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LOCALIZED RADIAL SOLUTION TO A SUPERLINEAR
DIRICHLET PROBLEM IN ANNULAR DOMAIN

BOUBKER AZEROUAL AND ABDERRAHIM ZERTITI

Abstract. In this paper, we are interested to the existence of radially sym-
metric solutions of ∆u(x) + f(u) = 0 with prescribed number of zeros on
annular domain in RN , when f grows superlinearity at infinity. Our approach
is based on a shooting method and using fairly straightforward tools of the
theory of ordinary differential which is convenient to count the number of
nodes.

1. Introduction

In this paper, we shall consider classical radial of superlinear boundary-value
problem

∆u(x) + f(u) = 0 if x ∈ Ω
u = 0 if x ∈ ∂Ω

(1.1)

where |x| denotes the standard norm of x in RN , N ≥ 3 and Ω is the annulus of
RN defined by

Ω = C(0, R, T ) = [x ∈ RN : R < |x| < T ]

where R and T are two real numbers such that 0 < R < T , f : R→ R is a nonlinear
function.
We will assume henceforth that the following hypothesis:

(H1) f is locally Lipschitzian,
(H2) f is superlinear, i.e.,

lim
|u|→∞

f(u)

u
= +∞,

(H3) u→ f(u) is increasing for |u| large.
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Note: From (H2) and L’Hopital’s Rule it follows that

lim
|u|→∞

F (u)

u2
= +∞, (1.2)

where F (u) =
∫ u
0
f(s)ds.

It is well known on the ball domain case, the superlinear problem (1.1) has been
widely studied. Most of these results are based on variational and phase-plane
analysis methods. However, these arguments are quite diffi cult and provide no spe-
cific information of qualitative properties. Thereafter another approach proposed
by Pudipeddi [2, 4] gives an easy proof by using Bessel’s functions and revealing
qualitative properties of radial solutions with (H1)—(H3) hypothesis and adding the
additional conditions:

(H4) The function u→ N F (u)− N − 2

2
u f(u) is bounded above.

(H5) There exists a 0 < k ≤ 1, such that

lim
u→∞

( u

f(u)

)N/2(
NF (ku)− N − 2

2
uf(u)

)
= +∞.

Recently, there has been an interest in studying this problem on annular domain.
We cite in our work [1], and we show that the superlinear nonhomogeneous Dirichlet
problem has infinitely many radially symmetric solutions with prescribed number
of zeros with (H1)—(H3) and (H4) hypothesis. Here we use the same method as
in [1] without adding (H4) to prove the existence of radial solutions (1.1) which is
convenient to count the number of zeros. We note that for example the function
f(u) = 8u7 − 4u3, grows superlinearity at infinity but (H4) is not satisfied.
Our paper is organized as follows: In Section 2 we begin by establishing some

preliminary results concerning the existence of radial solutions and by analyzing the
energy we show that the energy function converges uniformly to infinity without
using the Pohozaev-type identity. In Section 3 we obtain the localization of zeros
of the solution and lastly in section 4 we shall prove the main theorem 1.1.

Theorem 1.1. If (H1)—(H3) are satisfied then (1.1) has infinitely many radially
symmetric solutions u with u′(R) 6= 0. For k ∈ N∗ suffi ciently large there exist two
radially symmetric solutions uk and wk of problem (1.1) which have exactly (k− 1)
zeros on (R, T ) such that w′k(R) < 0 < u′k(R).

