ∈ C(X) be ∗-clean. Then there exists a projection e ∈ C(X) such
that f − e ∈ U(C(X)). Set U = Z(e). Clearly, X = Z(e) t Z(1 − e), e

(
Z(e)

)
=

{0} and e
(
Z(1 − e)

)
= {1}. Thus, U is a ∗-clopen set. One easily checks that

f−1(1) ⊆ U ⊆ X − Z(f). Conversely, assume that f−1(1) ⊆ U ⊆ X − Z(f) for
a ∗-clopen set U . Then U = Z(e) for some projection e. Construct u : X → R
given by u(x) = f(x) for any x ∈ Z(e) and u(x) = f(x)− 1 for any x ∈ X − Z(e).
Then u = f − e. If x ∈ Z(e), then x 6∈ Z(f), and so f(x) 6= 0. Hence, u(x) 6= 0.
If x ∈ X − Z(e), then x 6∈ f−1(1), and so f(x) 6= 1. This implies that u(x) 6= 0.
Consequently, u ∈ U

(
C(X)

)
, as required. �

Lemma 7. Let R be a ∗-ring, and let X be a spectrum space of R. Then C(X) is
∗-clean if and only if so is C∗(X).

Proof. For any f ∈ C∗
(
X
)
, we define f∗ : X → R given by f∗(P ) = f(P ∗) for

any P ∈ X. One easily checks that f∗ ∈ C∗
(
X
)
. This induces an involution

∗ : C∗
(
X
)
→ C∗

(
X
)
given by f 7→ f∗. Therefore C∗

(
X
)
is a ∗-ring.

Suppose that C(X) is ∗-clean. Let f ∈ C∗(X). Choose A = {x ∈ X| f(x) ≥
2
3} and B = {x ∈ X| f(x) ≤ 1

3}. Construct a function g ∈ C(X) such that
g(x) = 1, x ∈ A; g(x) = 0, x ∈ B and g(x) = 1

2 , otherwise. Then g ∈ C(X)
is ∗-clean. In view of lemma 6, there exists a ∗-clopen set U in X such that
g−1(1) ⊆ U ⊆ X − Z(g). Write U = Z(e) for a projection e ∈ C(X). Construct
u : X → R given by u(x) = f(x) for any x ∈ Z(e) and u(x) = f(x) − 1 for any
x ∈ X − Z(e). Then u = f − e. If x ∈ Z(e), then x 6∈ Z(g), and so g(x) 6= 0.
Thus, x /∈ B, and so f(x) 6= 0. This shows that u(x) 6= 0. If x ∈ X − Z(e), then
x 6∈ g−1(1), and so g(x) 6= 1. Hence, x 6∈ A. This shows that f(x) 6= 1. This
implies that u(x) 6= 0. In addition, u ∈ C∗(X). Therefore u ∈ U

(
C∗(X)

)
, and thus

f ∈ C∗(X) is ∗-clean, as desired.

We now assume C∗(X) is ∗-clean. Let f ∈ C(X). Set h(x) = { −1, if f(x) < −1;
f(x), if f(x) ≥ −1.

Choose g(x) = { h(x), if h(x) < 1;
1, if h(x) ≥ 1. Then g ∈ C∗(X). By hypothesis, g is ∗-

clean. This implies that g ∈ C(X) is ∗-clean. In view of Lemma 6, there exists a
∗-clopen set U in X such that g−1(1) ⊆ U ⊆ X − Z(g). It is easy to check that
f−1(1) ⊆ g−1(1) and X − Z(g) ⊆ X − Z(f). Therefore f−1(1) ⊆ U ⊆ X − Z(f).
This completes the proof by Lemma 6. �
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Theorem 6. Let R be a ∗-ring, and let X be a spectrum space of R. Then R is
strongly ∗-clean if and only if

(1) R is an abelian exchange ring;
(2) C∗(X) is ∗-clean.

Proof. In view of Lemma 7, C(X) is strongly ∗-clean if and only if so is C∗(X).
Therefore we complete the proof by Theorem 5. �

The Stone-Cěch compactification βX of a topological space X is the largest
compact Hausdorff space “generated" by X, in the sense that any map from X to
a compact Hausdorff space factors through βX (in a unique way). That is, βX
is a compact Hausdorff space together with a continuous map from X and has
the following universal property: any continuous map f : X → K, where K is a
compact Hausdorff space, lifts uniquely to a continuous map βf : βX → K.

