Available online: July 14, 2017

Commun.Fac.Sci.Univ.Ank.Series A1 Volume 67, Number 1, Pages 141–146 (2018) DOI: 10.1501/Commua1_0000000837 ISSN 1303–5991

 $http://communications.science.ankara.edu.tr/index.php?series\!=\!A1$

A NOTE ON TOPOLOGIES GENERATED BY m-STRUCTURES AND ω -TOPOLOGIES

AHMAD AL-OMARI AND TAKASHI NOIRI

ABSTRACT. Let τ^{α} (resp. $SO(X, \tau)$) be the family of all α -open (resp. semiopen) sets in a topological space (X, τ) . The topology τ^{α} is constructed in [10] as follows: $\tau^{\alpha} = \mathcal{T}(SO(X)) = \{U \subset X : U \cap S \in SO(X, \tau) \text{ for every} S \in SO(X, \tau)\}$. By the same method, we construct topologies $\mathcal{T}(m_X)$ and $\mathcal{T}(\omega m_X)$ for *m*-structrues m_X and ωm_X defined in [11], respectively, and show that $\omega \mathcal{T}(m_X) \subset \mathcal{T}(\omega m_X)$. Furthermore, in [2], a topology \mathcal{M}_* is constructed by using an *M*-space (X, \mathcal{M}) with an ideal \mathcal{I} . In this note, we define ωM -open sets on (X, \mathcal{M}) and show that the family $\omega \mathcal{M}$ of all ωM -open sets is a topology for *X* and $\omega (\mathcal{M}_*) = (\omega \mathcal{M})_* = (\omega \mathcal{M})^*$.

1. INTRODUCTION

In 1982, Hdeib [6] introduced and investigated the notions of ω -closed sets and ω -closed mappings. Al-Zoubi and Al-Nashef [3] investigated several properties of the topology of ω -open sets. Recently, Noiri and Popa [11] have introduced the notion of ωm -open sets in an m-space and, by utilizing ωm -open sets, obtained several properties of m-Lindelöf spaces. Let τ^{α} (resp. $SO(X, \tau)$) be the family of all α -open (resp. semi-open) sets of a topological space (X, τ) . Then $SO(X, \tau)$ is not a topology but the topology τ^{α} is constructed in [10] as follows: $\{U \subset X : U \cap S \in SO(X, \tau)$ for every $S \in SO(X, \tau)\} = \tau^{\alpha}$. In this note, by the same method we construct some topologies from an m-structure and the family of ωm -open sets and investigate their relations.

On the other hand, Al-Omari and Noiri [2] constructed the topology \mathcal{M}_* from an M-space (X, \mathcal{M}) with an ideal \mathcal{I} . In this note, we define the notion of ωM -open sets in (X, \mathcal{M}) and show that the family $\omega \mathcal{M}$ of all ωM -open sets is a topology for X and also $\omega(\mathcal{M}_*) = (\omega \mathcal{M})_*$.

2010 Mathematics Subject Classification. Primary 54A05; Secondary 54C10.

©2018 Ankara University Communications de la Faculté des Sciences de l'Université d'Ankara. Séries A1. Mathematics and Statistics.

141

Received by the editors: December 29, 2016, Accepted: April 17, 2017.

Key words and phrases. m-structure, ω -open, ω m-open, ω -topology, *-topology.

2. Preliminaries

Let (X, τ) be a topological space and A a subset of X. The closure of A and the interior of A are denoted by Cl(A) and Int(A), respectively. We recall some definitions and theorems used in this note.

Definition 1. Let (X, τ) be a topological space. A subset A of X is said to be ω -open [6] if for each $x \in A$ there exists $U \in \tau$ containing x such that $U \setminus A$ is a countable set.

The family of all ω -open sets in (X, τ) is denoted by $\omega \tau$.

Lemma 1. (Al-Zoubi and Al-Nashef [3]). Let (X, τ) be a topological space. Then $\omega \tau$ is a topology and it is strictly finer than τ .

Definition 2. Let X be a nonempty set and P(X) the power set of X. A subfamily m_X of P(X) is called an m-structure on X [11] if m_X satisfies the following properties:

(1) $\emptyset \in m_X \text{ and } X \in m_X$,

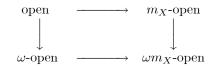
(2) The arbitrary union of the sets belonging to m_X belongs to m_X .

By (X, m_X) , we denote a set X with an *m*-structure m_X and call it an *m*-space. Each member of m_X is said to be m_X -open and the complement of an m_X -open set is said to be m_X -closed.