2. Preliminaries

The existence of radially symmetric solution u(x) = u(r) with r = |x| of (1.1)
is equivalent to the existence of a solution u of the nonlinear ordinary differential
equation

u′′(r) +
N − 1

r
u′(r) + f(u) = 0 if R < r < T, (2.1)

u(R) = u(T ) = 0. (2.2)
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To solve (2.1)-(2.2), we apply the shooting method, by considering the initial
value problem

u′′(r) +
N − 1

r
u′(r) + f(u) = 0 if R < r < T, (2.3)

u(R) = 0 and u′(R) = d

with d an arbitrary nonzero real number. Denote u(r, d) as the solution of (2.3)
which depends on parameter d. By varying d, we shall attempt to choose the
parameter appropriately to have (2.2) and if k is a suffi ciently large nonnegative
integer then u(r, d) has exactly (k − 1) zeros on (R, T ).
Let d > 0. From (H1) and since the initial value problem is not singular on

the domain then the existence and uniqueness of the local solution denoted u(·, d)
of (2.3) on [R,R+ε] for some ε > 0 to obtain by the standard existence-uniqueness
theorem for ordinary differential equations. For the existence on [R, T ] we define
the energy function of a solution u(·, d) = u of (2.3) as

E(r, d) = E(r) =
u′2(r)

2
+ F (u(r)). (2.4)

Then, we see from (1.2) that F (u) > 0 for u large enough so there exists a J > 0
such that

F (u) > −J ∀u ∈ R. (2.5)

Therefore,

E′(r) = −N − 1

r
u′2 ≤ 0.

So, E is nonincreasing and by (2.4) and (2.5) we see that

|u′| ≤
√
d2 + 2J.

It follows that |u′| is uniformly bounded wherever it is defined and hence u and
u′ are defined on all of [R, T ]. Thus (2.3) has a unique solution u(r, d) defined on
interval [R, T ].

Remark 2.1. The solution u(r, d) of (2.3) depends continuously on d in the sense
that if the sequence (dn) converges to d, then the sequence of functions u(·, dn)
converges uniformly to u(·, d) on any bounded interval. A similar property is also
true for u′(·, dn).

As u′(R, d) = d > 0 and by continuity, then there exists r > R such that u′ > 0
on (R, r). Denote r0(d) as the largest r ∈ (R, T ) such that u′ > 0 on (R, r).

Lemma 2.2. Assume (H1) and (H2) hold. Then

(1) limd→+∞ r0(d) = R,
(2) limd→+∞ u(r0(d), d) = +∞.
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Proof. Multiplying (2.1) by rN−1u and by integrating on (R, r) with the initial
conditions gives

u′(r) =
1

rN−1
:

(
dRN−1 −

∫ r

R

tN−1 f(u) dt

)
. (2.6)

Integrating this, we obtain

u(r) =
dRN−1

N − 2

( 1

RN−2
− 1

rN−2

)
−
∫ r

R

1

tN−1

(∫ t

R

sN−1f(u) ds
)

dt. (2.7)

For (1), we argue by contradiction. Suppose that there exists ε > 0 such that for
all γ > 0 there exists d > γ for which

R+ ε ≤ r0(d).

Denote R0 = R+ ε. Then, there exists a sequence dn → +∞ such that

r0(dn) ≥ R0, (2.8)

u(r, dn) > 0, u′(r, dn) ≥ 0 ∀r ∈ (R,R0),∀n ∈ N.
We set r = (R + R0)/2 and u(r, dn) = un(r). We now show that the sequence
(un(r)) is unbounded. Again by contradiction, we suppose that there exists M > 0
such that for all n ∈ N, 0 < un(r) ≤ M . By (2.7) and un is increasing on [R,R0]
we obtain

dnR
N−1

N − 2

( 1

RN−2
− 1

rN−2

)
= un(r) +

∫ r

R

1

tN−1

(∫ t

R

sN−1f(u) ds
)

dt

≤M +
T 2

N
sup

0≤ζ≤M
|f(ζ)| <∞

which is a contradiction to dn → +∞. Hence, the sequence (un(r)) is unbounded
and passing to subsequence we can suppose that

lim
n→+∞

un(r) = +∞.

Now, for all n ∈ N, we denote

Mn = inf
r≤r≤R0

f(un)

un
.