Corollary 2. Let R be a ∗-ring, and let X be a spectrum space of R. Then R is
strongly ∗-clean if and only if

(1) R is an abelian exchange ring;
(2) The Stone-Čech compactification βX of X is strongly ∗-zero dimensional.

Proof. Suppose that R is strongly ∗-clean. Then R is an abelian exchange ring. In
view of [5, Remark 6.6], C

(
βX
) ∼= C∗(X). Thus, C

(
βX
)
is ∗-clean by Theorem 6.

Hence, βX is a ∗-space. Clearly, C
(
βX
)
is a commutative clean ring. According

to [1, Theorem 2.5], βX is strongly zero dimensional. This shows that any two
disjoint closed sets of βX are completely separated. Therefore βX of X is strongly
∗-zero dimensional by Lemma 3.
Conversely, assume that (1) and (2) hold. In light of Lemma 3, C

(
βX
)
is ∗-

clean. By virtue of [5, Remark 6.6], C∗(X) is ∗-clean. Accordingly, R is strongly
∗-clean from Theorem 6. �

Corollary 3. Let R be a ∗-ring, and let X be a spectrum space of R. Then R is
strongly ∗-clean if and only if

(1) R is an abelian exchange ring;
(2) Max

(
C∗(X)

)
is strongly ∗-zero dimensional.

Proof. By virtue of [5, 14.8] or [10, p. 463], the prime ideals containing a given
ideal forms a chain in C∗(X), and so C∗(X) is a pm-ring. In view of [3, Corollary
17.1.14], C∗(X) is ∗-clean. This completes the proof by Theorem 6. �

5. Strong ∗-Cleanness of q(X)

Let R be a commutative ∗-ring with an identity, and let q(R) be the classical
ring of quotients of R. We say that x ∈ R is self-adjoint provided that x∗ = x.
Construct a ring morphism ∗ : q(R)→ q(R), rs 7→

r∗

s∗ . Then ∗ is also an involution
of q(R). Thus, q(R) is a ∗-ring.
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Let ND(R) denote the set of all nonzero divisors of R, and let ND(X) :=
ND
(
C(X)

)
for a topological space X.

Lemma 8. Let R be a commutative ∗-ring. If e ∈ q(R) is self-adjoint, then there
exist self-adjoint a, b ∈ R such that e = a

b .

Proof. Write e = c
d . As e ∈ q(R) is self-adjoint, e∗ =

(
c
d

)∗
= c∗

d∗ =
c
d . Thus,

c∗d = d∗c. Clearly, d, d∗ ∈ ND(R); hence, e = cd∗

dd∗ . Set a = cd∗ and b = dd∗. Then
a∗ = dc∗ = a and b∗ = b. That is, a, b ∈ R are self-adjoint. In addition, e = a

b , as
required. �

Lemma 9. Let R be a commutative ∗-ring. Then the following are equivalent:
(1) q(R) is ∗-clean.
(2) For any a, b ∈ R with a+b ∈ ND(R), there exist self-adjoint x ∈ aR, y ∈ bR

such that x+ y ∈ ND(R) and xy = 0.
(3) For any a, b ∈ R with a+ b ∈ ND(R), there exist x ∈ aR, y ∈ bR such that

x+ y ∈ ND(R), xy = 0 and x∗y is self-adjoint.

Proof. (1)⇒ (2) Suppose that a+b ∈ ND(R) with a, b ∈ R. Then there exists some
α ∈ q(R) such that aα + bα = 1. Since q(R) is ∗-clean, we can find a projection
e ∈ q(R) such that e ∈ bαq(R) ⊆ bq(R) and 1 − e ∈ aαq(R) ⊆ aq(R). Write
e = bs

t = bst∗

tt∗ . Set w = bst∗ and u = tt∗. Then e = w
u , where w, u ∈ R are

self-adjoint and w ∈ bR. Analogously, 1 − e = z
t , where z, t ∈ R are self-adjoint

