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MAGNETIC NON-NULL CURVES ACCORDING TO PARALLEL
TRANSPORT FRAME IN MINKOWSKI 3-SPACE

AHMET KAZAN AND H.BAYRAM KARADAĞ

Abstract. In this study, we define the notions of T -magnetic, N1-magnetic
and N2-magnetic timelike and spacelike curves in Minkowski 3-space. We
obtain the magnetic vector field V when the timelike or spacelike curve is
a T -magnetic, N1-magnetic or N2-magnetic trajectory of V and give some
examples for these magnetic curves.

1. Introduction

Recently, magnetic curves that have been proposed for computer graphics pur-
poses are a particle tracing technique that generates a wide variety of curves and
spirals under the influence of a magnetic field. In a uniform magnetic field, the mo-
tion of a particle of charge q and mass m, travelling with velocity ~v under magnetic
induction ~B is the result of Lorentz force, F = q(~v × ~B), which can be written as
md~v

dt = q(~v × ~B), where × represents the cross product operation. It describes the
motion of charged particles experiencing Lorentz force. In [15], the authors have
obtained the components of magnetic curves and investigated the magnetic curves
with constant logarithmic curvature graph (LCG) and logarithmic torsion graph
(LTG) gradient.
Also, the magnetic curves on a Riemannian manifold (M, g) are trajectories of

charged particles moving on M under the action of a magnetic field F . A magnetic
field is a closed 2-form F on M and the Lorentz force of the magnetic field F on
(M, g) is a (1,1)-tensor field Φ given by g(Φ(X), Y ) = F (X,Y ), for any vector fields
X,Y ∈ χ(M). In dimension 3, the magnetic fields may be defined using divergence-
free vector fields. As Killing vector fields have zero divergence, one may define a
special class of magnetic fields called Killing magnetic fields.
Different approaches in the study of magnetic curves for a certain magnetic field

and on the fixed energy level have been reviewed by Munteanu in [11]. He has
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emphasized them in the case when the magnetic trajectory corresponds to a Killing
vector field associated to a screw motion in the Euclidean 3-space. In [12], the
authors have investigated the trajectories of charged particles moving in a space
modeled by the homogeneous 3-space S2×R under the action of the Killing magnetic
fields.
In [6], the authors have classified all magnetic curves in the 3-dimensional Min-

kowski space corresponding to the Killing magnetic field V = a∂x + b∂y + c∂z,
with a, b, c ∈ R. They have found that, they are helices in E31 and draw the
most relevant of them. In 3D semi-Riemannian manifolds, Özdemir et. al. have
determined the notions of T -magnetic, N -magnetic and B-magnetic curves and
give some characterizations for them, where T, N an B are the tangent, normal
and binormal vectors of a curve α, respectively [14]. Also, in [10], the authors have
studied on magnetic pseudo null and magnetic null curves in Minkowski 3-space.
In any 3D Riemannian manifold (M, g), magnetic fields of nonzero constant

length are one to one correspondence to almost contact structure compatible to the
metric g. From this fact, many authors have motivated to study magnetic curves
with closed fundamental 2-form in almost contact metric 3-manifolds, Sasakian
manifolds, quasi-para-Sasakian manifolds and etc (see [4], [8], [9], [5]).
On the other hand, a lot of characterizations of the space curves has been stud-

ied by many mathematicians by using Frenet-Serret theorem. The Frenet frame
is constructed for the curve of 3-time continuously differentiable non-degenerate
curves. But, if the second derivative of the curve is zero, then the curvature may
vanish at some points on the curve. For this reason, we need an alternative frame
in E3. Hence, an alternative moving frame along a curve is defined by Bishop in
1975 and he called it Bishop frame or parallel transport frame which is well defined
as well the curve has vanishing second curvature [2]. The Bishop frame have many
applications in Biology and Computer Graphics. For example, it may be possible
to compute information about the shape of sequences of DNA using a curve defined
by the Bishop frame. The Bishop frame may also provide a new way to control
virtual cameras in computer animations [3]. Also, after defining this useful alter-
native frame, the parallel transport frame has been defined for non-null curves in
Minkowski 3-space [13].
In this paper, firstly we define the notions of T -magnetic, N1-magnetic and N2-

magnetic timelike and spacelike curves in Minkowski 3-space. Also, we obtain the
magnetic vector field V when the timelike or spacelike curve is a T -magnetic, N1-
magnetic orN2-magnetic trajectory of V and give some examples for these magnetic
curves.