Definition 3. Let (X, m_X) be an m-space. A subset A of X is said to be ωm_X -open [11] if for each $x \in A$, there exists $U_x \in m_X$ containing x such that $U_x \setminus A$ is a countable set. The complement of an ωm_X -open set is said to be ωm_X -closed.

The family of all ωm_X -open sets in (X, m_X) is denoted by ωm_X .

Remark 1. Let (X, τ) be a topological space and m_X an m-structure on X. If $\tau \subset m_X$, then the following relations hold. We can observe that the implications in the diagram below are not reversible.



Lemma 2. (Noiri and Popa [11]). Let (X, m_X) be an m-space and A a subset of X. Then the following properties hold:

- (1) A is ωm_X -open if and only if for each $x \in A$, there exists $U_x \in m_X$ containing x and a countable subset C_x of X such that $U_x \setminus C_x \subset A$,
- (2) The family ωm_X is an m-structure on X and ωm_X is a topology if m_X is a topology,
- (3) $m_X \subset \omega m_X$ and $\omega(\omega m_X) = \omega m_X$.

Definition 4. Let (X, τ) be a topological space. A subset A of X is said to be

- (1) α -open [10] if $A \subset Int(Cl(Int(A)))$,
- (2) semi-open [8] if $A \subset Cl(Int(A))$,
- (3) preopen [9] if $A \subset Int(Cl(A))$,
- (4) b-open [4] if $A \subset Int(Cl(A)) \cup Cl(Int(A))$,
- (5) β -open [1] if $A \subset Cl(Int(Cl(A)))$.

The family of all α -open (resp. semi-open, preopen, b-open, β -open) sets in (X, τ) is denoted by τ^{α} (resp. SO(X), PO(X), BO(X), $\beta(X)$).

Definition 5. For an m-space (X, m_X) , we define $T(m_X)$ as follows: $T(m_X) = \{U \subset X : U \cap M_X \in m_X \text{ for every } M_X \in m_X\}.$

Remark 2. Let (X,τ) be a topological space and $m_X = PO(X)$ (resp. BO(X), $\beta(X)$). Then $T(m_X)$ is denoted by T_{γ} (resp. T_{δ} , T_{δ}) and the following properties are known:

(1) $T(SO(X)) = \tau^{\alpha}$ [10], (2) $\tau^{\alpha} \subset T_{\gamma} = T_{\delta}$ [5], and (3) $T_{\gamma} = T_{b}$ [4].

3. Topologies generated by m_X and ωm_X

Theorem 1. Let (X, m_X) be an m-space. Then $\mathcal{T}(m_X)$ is a topology for X such that $\mathcal{T}(m_X) \subset m_X$.

Proof. (1) It is obvious that $\emptyset, X \in \mathcal{T}(m_X)$.

(2) Let $V_{\alpha} \in \mathcal{T}(m_X)$ for each $\alpha \in \Delta$. Let A be an arbitrary element of m_X . For each $\alpha \in \Delta$, $V_{\alpha} \cap A \in m_X$ and $\{ \cup V_{\alpha} : \alpha \in \Delta \} \cap A = \cup \{ V_{\alpha} \cap A : \alpha \in \Delta \} \in m_X$ by Definition 2 (2). Therefore, we have $\cup_{\alpha \in \Delta} V_{\alpha} \in \mathcal{T}(m_X)$.

(3) Let $V_1, V_2 \in \mathcal{T}(m_X)$. For any $A \in m_X$, $V_2 \cap A \in m_X$ and $(V_1 \cap V_2) \cap A = V_1 \cap (V_2 \cap A) \in m_X$. Therefore, we obtain $V_1 \cap V_2 \in \mathcal{T}(m_X)$.

Furthermore, for any $V \in \mathcal{T}(m_X)$, $V = V \cap X \in m_X$ and hence $\mathcal{T}(m_X) \subset m_X$.

The following corollary is results established by Nåstad [10], Ganster and Andrijeviá [5] and Andrijeviá [4].

Corollary 1. Let (X, τ) be a topological space. Then the families SO(X), PO(X), BO(X), $\beta(X)$ are m-structures on X. Therefore, τ^{α} , \mathcal{T}_{γ} , \mathcal{T}_{b} and \mathcal{T}_{δ} are topologies for X.

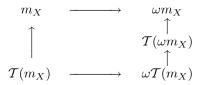
Theorem 2. Let (X, m_X) be an *m*-space. Then $\omega \mathcal{T}(m_X) \subset \mathcal{T}(\omega m_X)$.