Since, 0 < un(r) ≤ un(r) for all r ∈ [r,R0] we see that

Mn ≥ inf
un(r)≤u≤un(R0)

f(u)

u
.

On the other hand, from (H2) and limn→+∞ un(r) = +∞ we have limn→+∞Mn =
+∞. Thus, there exists n0 ∈ N such that Mn0 > µ2 where µ2 > 0 is the second
eigenvalue of −[ d

2

dr2 + N−1
r

d
dr ] in (r,R0) with Dirichlet boundary conditions. It is

known that the first eigenfunction of this operator can be chosen to be positive.
Then, since the second eigenfunction is orthogonal to the first eigenfunction then
necessarily the second Φ2 eigenfunction must be zero somewhere on (r,R0). Then
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by Sturm comparison theorem since µ2 < Mn0 it follows that un0 has at least
one zero in (r,R0). This is a contradiction with (2.8), and finally we deduce that
limd→+∞ r0(d) = R.
For (2), since limd→+∞ r0(d) = R then for d > 0 suffi ciently large we have

R < r0(d) < T . On the other hand, u has a local maximum at r0(d), then there
exists r∗ ∈ (r0(d), T ) such that u is decreasing and nonnegative on (r0(d), r∗). Now,
we will show that

lim
d→+∞

u(r0(d), d) = +∞.

Suppose that there exists a sequence dn → +∞ such that (u(r0(dn), dn)) is bounded
by M . From (2.6) we obtain that for all n ∈ N and for all r ∈ (r0(dn), r∗)

rN−1u′(r) = dnR
N−1 −

∫
RrtN−1f(u) dt ≤ 0,

dnR
N−1 ≤

∫ r

R

tN−1f(u) dt (0 ≤ u ≤M)

≤ TN

N
sup

0≤ζ≤M
|f(ζ)| <∞.

It follows that (dn) is bounded which is a contradiction to dn → +∞. �
Lemma 2.3. Assume (H1)—(H2) hold. Then

lim
d→∞

E(r, d) = +∞

uniformly for r ∈ [R, T ].

Proof. We see that the energy E(r, d) is decreasing in r ∈ [R, T ] and

E′(r, d) = −N − 1

r
u′2.

Using (2.4) and (2.5) we have

E′(r, d) ≥ −2(N − 1)

r
(E(r, d) + J).

Integrating this on [R, T ] gives

ln(E(T, d) + J)− ln(E(R, d) + J) ≥ −2(N − 1) ln(
T

R
).

We deduce that

E(T, d) + J ≥
(d2

2
+ J

)(T
R

)−2(N−1)
.

Therefore,
E(r, d) ≥ E(T, d) ≥ C1d2 + C2, ∀r ∈ [R, T ],

with C1 = 1
2

(T
R

)−2(N−1)
> 0 and C2 = (2C1 − 1)J . Finally, we deduce that

limd→∞E(r, d) = +∞ uniformly for r ∈ [R, T ]. �



134 BOUBKER AZEROUAL AND ABDERRAHIM ZERTITI

Lemma 2.4. Assume (H1)—(H2) hold. If d is suffi ciently large, then
(1) all the zeros of u(r, d) are simple on [R, T ],
(2) u(r, d) has a finite number of zeros on [R, T ].

Proof. (1) From Lemma 2.3, for d suffi ciently large we have E(T, d) > 0. If t0 is a

zero of u(r, d), then E(t0, d) = u′2(t0,d)
2 ≥ E(T, d) > 0; thus u′(t0, d) 6= 0. Then, t0

is a simple zero of u(r, d).
For (2), we argue by contradiction. Suppose if d is suffi ciently large there exists

R < t1 < . . . . < tn < tn+1 ≤ T and u(tn) = 0 for all n ∈ N. Using the mean
value theorem, there exists zn ∈ (tn, tn+1) such that u′(zn, d) = 0 for all n ∈ N.
So, (tn) converges to t ≤ T , and by continuity of u and u′ we deduce that u(t, d) =
u′(t, d) = 0. This is a contradiction to (1). Thus, for d suffi ciently large u has a
finite number of zeros on [R, T ]. �

3. On the number of zeros of solutions to (2.3)

In this section, we show that the solution u(r, d) has a large number of zeros for
d suffi ciently large. Also, assuming (H1)—(H3) hold, it is obvious that the first zero
of u(r, d) is z0(d) = R. We know from (1.2) that F (u) → +∞ as u → Â ± ∞.
Therefore, since limd→∞E(T, d) = +∞ and by (H2), the mapping u 7→ F (u) is
increasing for large u and decreasing when u is a large negative number, then for
d suffi ciently large the equation F (u) = 1

2E(T, d) has exactly two solutions, which
we denote h1(d) and h2(d) such that

h2(d) < 0 < h1(d).

From (1.2) and Lemma 2.3, we see that

lim
d→+∞

h1(d) = +∞. (3.1)

Also, limd→+∞ h2(d) = −∞.
On the other hand, by (H2), for d large enough, u′′(r0(d)) = −f(u(r0(d)) < 0.

As u′(r0(d)) = 0 so u is decreasing on (r0(d), r) for r close enough to r0(d). Hence,
(see [1]) for d suffi ciently large there is a smallest r ∈ (r0(d), T ) denoted r1(d) such
that

u(r1(d)) = h1(d), h1(d) < u ≤ u(r0(d)) on [r0(d), r1(d)). (3.2)

Lemma 3.1. If (H1)—(H3) are satisfied, then
(1) limd→+∞ r1(d) = R,
(2) For d suffi ciently large, u(r, d) has a first zero z1(d) in the interval (R, T ),

and limd→+∞ z1(d) = R.

Proof. For (1), let

C(d) =
1

2
min

r∈[r0(d),r1(d)]

f(u)

u
=

1

2
min

r∈[h1(d),u(r0(d))]

f(s)

s
.



QUALITATIVE PROPERTIES OF RADIAL SOLUTION 135

It follows from (3.1) and (H2) that

lim
d→+∞

C(d) = +∞. (3.3)

We now compare the problem

u′′(r) +
N − 1

r
u′(r) +

f(u)

u
u = 0 (3.4)

with

v′′(r) +
N − 1

r
v′(r) + C(d)v = 0 (3.5)

with the initial conditions

u(r0(d)) = v(r0(d)) and u′(r0(d)) = v′(r0(d)) = 0. (3.6)

Then, by (3.3) we see that for d suffi ciently large and all r ∈ [r0(d), r1(d)], we have

f(u)

u
≥ 2C(d) > C(d). (3.7)

Claim: For d suffi ciently large, u < v on (r0(d), r1(d)].
Indeed, multiplying (3.4) by rN−1v and (3.5) by rN−1u and subtracting give(

rN−1(u′v − uv′)
)′N−1

uv
(f(u)

u
− C(d)

)
= 0.

Integrating this on (r0(d), r) and using the initial conditions give

rN−1(u′v − uv′) = −
∫ r

r0(d)

tN−1uv
(f(u)

u
− C(d)

)
dt. (3.8)

From (3.1), (3.3) and (3.7), we see that for d suffi ciently large,

f(u)

u
− C(d) ≥ C(d) > 0. (3.9)

For d suffi ciently large, let F = {r ∈ (r0(d), r1(d)) : u < v on (r0(d), r)}. Then
u′′(r0(d)) = −f(u(r0(d)))

= u(r0(d))
(
− f(u(r0(d)))

u(r0(d))
+ C(d)

)
− C(d)u(r0(d)).

From (H2) and Lemma 2.2, it follows that for d suffi ciently large

u(r0(d)) > 0 and − f(u(r0(d)))

u(r0(d))
+ C(d) < 0.

Then, for d suffi ciently large, we have

u′′(r0(d)) < −C(d)u(r0(d)) = v′′(r0(d)).