2. Preliminaries

We know that, an alternative moving frame along a curve in an Euclidean 3-space
is defined by Bishop in 1975 [2]. For defining an alternative moving frame which
is called Bishop frame or parallel transport frame in E3, one can parallel transport
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each component of an orthonormal frame along the curve. Moreover, this frame is
well defined as well the curve has vanishing second curvature. The Bishop frame is
written as  T ′

N ′
1

N ′
2

 =

 0 k1 k2
−k1 0 0
−k2 0 0

 T
N1
N2

 , (2.1)

where T is the tangent vector of the curve and {N1, N2} are any convenient arbitrary
basis for the remainder of the frame in an Euclidean 3-space. Here, {T,N1, N2} is
called Bishop trihedra and k1 and k2 are called Bishop curvatures of the curve α.
The relation between Frenet frame and Bishop frame is given by T

N
B

 =

 1 0 0
0 cos θ(t) sin θ(t)
0 − sin θ(t) cos θ(t)

 T
N1
N2

 , (2.2)

where θ(t) = arctan k2
k1
, the torsion and curvature of the curve according to Frenet

frame are τ(t) = θ′(t) and κ(t) =

√
(k1)

2
+ (k2)

2, respectively. Also, the Bishop
curvatures are defined by k1 = κ cos θ(t) and k2 = κ sin θ(t).
Now, we will recall the parallel transport frame of a non-null curve in Minkowski

3-space.
Let E31 be a 3-dimensional Minkowski space defined as a space to be usual 3-

dimensional vector space consisting of vectors {(x0, x1, x2) : x0, x1, x2 ∈ R}, but
with a linear connection ∇ corresponding to its Minkowski metric g given by

g(x, y) = −x0y0 + x1y1 + x2y2.

Here, there are three categories of vector fields, namely,
spacelike if g(X,X) > 0 or X = 0,
timelike if g(X,X) < 0,
lightlike if g(X,X) = 0, X 6= 0. In general, the type into which a given vector

field X falls is called the causal character of X [7].
In three dimensional Minkowski space, the parallel transport frames for timelike

and spacelike curves can be defined as follows:
If the curve is timelike, then the parallel transport frame is written as T ′

N ′
1

N ′
2

 =

 0 k1 k2
k1 0 0
k2 0 0

 T
N1
N2

 , (2.3)

where T is the timelike tangent vector of the curve and {N1, N2} are any convenient
arbitrary basis for the remainder of the frame in Minkowski 3-space. Here, both of
the vectors of {N1, N2} are spacelike. Now, {T,N1, N2} is called parallel transport
trihedra and k1 and k2 are called parallel transport curvatures of the curve α. The
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relation between Frenet frame and parallel transport frame is given by T
N
B

 =

 1 0 0
0 cos θ(t) sin θ(t)
0 − sin θ(t) cos θ(t)

 T
N1
N2

 , (2.4)

where θ(t) = arctan k2
k1
, the torsion and curvature of the curve according to Frenet

frame are τ(t) = θ′(t) and κ(t) =

√
(k1)

2
+ (k2)

2, respectively. Also, the par-
allel transport curvatures are defined by k1 = g(T ′, N1) = κ cos θ(t) and k2 =
g(T ′, N2) = κ sin θ(t).
If the curve is spacelike, then the parallel transport frame is written as T ′

N ′
1

N ′
2

 =

 0 k1 k2
−εN1

k1 0 0
−εN2k2 0 0

 T
N1
N2

 , (2.5)

where T is the spacelike tangent vector of the curve and {N1, N2} are any convenient
arbitrary basis for the remainder of the frame in Minkowski 3-space such that
one them is spacelike and the other one is timelike and εX = g(X,X). Here,
{T,N1, N2} is called parallel transport trihedra and k1 and k2 are called parallel
transport curvatures of the curve α. The relation between Frenet frame and parallel
transport frame is given by T

N
B

 =

 1 0 0
0 cosh θ(t) sinh θ(t)
0 sinh θ(t) cosh θ(t)

 T
N1
N2

 , (2.6)

where θ(t) = arctanhk2k1 , the torsion and curvature of the curve according to Frenet

frame are τ(t) = εN1
θ′(t) and κ(t) =

√
εN1

(k1)
2

+ εN2
(k2)

2, respectively. Also,
the parallel transport curvatures are defined by k1 = εN1

g(T ′, N1) = κ cosh θ(t)
and k2 = εN2

g(T ′, N2) = κ sinh θ(t).
Moreover, we assume that {T,N1, N2} is positively oriented and the vector prod-

ucts of these vectors are defined as follows:

T ×N1 = εN2N2, N1 ×N2 = εTT, N2 × T = εN1N1.