Proof. Suppose that $A \in \omega \mathcal{T}(m_X)$. To obtain that $A \in \mathcal{T}(\omega m_X)$, we show that $A \cap B \in \omega m_X$ for every $B \in \omega m_X$. For each $x \in A \cap B, x \in A \in \omega \mathcal{T}(m_X)$ and by Lemma 2, there exist $U_x \in \mathcal{T}(m_X)$ containing x and a countable set C_x such that $U_x \setminus C_x \subset A$. On the other hand, since $x \in B \in \omega m_X$, there exist $V_x \in m_X$ containing x and a countable set D_x such that $V_x \setminus D_x \subset B$. Now, we have

 $A \cap B \supset (U_x \setminus C_x) \cap (V_x \setminus D_x) = U_x \cap (X \setminus C_x)) \cap (V_x \cap (X \setminus D_x)) = (U_x \cap V_x) \cap [(X \setminus C_x) \cap (X \setminus D_x)] = (U_x \cap V_x) \cap [X \setminus (C_x \cup D_x)] = (U_x \cap V_x) \setminus (C_x \cup D_x).$

Since C_x and D_x are countable, $C_x \cup D_x$ is a countable set. Since $U_x \in \mathcal{T}(m_X)$ and $V_x \in m_X$, $U_x \cap V_x \in m_X$ and $x \in U_x \cap V_x$. Therefore, by Lemma 2, $A \cap B \in \omega m_X$. This shows that $A \in \mathcal{T}(\omega m_X)$. Therefore, $\omega \mathcal{T}(m_X) \subset \mathcal{T}(\omega m_X)$.

Remark 3. By Lemma 2 and Theorems 1 and 2, we obtain the following diagram:



QUESTION: Is the converse implication of Theorem 2 true ?

Corollary 2. Let (X, τ) be a topological space. Then $\omega \tau^{\alpha} \subset \mathcal{T}(\omega SO(X))$.

4. Topologies generated by M-spaces with ideals

Definition 6. Let X be a nonempty set and $\mathcal{P}(X)$ the power set of X. A subfamily \mathcal{M} of $\mathcal{P}(X)$ is called an M-structure on X [2] if \mathcal{M} satisfies the following properties:

- (1) \mathcal{M} contains \emptyset and X,
- (2) \mathcal{M} is closed under the finite intersection.

By (X, \mathcal{M}) , we denote a set X with an M-structure \mathcal{M} and call it an M-space. Each member of \mathcal{M} is said to be M-open and the complement of an M-open set is said to be M-closed.

Definition 7. Let (X, M) be an *M*-space. A subset *A* of *X* is said to be ωM -open if for each $x \in A$, there exists $U_x \in M$ containing *x* such that $U_x \setminus A$ is a countable set. The complement of an ωM -open set is said to be ωM -closed.

The family of all ωM -open sets in (X, \mathcal{M}) is denoted by $\omega \mathcal{M}$.

Lemma 3. Let (X, \mathcal{M}) be an M-space and A a subset of X. Then A is ωM -open if and only if for each $x \in A$, there exists $U_x \in \mathcal{M}$ containing x and a countable subset C_x of X such that $U_x \setminus C_x \subset A$.

Proof. Necessity. Let A be ωM -open and $x \in A$. Then there exists $U_x \in \mathcal{M}$ containing x such that $U_x \setminus A$ is a countable set. Let $C_x = U_x \setminus A$. Then we have $U_x \setminus C_x \subset A$.

Let $x \in A$. Then there exists $U_x \in \mathcal{M}$ containing x and a countable set C_x such that $U_x \setminus C_x \subset A$. Therefore, $U_x \setminus A \subset C_x$ and $U_x \setminus A$ is a countable set. Hence A is ωM -open.

Theorem 3. For an M-space (X, \mathcal{M}) , the following properties hold:

A NOTE ON TOPOLOGIES GENERATED BY m-STRUCTURES AND ω -TOPOLOGIES 145

- (1) The family $\omega \mathcal{M}$ is a topology for X,
- (2) $\mathcal{M} \subset \omega \mathcal{M} \text{ and } \omega(\omega \mathcal{M}) = \omega \mathcal{M}.$

Proof. (1) (i) It is obvious that $\emptyset, X \in \omega \mathcal{M}$.

(ii) Let $A, B \in \omega \mathcal{M}$ and $x \in A \cap B$. Then, by Lemma 3, there exist $U, V \in \mathcal{M}$ and countable sets C, D such that $x \in U$ and $U \setminus C \subset A$ and $x \in V$ and $V \setminus D \subset B$. Therefore, $x \in U \cap V \in \mathcal{M}, C \cup D$ is countable and we have

 $(U \cap V) \setminus (C \cup D) = (U \cap V) \cap [(X \setminus C) \cap (X \setminus D)] = [U \cap (X \setminus C)] \cap [V \cap (X \setminus D)] = (U \setminus C) \cap (V \setminus D) \subset A \cap B.$

This shows that $A \cap B \in \omega \mathcal{M}$.