and z ∈ aR. Obviously, wu +
z
t = 1, and so wt + zu = ut. Choose x = wt and

y = zu. Then x + y = ut ∈ ND(R). Further, xy = (wz)(ut) = 0 and x, y ∈ R are
self-adjoint.
(2)⇒ (3) is trivial.
(3) ⇒ (1) Suppose that a

s +
b
s = 1 in q(R). Then a + b = s ∈ ND(R). By

hypothesis, there exist x ∈ aR, y ∈ bR such that x + y ∈ ND(R), xy = 0 and x∗y
is self-adjoint. Let e = x

x+y . Then e(1 − e) =
xy
x+y = 0, and so e = e2 ∈ q(R) is

an idempotent. Since x∗y ∈ R is self-adjoint, we see that (x∗y)∗ = x∗y = xy∗, and
so e∗ = x∗

x∗+y∗ =
x
x+y = e; hence, e ∈ q(R) is a projection. Moreover, e = x

x+y ∈(
a
s

)
q(R) and 1− e = y

x+y ∈
(
b
s

)
q(R). Therefore q(R) is strongly ∗-clean. �

Let X be a ∗-space. Then C(X) is a ∗-ring. We denote q
(
C(X)

)
by q(X), and

so q(X) is a ∗-ring. We say that U is a ∗-zero set of X provided that there exists
a self-adjoint f ∈ C(X) such that A = Z(f). Let A be a subset of X. We say that
A is nowhere dense if every open set of X contains an open subset that is disjoint
from A. This is equivalent to saying that the closure of A contains no open set of A
which is not empty. Clearly, every subset of a nowhere dense set is nowhere dense.
We say that A is dense in X if X −A is nowhere dense.
Recall that a topological space X is completely regular if for every point and a

closed set not containing the point, there is a continuous function that has value 0 at
the given point and value 1 at each point in the closed set. Almost every topological
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space studied is completely regular. For instance, metric spaces, Tychonoff spaces
(e.g.,topological manifolds, CW complexes, Niemytzki planes), topological groups,
etc. The following result is known, we include a simple proof for the self-contained.

Lemma 10. Let X be a completely regular space, and let f ∈ C(X). Then the
following are equivalent:

(1) f ∈ ND(X).
(2) Z(f) is nowhere dense.

Proof. (2) ⇒ (1) Assume that fφ = 0 for a φ ∈ C(X). Assume that Z(φ) 6= X.
By hypothesis, there exists an open subset B of X −Z(φ) such that Z(f)

⋂
B = ∅.

Thus, we can find x ∈ B such that x 6∈ Z(f). This implies that f(x), φ(x) 6= 0.
This yields that fφ 6= 0, a contradiction. Thus, Z(φ) = X, and so φ = 0. This
means that f ∈ ND(X).
(1) ⇒ (2) Let C be an open set of X, and let B = C

⋂(
X − Z(f)

)
. If B 6= ∅,

then B is an open subset of C. In addition, Z(f)
⋂
B = ∅. If B = ∅, then we have

C ⊆ Z(f), and so f(C) = 0. Choose a ∈ C. Since X is a completely regular space,
we can find some g ∈ C(X) such that g(x) = 0 for any x ∈ X − C and g(a) = 1.
This implies that fg = 0. By hypothesis, g = 0, a contradiction. Therefore we
complete the proof. �

Theorem 7. Let X be a completely regular ∗-space. Then the following are equiv-
alent:

(1) q(X) is ∗-clean.
(2) For any zero sets A and B of X such that A

⋂
B is nowhere dense, there

exist ∗-zero sets U, V such that A ⊆ U,B ⊆ V such that U
⋂
V is nowhere

dense and U
⋃
V = X.

Proof. (1)⇒ (2) For any zero sets A and B of X such that A
⋂
B is nowhere dense,

we can write A = Z(f) and B = Z(g). Since Z(f2 + g2) = Z(f)
⋂
Z(g) = U

⋂
V

is nowhere dense, it follows from Lemma 10 that f2 + g2 ∈ ND(X). In view of
Lemma 9, there exist self-adjoint h ∈ f2C(X), k ∈ g2C(X) such that h+k ∈ ND(X)
and hk = 0. Let U = Z(h) and V = Z(k). Then A ⊆ U,B ⊆ V . In addition,
U
⋃
V = Z(h)