(for detail, see [13]).
Now, we will give some informations about the magnetic curves in 3-dimensional

semi-Riemannian manifolds.
A divergence-free vector field defines a magnetic field in a three-dimensional

semi-Riemannian manifold M . It is known that, V ∈ χ(Mn) is a Killing vector
field if and only if LV g = 0 or, equivalently, ∇V (p) is a skew-symmetric operator in
Tp(M

n), at each point p ∈Mn. It is clear that, any Killing vector field on (Mn, g)
is divergence-free. In particular, if n = 3, then every Killing vector field defines a
magnetic field that will be called a Killing magnetic field [1].
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Let (M, g) be an n-dimensional semi-Riemannian manifold. A magnetic field is
a closed 2-form F on M and the Lorentz force Φ of the magnetic field F on (M, g)
is defined to be a skew-symmetric operator given by

g(Φ(X), Y ) = F (X,Y ), ∀X,Y ∈ χ(M). (2.7)

The magnetic trajectories of F are curves α on M that satisfy the Lorentz equation
(sometimes called the Newton equation)

∇α′α′ = Φ(α′). (2.8)

The Lorentz equation generalizes the equation satisfied by the geodesics of M ,
namely ∇α′α′ = 0.
Note that, one can define on M the cross product of two vectors X,Y ∈ χ(M)

as follows
g(X × Y, Z) = dvg(X,Y, Z), ∀Z ∈ χ(M).

If V is a Killing vector field on M , let FV = ıV dvg be the corresponding Killing
magnetic field. By ı we denote the inner product. Then, the Lorentz force of FV is

Φ(X) = V ×X.
Consequently, the Lorentz force equation (2.8) can be written as

∇α′α′ = V × α′ (2.9)

(for detail see [11], [14]).

3. Magnetic Non-Null Curves According to Parallel Transport
Frame in Minkowski 3-Space

In this section, we will investigate the T -magnetic, N1-magnetic andN2-magnetic
timelike and spacelike curves in Minkowski 3-space. Also, we obtain the magnetic
vector field V when the timelike or spacelike curve is a T -magnetic, N1-magnetic
or N2-magnetic trajectory of V and give some examples for these magnetic curves.

3.1. Magnetic Timelike Curves According to Parallel Transport Frame
in Minkowski 3-Space.

Definition 1. Let α : I ⊂ R −→ E31 be a timelike curve in Minkowski 3-space and
FV be a magnetic field in E31 . Then,
i) if the tangent vector field of the curve satisfies the Lorentz force equation

∇α′T = Φ(T ) = V × T , then the curve α is called a T -magnetic timelike curve
according to parallel transport frame.
ii) If the vector field N1 of the parallel transport frame satisfies the Lorentz force

equation ∇α′N1 = Φ(N1) = V × N1, then the curve α is called an N1-magnetic
timelike curve according to parallel transport frame.
iii) If the vector field N2 of the parallel transport frame satisfies the Lorentz force

equation ∇α′N2 = Φ(N2) = V × N2, then the curve α is called an N2-magnetic
timelike curve according to parallel transport frame.
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Proposition 1. i) Let α be a T -magnetic timelike curve in Minkowski 3-space
with the parallel transport frame {T,N1, N2} and the parallel transport curvatures
{k1, k2}. Then, the Lorentz force according to the parallel transport frame is ob-
tained as  Φ(T )

Φ(N1)
Φ(N2)

 =

 0 k1 k2
k1 0 ρ
k2 −ρ 0

 T
N1
N2

 , (3.1)

where ρ is a certain function defined by ρ = g(Φ(N1), N2).
ii) Let α be an N1-magnetic timelike curve in Minkowski 3-space with the parallel

transport frame {T,N1, N2} and the parallel transport curvatures {k1, k2}. Then,
the Lorentz force according to the parallel transport frame is obtained as Φ(T )