(iii) Let $\{A_{\alpha} : \alpha \in \Delta\}$ be any subfamily of $\omega \mathcal{M}$. Then for each $x \in \bigcup_{\alpha \in \Lambda} A_{\alpha}$, there exists $\alpha(x) \in \Lambda$ such that $x \in A_{\alpha(x)}$. Since $A_{\alpha(x)} \in \omega \mathcal{M}$, there exists $U_x \in \mathcal{M}$ containing x such that $U_x \setminus A_{\alpha(x)}$ is a countable set. Since $U_x \setminus (\bigcup_{\alpha \in \Lambda} A_{\alpha}) \subset U_x \setminus A_{\alpha(x)}, U_x \setminus (\bigcup_{\alpha \in \Lambda} A_{\alpha})$ is a countable set. Therefore, $\bigcup_{\alpha \in \Lambda} A_{\alpha} \in \omega \mathcal{M}$. This shows that $\omega \mathcal{M}$ is a topology.

(2) Since every *M*-open set is ωM -open, $\mathcal{M} \subset \omega \mathcal{M}$. Therefore, by (1) we have $\omega \mathcal{M} \subset \omega(\omega \mathcal{M})$. Let $A \in \omega(\omega \mathcal{M})$. By Lemma 3, for each $x \in A$, there exists $U_x \in \omega \mathcal{M}$ containing x and a countable set C_x such that $U_x \setminus C_x \subset A$. Furthermore, by Lemma 3, there exists $V_x \in \mathcal{M}$ containing x and a countable set D_x such that $V_x \setminus D_x \subset U_x$. Therefore, we have $V_x \setminus (C_x \cup D_x) = (V_x \setminus D_x) \setminus C_x \subset U_x \setminus C_x \subset A$. Since $C_x \cup D_x$ is a countable set, we obtain that $A \in \omega \mathcal{M}$. Therefore, $\omega(\omega \mathcal{M}) \subset \omega M$ and hence $\omega(\omega \mathcal{M}) = \omega M$.

A subfamily \mathcal{I} of $\mathcal{P}(X)$ is called an *ideal* [7] if it satisfies the following properties: (1) $A \in \mathcal{I}$ and $B \subset A$ imply that $B \in \mathcal{I}$;

(2) $A \in \mathcal{I}$ and $B \in \mathcal{I}$ imply that $A \cup B \in \mathcal{I}$.

An *M*-space (X, \mathcal{M}) with an ideal \mathcal{I} is called an ideal *M*-space and is denoted by $(X, \mathcal{M}, \mathcal{I})$ [2]. In [2], for a subset *A* of *X* the *M*-local function of *A* is defined as follows:

 $A_*(\mathcal{I}, \mathcal{M}) = \{ x \in X : A \cap U \notin \mathcal{I} \text{ for every } U \in \mathcal{M}(x) \},\$

where $\mathcal{M}(x) = \{U \in \mathcal{M} : x \in U\}$. In case there exists no confusion $A_*(\mathcal{I}, \mathcal{M})$ is briefly denoted by A_* . By Theorem 4.2 of [2], it is shown that $Cl_*(A) = A \cup A_*$ is a Kuratowski closure operator. The topology generated by Cl_* is denoted by \mathcal{M}_* , that is, $\mathcal{M}_* = \{U \subset X : Cl_*(X \setminus U) = X \setminus U\}$.

Lemma 4. (Al-Omari and Noiri [2]) Let $(X, \mathcal{M}, \mathcal{I})$ be an ideal M-space. Then $\beta(\mathcal{M}, \mathcal{I}) = \{V \setminus I : V \in \mathcal{M}, I \in \mathcal{I}\}$ is a basis for \mathcal{M}_* .

Theorem 4. For any ideal *M*-space $(X, \mathcal{M}, \mathcal{I}), \omega(\mathcal{M}_*) = (\omega \mathcal{M})_*$.