By continuity, there exists ε > 0 such that (u − v)′′(r) < 0 on (r0(d), r0(d) + ε).
Using the initial conditions (3.6) we deduce that u < v on (r0(d), r0(d) + ε). Thus,
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F 6= ∅. We denote r = sup F . Now, we will show that r = r1(d). Otherwise,
suppose that

u < v on (r0(d), r) and u(r) = v(r).

Since 0 < h1(d) < u < v on (r0(d), r) and by (3.9) we see that for d suffi ciently
large

rN−1uv
(f(u)

u
− C(d)

)
> 0.

Therefore, by (3.8) u′(r)v(r)− u(r)v′(r) < 0 on (r0(d), r]. Thus, u′(r) < v′(r). On
the other hand, as u(r) < v(r) for r < r we have

u(r)− u(r)

r − r >
v(r)− v(r)

r − r .

Hence u′(r) ≥ v′(r). This is a contradiction. It follows that r = r1(d) which
completes the proof of the claim.
Now, we set

z(r) =
(
r/
√
C(d)

)N−2
2

v
(
r/
√
C(d)

)
.

It is easy to verify that z(r) is a solution of Bessel’s equation of order ν = N−2
2 > 0.,

i.e.,

z′′ +
z′

r
+
(
1− ν2

r2
)
z = 0.

Then, there exists a constant K > 0 such that every interval of length K has at
least one zero of z(r) (see [3]). It follows that every interval of length K/

√
C(d)

contains at least one zero of v(r). Hence, by claim for d suffi ciently large, we have

r0(d) < r1(d) < r0(d) +
K√
C(d)

.

Now (1) of this lemma is a consequence of Lemma 2.2 and (3.3).
For (2), suppose not, which means u > 0 on (R, T ] and consider r > r1(d). Then

0 < u < u(r1(d)). Also as F (h1(d)) = 1
2E(T, d) for large d, thus

2F (h1(d)) ≤ u′2

2
+ F (u) ≤ u′2

2
+ F (h1(d)).

Therefore
−u′ = |u′| ≥

√
2F (h1(d)) for r1(d) ≤ r ≤ T.

Integrating on (r1(d), r) and by (3.2) we obtain

h1(d)− u(r) = u(r1(d))− u(r) ≥
√

2F (h1(d))(r − r1(d)),

so that
h1(d)−

√
2F (h1(d))(r − r1(d)) ≥ u(r) > 0,

thus

r − r1(d) ≤ h1(d)√
2F (h1(d))

(3.10)
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for large d.
Taking r = T and taking the limit as d → ∞ in (3.10) as well as using (1.2),

(3.1) and r1(d)→ R we see that

0 < T −R ≤ h1(d)√
2F (h1(d))

→ 0

as d → ∞. This is impossible since T > R. Thus, u has a first zero z1(d). Then
using a similar argument on [r1(d), z1(d)] and letting r = r1(d) in (3.10) we obtain
limd→+∞ z1(d) = R. The proof is complete. �

Lemma 3.2. Let (H1)—(H3) be satisfied. Then for d suffi ciently large the solution
u(r, d) attains a local minimum at r3(d) ∈ (r2(d), T ) and moreover limd→∞ r3(d) =
R.

Proof. We begin to establish the following claim.

Claim: For d suffi ciently large, u(r, d) attains the value h2(d) on (z1(d), T ).
Otherwise, suppose that u(r) > h2(d) on (z1(d), T ). By Lemma 2.4 and u is

decreasing on (r0(d), z1(d), we see that u′(z1(d)) < 0 then u′ < 0 on a maximal
interval (z1(d), r∗). Thus F (u) < F (h2(d)) on [z1(d), r∗[. Hence

2F (h2(d)) ≤ E(r, d) <
u′2

2
+ F (h2(d)).

Therefore
0 <

√
2F (h2(d)) ≤ |u′| = −u′ ∀r ∈ [z1(d), r∗].