Φ(N1)
Φ(N2)

 =

 0 k1 µ
k1 0 0
µ 0 0

 T
N1
N2

 , (3.2)

where µ is a certain function defined by µ = g(Φ(T ), N2).
iii) Let α be an N2-magnetic timelike curve in Minkowski 3-space with the paral-

lel transport frame {T,N1, N2} and the parallel transport curvatures {k1, k2}. Then,
the Lorentz force according to the parallel transport frame is obtained as Φ(T )

Φ(N1)
Φ(N2)

 =

 0 γ k2
γ 0 0
k2 0 0

 T
N1
N2

 , (3.3)

where γ is a certain function defined by γ = g(Φ(T ), N1).

Proof. Let α be a T -magnetic timelike curve in Minkowski 3-space with the par-
allel transport frame {T,N1, N2} and the parallel transport curvatures {k1, k2}.
From the definition of the T -magnetic timelike curve according to parallel trans-
port frame, we know that Φ(T ) = k1N1 + k2N2. Since Φ(N1) ∈ Sp{T,N1, N2}, we
have Φ(N1) = a1T + a2N1 + a3N2. So, we get

a1 = −g(ΦN1, T ) = g(N1,ΦT ) = g(N1, k1N1 + k2N2) = k1,

a2 = g(ΦN1, N1) = 0,

a3 = g(ΦN1, N2) = ρ

and hence we obtain that, Φ(N1) = k1T + ρN2.
Furthermore, from Φ(N2) = b1T + b2N1 + b3N2, we have

b1 = −g(ΦN2, T ) = g(N2,ΦT ) = g(N2, k1N1 + k2N2) = k2,

b2 = g(ΦN2, N1) = −g(N2,ΦN1) = −ρ,
b3 = g(ΦN2, N2) = 0

and so, we can write Φ(N2) = k2T − ρN1.
ii) and iii) can be proven with the similar procedure in i). �
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Proposition 2. i) Let α be a unit speed T -magnetic timelike curve in Minkowski
3-space with the parallel transport frame {T,N1, N2} and the parallel transport cur-
vatures {k1, k2}. Then, the timelike curve α is a T -magnetic trajectory of a Killing
magnetic vector field V if and only if the Killing magnetic vector field V is

V = ρT − k2N1 + k1N2 (3.4)

along the curve α.
ii) Let α be a unit speed N1-magnetic timelike curve in Minkowski 3-space

with the parallel transport frame {T,N1, N2} and the parallel transport curvatures
{k1, k2}. Then, the timelike curve α is an N1-magnetic trajectory of a Killing
magnetic vector field V if and only if the Killing magnetic vector field V is

V = −µN1 + k1N2 (3.5)

along the curve α.
iii) Let α be a unit speed N2-magnetic timelike curve in Minkowski 3-space

with the parallel transport frame {T,N1, N2} and the parallel transport curvatures
{k1, k2}. Then, the timelike curve α is an N2-magnetic trajectory of a Killing
magnetic vector field V if and only if the Killing magnetic vector field V is

V = −k2N1 + γN2 (3.6)

along the curve α.

Proof. Let α be a T -magnetic timelike trajectory of a Killing magnetic vector field
V . Using Proposition 1 and taking V = aT + bN1 + cN2; from Φ(T ) = V × T, we
get

b = −k2, c = k1;

from Φ(N1) = V ×N1, we get
a = ρ, c = k1

and from Φ(N2) = V ×N2, we get
a = ρ, b = −k2

and so the Killing magnetic vector field V can be written by (3.4). Conversely, if
the Killing magnetic vector field V is the form of (3.4), then one can easily see that
V × T = Φ(T ) holds. So, the timelike curve α is a T -magnetic projectory of the
Killing magnetic vector field V.
ii) and iii) can be proven with the similar procedure in i). �

Corollary 1. i) If the unit speed timelike curve α with parallel transport frame
{T,N1, N2} is a T -magnetic trajectory of a Killing magnetic vector field V in
Minkowski 3-space, then the Killing magnetic vector field V can be a spacelike,
timelike or null vector.
ii) If the unit speed timelike curve α with parallel transport frame {T,N1, N2}

is an N1-magnetic trajectory of a Killing magnetic vector field V in Minkowski
3-space, then the Killing magnetic vector field V is a spacelike vector.
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iii) If the unit speed timelike curve α with parallel transport frame {T,N1, N2}
is an N2-magnetic trajectory of a Killing magnetic vector field V in Minkowski
3-space, then the Killing magnetic vector field V is a spacelike vector.