Proof. First, we show that $\omega(\mathcal{M}_*) \supset (\omega\mathcal{M})_*$. Let $A \in (\omega\mathcal{M})_*$ and $x \in A$. Then, by Lemma 4, there exist $V \in \omega\mathcal{M}$ and $I \in \mathcal{I}$ such that $x \in V \setminus I \subset A$. Since $x \in V \in \omega\mathcal{M}$, there exist $G_x \in \mathcal{M}$ and a countable set C_x such that $x \in G_x \setminus C_x \subset V$. Therefore, $x \in G_x \setminus I \in \mathcal{M}_*$ and $(G_x \setminus I) \setminus C_x = (G_x \setminus C_x) \setminus I \subset V \setminus I \subset A$. This shows that $A \in \omega(\mathcal{M}_*)$. Therefore, $\omega(\mathcal{M}_*) \supset (\omega\mathcal{M})_*$. Next, we show that $\omega(\mathcal{M}_*) \subset (\omega\mathcal{M})_*$. Let $A \in \omega(\mathcal{M}_*)$ and $x \in A$. Then there exist $V_x \in \mathcal{M}_*$ and a countable set C_x such that $x \in V_x \setminus C_x \subset A$. Since $V_x \in \mathcal{M}_*$, by Lemma 4, there exist $G_x \in \mathcal{M}$ and $I \in \mathcal{I}$ such that $x \in G_x \setminus I \subset V_x$. Then $x \in G_x \setminus C_x \in \omega\mathcal{M}$ and $(G_x \setminus C_x) \setminus I = (G_x \setminus I) \setminus C_x \subset V_x \setminus C_x \subset A$. This shows that $A \in (\omega\mathcal{M})_*$. Therefore, $\omega(\mathcal{M}_*) \subset (\omega\mathcal{M})_*$. Consequently, we obtain that $\omega(\mathcal{M}_*) = (\omega\mathcal{M})_*$.

In an ideal topological space (X, τ, \mathcal{I}) , the topology generated by the local function is denoted by τ^* . It is known in [7] that $\tau^* = \tau^{\alpha}$ if \mathcal{I} is the nowhere dense ideal. Thus, we have the following corollaries:

Corollary 3. For any ideal *M*-space $(X, \mathcal{M}, \mathcal{I}), \omega(\mathcal{M}_*) = (\omega \mathcal{M})_* = (\omega \mathcal{M})^*$.

Corollary 4. Let (X, τ, \mathcal{I}) be an ideal topological space. Then $\omega(\tau^*) = (\omega \tau)^*$.

Corollary 5. Let (X, τ, \mathcal{I}) be an ideal topological space. If \mathcal{I} is the nowhere dense ideal, then $\omega \tau^{\alpha} = (\omega \tau)^{\alpha}$.

ACKNOWLEDGEMENT

The authors wish to thank the referees for useful comments and suggestions.

References

- Abd El-Monsef, M.E, S. N. El-Deeb and R. A. Mahmoud, β-open sets and β-continuous mapping, Bull. Fac. Sci. Assiut Univ., 12(1) (1983), 77–90.
- [2] Al-Omari, A. and T. Noiri, A topology via *M*-local functions in ideal m-spaces, Questions Answers General Topology, 30 (2012), 105–114.
- [3] Al-Zoubi, K. and B. Al-Nashef, The topology of ω-open subsets, Al-Manarah, 9(2) (2003), 169–179.
- [4] Andrijević, D., On b-open sets, Mat. Vesnik, 48 (1996), 59-64.
- [5] Ganster, M. and D. Andrijević, On some questions concerning semi-preopen sets, J. Inst. Math. Comput. Sci. Ser. Math., 1(2) (1988), 65–75.
- [6] Hdeib, H. Z., ω-closed mappings, Rev. Colomb. Mat., 16 (1982), 65–78.
- [7] Janković, D. and T. R. Hamlett, New topologies from old via ideals, Amer. Math. Monthly, 97 (1990), 295–310.
- [8] Levine, N., Semi-open sets and semi-continuity in topological spaces, Amer. Math. Monthly, 70 (1963), 36-41.
- [9] Mashhour, A. S., M. E. Abd El-Monsef and S. N. El-Deep, On precontinuous and weak precontinuous mappings, Proc. Math. Phys. Soc. Egypt, 53 (1982), 47–53.
- [10] Njåstad, O., On some classes of nearly open sets, Pacific J. Math., 15(3) (1965), 961–970.
- [11] Noiri T. and V. Popa, The unified theory of certain types of generalizations of Lindelöf spaces, Demonstratio Math., 43(1) (2010), 203–212.

Current address: Ahmad Al-Omari: Al al-Bayt University, Faculty of Sciences, Department of Mathematics, P.O. Box 130095, Mafraq 25113, Jordan

E-mail address: omarimutah1@yahoo.com

 $Current \; address:$ Takashi Noiri: 2949-1 Shiokita-cho, Hinagu, Yatsushiro-shi, Kumamoto-ken, 869-5142 Japan

E-mail address: t.noiri@nifty.com