⋃
Z(k) = Z(hk) = Z(0) = X. Further, U

⋂
V = Z(h)

⋂
Z(k) =

Z(h2 + k2). As h2 + k2 = (h + k)2, we see that U
⋂
V = Z

(
(h + k)2

)
= Z(h + k)

is nowhere dense from Lemma 10. Since h, k ∈ q(X) are self-adjoint, U and V are
both ∗-zero sets, as required.
(2) ⇒ (1) Let f, g ∈ C(X) such that f + g ∈ ND(X). Let A = Z(f) and

B = Z(g). Then A
⋂
B = Z(f)

⋂
Z(g) ⊆ Z(f + g); hence, A

⋂
B is nowhere dense

from Lemma 10. By hypothesis, there exist ∗-zero sets U, V such that A ⊆ U,B ⊆ V
such that U

⋂
V is nowhere dense and U

⋃
V = X. Thus, we can find self-adjoint

h, k ∈ C(X) such that U = Z(h) and V = Z(k). Set ϕ = fh ∈ fC(X) and
ψ = gk ∈ gC(X). Then Z(ϕ) = Z(fh) = Z(f)

⋃
Z(h) = Z(h). Likewise, Z(ψ) =

Z(k). Thus, Z(ϕ2 + ψ2) = Z(ϕ)
⋂
Z(ψ) = Z(h)

⋂
Z(k) is nowhere dense, and so
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ϕ2 + ψ2 ∈ ND(X) from Lemma 10. As Z(ϕ2ψ2) = Z(ϕ)
⋃
Z(ψ) = Z(h)

⋃
Z(k) =

X, we see that ϕ2ψ2 = 0. In addition, it follows from Z(hk) = Z(h)
⋃
Z(k) = X

that hk = 0. Therefore
(
ϕ2
)∗
ψ2 = (fg)2hk(hk) = 0. According to Lemma 9, q(X)

is ∗-clean. �

Lemma 11. Let X be a completely regular ∗-space. Then C(X) is ∗-clean if and
only if

(1) X is strongly zero-dimensional;
(2) q(X) is ∗-clean.

Proof. Suppose that C(X) is ∗-clean. Then q(X) is ∗-clean. By [1, Theorem 2.5],
X is strongly zero-dimensional, as desired.
Conversely, assume that (1) and (2) hold. Let A and B be disjoint closed sets.

Since X is strongly zero-dimensional, there exists a clopen set U such that A ⊆ U
and B ⊆ V . Thus, there exists an e ∈ C(X) such that e(x) = 1 for any x ∈ U
and e(x) = 0 for any x ∈ X − U . Clearly, e = e2 ∈ C(X). By hypothesis,
we have a projection f ∈ q(X) and a unit u ∈ q(X) such that e = f + u. In
view of Lemma 8, write f = a

b with self-adjoint a, b ∈ R. Since e, f ∈ q(X) are
idempotents, we see that (e − f)3 = e − f , and so u2 = 1. That is, (e − f)2 = 1.
This implies that e(1− 2f) = 1− f , and so e = (1− 2f)(1− f). This means that
e
1 =

(b−2a)(b−a)
b2 , and so eb2 = (b − 2a)(b − a). Since a, b ∈ R are self-adjoint, we

see that e∗b2 =
(
(b− 2a)(b− a)

)∗
= (b− 2a)(b− a) = eb2. But b ∈ ND(R), and so

e = e∗ = e2. Thus, U is a ∗-clopen; hence that X is strongly ∗-zero-dimensional.
According to Lemma 3, we complete the proof. �

Theorem 8. Let R be a ∗-ring, and let X be a spectrum space of R. Then R is a
strongly ∗-clean ring if and only if

(1) R is an abelian exchange ring;
(2) q(X) is ∗-clean.

Proof. Since every locally compact Hausdorf space is completely regular, we see
that the spectrum space X of R is always completely regular.
If R is a strongly ∗-clean ring, then R is an abelian exchange ring. By virtue of

Theorem 5, C(X) is ∗-clean. In light of Lemma 11, q(X) is ∗-clean.
Conversely, assume that (1) and (2) hold. Then X is strongly zero-dimensional.

According to Lemma 11, C(X) is ∗-clean. Therefore R is strongly ∗-clean by
Theorem 5. �
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