Example 1. Let us consider the unit speed timelike curve

α(t) =
1√
3

(2t, cos t, sin t) (3.7)

in Minkowski 3-space. Here, one can easily calculate its Frenet-Serret trihedra and
curvatures as

T =
1√
3

(2,− sin t, cos t) ,

N = (0,− cos t,− sin t) ,

B =
1√
3

(−1, 2 sin t,−2 cos t) ,

κ =
1√
3
, τ =

2√
3
, (3.8)

respectively. Now, we will obtain its parallel transport frame and curvatures. For
this, we find the θ(t) with the aid of τ(t) = θ′(t) as

θ(t) =

∫ t

0

2√
3
dt =

2t√
3
. (3.9)

So, the transformation matrix can be expressed as T
N
B

 =

 1 0 0
0 cos 2t√

3
sin 2t√

3

0 − sin 2t√
3

cos 2t√
3

 T
N1
N2

 . (3.10)

Using the method of Cramer, we can obtain the parallel transport trihedra of the
timelike curve α as follows

T =
1√
3

(2,− sin t, cos t) , (3.11)

N1 =

(
1√
3

sin 2t√
3
,− 2√

3
sin t sin 2t√

3
− cos t cos 2t√

3
,

2√
3

cos t sin 2t√
3
− sin t cos 2t√

3

)
,

N2 =

(
− 1√

3
cos 2t√

3
, 2√

3
sin t cos 2t√

3
− cos t sin 2t√

3
,

− 2√
3

cos t cos 2t√
3
− sin t sin 2t√

3

)
and the parallel transport curvatures can be obtained as

k1 = g(T ′, N1) = κ cos θ =
1√
3

cos
2t√

3
,

k2 = g(T ′, N2) = κ sin θ =
1√
3

sin
2t√

3
. (3.12)
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Now, for example, let us find the Killing magnetic vector field V when the timelike
curve (3.7) is an N2-magnetic trajectory of the Killing magnetic vector field V
according to parallel transport frame (3.11):
If the timelike curve α is N2-magnetic according to parallel transport frame, then

from (3.6), we obtain the Killing magnetic vector field V as

V = − 1√
3

sin
2t√

3

(
1√
3

sin 2t√
3
,− 2√

3
sin t sin 2t√

3
− cos t cos 2t√

3
,

2√
3

cos t sin 2t√
3
− sin t cos 2t√

3

)
(3.13)

+γ

(
− 1√

3
cos 2t√

3
, 2√

3
sin t cos 2t√

3
− cos t sin 2t√

3
,

− 2√
3

cos t cos 2t√
3
− sin t sin 2t√

3

)
.

When the timelike curve α is N2-magnetic according to parallel transport frame,
the figure of α and V can be drawn as following. Similarly, the Killing magnetic

Figure 1. .

vector field V when the curve (3.7) is a T -magnetic or N1-magnetic trajectory of
the Killing magnetic vector field V according to parallel transport frame (3.11) can
be found as the above procedure.

3.2. Magnetic Spacelike Curves According to Parallel Transport Frame
in Minkowski 3-Space.

Definition 2. Let α : I ⊂ R −→ E31 be a spacelike curve in Minkowski 3-space and
FV be a magnetic field in E31 . Then,
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i) if the tangent vector field of the curve satisfies the Lorentz force equation
∇α′T = Φ(T ) = V ×T , then the curve α is called a T -magnetic spacelike curve
according to parallel transport frame.
ii) If the vector field N1 of the parallel transport frame satisfies the Lorentz force

equation ∇α′N1 = Φ(N1) = V × N1, then the curve α is called an N1-magnetic
spacelike curve according to parallel transport frame.
iii) If the vector field N2 of the parallel transport frame satisfies the Lorentz force

equation ∇α′N2 = Φ(N2) = V × N2, then the curve α is called an N2-magnetic
spacelike curve according to parallel transport frame.