In particular u′∗) < 0. This implies r∗ = T . Now integrating this inequality on
(z1(d)), r) we obtain

h2(d) < u(r) ≤ −
√

2F (h2(d))(r − z1(d)) ∀r ∈ [z1(d), T ]. (3.11)

Taking r = T , we have

T − z1(d) ≤ −h2(d)√
2F (h2(d))

.

Since limd→∞ h2(d) = −∞, by (1.2) we deduce that limd→∞
−h2(d)√
2F (h2(d))

= 0. As

limd→∞ z1(d) = R then T = R. This is a contradiction. End of proof of the claim.

We denote by r2(d) the smallest r ∈ (z1(d), T ) such that u(r2(d)) = h2(d) and
h2(d) < u(r, d) on [z1(d), r2(d)]. By (3.11) taking r = r2(d) we see that

lim
d→∞

r2(d) = R. (3.12)

Now, suppose by contradiction that u is decreasing on (r2(d), T ). Then u < h2(d) <
0 on (r2(d), T ). We set

C(d) =
1

2
min

u≤h2(d)

f(u)

u
.
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By (H2), we see that
lim

d→+∞
C(d) = +∞. (3.13)

Now, we compare the problem

u′′(r) +
N − 1

r
u′(r) +

f(u)

u
u = 0 (3.14)

with

v′′(r) +
N − 1

r
v′(r) + C(d)v = 0 (3.15)

and with the initial conditions

v(r2(d)) = u(r2(d)) = h2(d) and v′(r2(d)) = u′(r2(d)). (3.16)

As in the proof of Lemma 3.1, we see that u > v on (r2(d), T ) for d large enough.
We see that

z(r) =
(
r/
√
C(d)

)N−2
2

v
(
r/
√
C(d)

)
is a solution of the Bessel’s equation of order ν = N−2

2 . Then, there exists K > 0
such every interval of length K has at least one zero of z(r). We deduce that for
large d, v must have a zero on (r2(d), T ) and since u > v we see that u gets positive
which contradicts that u is decreasing on (r2(d), T ). It follows that u has a local
minimum at r3(d) ∈ (r2(d), T ). Also , for d suffi ciently large we have

r2(d) < r3(d) ≤ r2(d) +
K√
C(d)

.

It follows from (3.13) and (3.12) as d → ∞ that r3(d) → R. This completes the
proof. �

As F (u(r3(d))) = E(r3(d)) → ∞ as d → ∞ (by Lemma 2.3), in a similar
way we can show that for d large enough, u(r, d) has a second zero z2(d) with
r3(d) < z2(d) < T and moreover limd→+∞ z2(d) = R. Proceeding in the same way,
we can show that for d suffi ciently large, u(r, d) has a second local maximum at
r4(d) ∈ (z2(d), T ) with limd→+∞ u(r4(d)) = +∞ and therefore, there exists z3(d)
the third zero of u(r, d) on (R, T ) with limd→+∞ z3(d) = R.

Remark 3.3. Continuing in the same way, we can obtain as many zeros of u(r, d)
as desired on (R, T ) for d large enough.

4. Proof of theorem 1.1

For d > 0, let us denote by Nd := Card{ zeros of u(r, d) on (R, T )}. For k ≥ 1
defined by set

Sk = {d > 0 : Nd = k − 1}.
By Lemma 2.3 and remark 3.3, we see that for d suffi ciently large, Sk is not empty
for some k and E(T, d) > 0 and we denote k0 = min{k ∈ N∗ : Sk 6= ∅}. It follows
that Sk0 is not empty and is bounded above. Let dk0 = supSk0 .
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Lemma 4.1. u(r, dk0) has exactly k0 − 1 zeros on (R, T ).i.e., Ndk0 = k0 − 1.

Proof. By definition of k0 we have Ndk0 ≥ k0 − 1. Suppose now that Ndk0 ≥ k0.
Then for d close to dk0 and d ≤ dk0 by remark 2.1 with respect to initial conditions
and by Lemma 2.4 we see that Nd ≥ k0. However, if d ∈ Sk0 and is close to dk0 and
d < dk0 then Nd = k0 − 1. This is a contradiction to the definition of dk0 . Hence
Ndk0 = k0 − 1. �

Lemma 4.2. u(T, dk0) = 0.

Proof. We argue by contradiction and assume that u(T, dk0) 6= 0, then by remark
2.1 with respect to initial conditions and by Lemma 2.4, we deduce that if d is close
to dk0 then Nd = Ndk0 Now, for d close to dk0 and d > dk0 then d /∈ Sk0 therefore,
Nd 6= k0 − 1. This is a contradiction with Lemma 4.1. Hence u(T, dk0) = 0. �

We denote Sk0+1 = {d > dk0 : Nd = k0}.

Lemma 4.3. Sk0+1 6= ∅.

Proof. We want to show the following result first.

Claim: If d close to dk0 and d > dk0 then Nd ≤ k0.
Suppose by contradiction that there exists a sequence qn → dk0 such that Nqn ≥

k0 + 1. For all 1 ≤ i ≤ k0 let us denote zni the ith zero of u(r, qn) on (R, T ) such
that

R < zn1 < zn2 < · · · < znk0 < znk0+1 < T.

For every 1 ≤ i ≤ k0 + 1 the sequence (zni ) is bounded and converges to zi thus, we
see that

R < z1 < z2 < · · · < zk0 < zk0+1 < T.

It follows that Ndk0 ≥ k0, which contradicts Lemma 4.1. Thus the claim is proven.

Finally, if d > dk0 then Nd ≤ k0 and Nd 6= k0 − 1 thus, Nd = k0 and Sk0+1 6= ∅
which completes the proof. �

By remark 3.3, it follows that Sk0+1 is not empty and bounded above, thus we
denote dk0+1 = supSk0+1. We show in a similar way as Lemmas 4.1 and 4.2 that
Ndk0+1 = k0 and u(T, dk0+1) = 0. Proceeding inductively we can show, for all
k ≥ k0 there exists a solution uk(r) = u(r, dk) of (2.1)-(2.2) which has exactly
(k − 1) zeros on (R, T ) with u′k(R) = dk > 0.
Now, in the case d < 0 we consider the problem

u′′(r) +
N − 1

r
u′(r) + f(u) = 0 if R < r < T

u(R) = 0, u′(R) = d < 0.
(4.1)



140 BOUBKER AZEROUAL AND ABDERRAHIM ZERTITI

We denote v(r) = −u(r) on [R, T ] and f1(s) = −f(−s) on R then the problem
(4.1) is equivalent to

v′′(r) +
N − 1

r
v′(r) + f1(v) = 0, if R < r < T

v(R) = 0, v′(R) = −d > 0.
(4.2)

It is clear that the assumptions (H1), (H2) and (H3) are satisfied.
Next, according to the case d > 0 we deduce that, for k suffi ciently large, (2.1)-

(2.2) has a solution vk which has exactly (k − 1) zeros on (R, T ) with v′k(R) > 0.
Finally, for k suffi ciently large, (2.1)-(2.2) has a solution wk = −vk which has (k−1)
zeros on (R, T ) and w′k(R) < 0. End of proof of the main Theorem 1.1.

5. Conclusion

By this work, we managed to establish the existence of infinitely many localized
radial solution to superlinear Dirichlet problem (1.1) on annular domain in RN ,
when f grows superlinearity at infinity, the proof presented here seems more natural
and more easier.
We use a shooting method and we show that the energy converges to infinity which
leads to reveal some properties of zeros of solutions. Finally, by approximating
solutions of (1.1) with an appropriate linear Bessel’s equation, we deduce that
there are localized solutions with any prescribed number of zeros.
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