Proposition 3. i) Let α be a T -magnetic spacelike curve in Minkowski 3-space
with the parallel transport frame {T,N1, N2} and the parallel transport curvatures
{k1, k2}. Then, the Lorentz force according to the parallel transport frame is ob-
tained as  Φ(T )

Φ(N1)
Φ(N2)

 =

 0 k1 k2
−εN1

k1 0 εN2
ρ

−εN2k2 −εN1ρ 0

 T
N1
N2

 , (3.14)

where ρ is a certain function defined by ρ = g(Φ(N1), N2).
ii) Let α be an N1-magnetic spacelike curve in Minkowski 3-space with the paral-

lel transport frame {T,N1, N2} and the parallel transport curvatures {k1, k2}. Then,
the Lorentz force according to the parallel transport frame is obtained as Φ(T )

Φ(N1)
Φ(N2)

 =

 0 k1 εN2µ
−εN1k1 0 0
−µ 0 0

 T
N1
N2

 , (3.15)

where µ is a certain function defined by µ = g(Φ(T ), N2).
iii) Let α be an N2-magnetic spacelike curve in Minkowski 3-space with the

parallel transport frame {T,N1, N2} and the parallel transport curvatures {k1, k2}.
Then, the Lorentz force according to the parallel transport frame is obtained as Φ(T )

Φ(N1)
Φ(N2)

 =

 0 εN1
γ k2

−γ 0 0
−εN2

k2 0 0

 T
N1
N2

 , (3.16)

where γ is a certain function defined by γ = g(Φ(T ), N1).

Proof. Let α be a T -magnetic spacelike curve in Minkowski 3-space with the parallel
transport frame {T,N1, N2} and the parallel transport curvatures {k1, k2}. From
the definition of the T -magnetic spacelike curve according to parallel transport
frame, we know that Φ(T ) = k1N1 + k2N2. Since Φ(N1) ∈ Sp{T,N1, N2}, we have
Φ(N1) = a1T + a2N1 + a3N2. So, we get

a1 = g(ΦN1, T ) = −g(N1,ΦT ) = −g(N1, k1N1 + k2N2) = −εN1
k1,

a2 = εN1
g(ΦN1, N1) = 0,

a3 = εN2
g(ΦN1, N2) = εN2

ρ
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and hence we obtain that, Φ(N1) = −εN1
k1T + εN2

ρN2.
Furthermore, from Φ(N2) = b1T + b2N1 + b3N2, we have

b1 = g(ΦN2, T ) = −g(N2,ΦT ) = −g(N2, k1N1 + k2N2) = −εN2
k2,

b2 = εN1
g(ΦN2, N1) = −εN1

g(N2,ΦN1) = −εN1
ρ,

b3 = εN2
g(ΦN2, N2) = 0

and so, we can write Φ(N2) = −εN2
k2T − εN1

ρN1.
ii) and iii) can be proven with the similar procedure in i). �

Proposition 4. i) Let α be a unit speed T -magnetic spacelike curve in Minkowski
3-space with the parallel transport frame {T,N1, N2} and the parallel transport cur-
vatures {k1, k2}. Then, the spacelike curve α is a T -magnetic trajectory of a Killing
magnetic vector field V if and only if the Killing magnetic vector field V is

V = ρT − εN2
k2N1 + εN1

k1N2 (3.17)

along the curve α.
ii) Let α be a unit speed N1-magnetic spacelike curve in Minkowski 3-space

with the parallel transport frame {T,N1, N2} and the parallel transport curvatures
{k1, k2}. Then, the spacelike curve α is an N1-magnetic trajectory of a Killing
magnetic vector field V if and only if the Killing magnetic vector field V is

V = −µN1 + εN1
k1N2 (3.18)

along the curve α.
iii) Let α be a unit speed N2-magnetic spacelike curve in Minkowski 3-space

with the parallel transport frame {T,N1, N2} and the parallel transport curvatures
{k1, k2}. Then, the spacelike curve α is an N2-magnetic trajectory of a Killing
magnetic vector field V if and only if the Killing magnetic vector field V is

V = −εN2k2N1 + γN2 (3.19)

along the curve α.

Proof. Let α be a T -magnetic spacelike trajectory of a Killing magnetic vector field
V . Using Proposition 3 and taking V = aT + bN1 + cN2; from Φ(T ) = V × T, we
get

b = −εN2
k2, c = εN1

k1;

from Φ(N1) = V ×N1, we get
a = ρ, c = εN1

k1

and from Φ(N2) = V ×N2, we get
a = ρ, b = −εN2

k2

and so the Killing magnetic vector field V can be written by (3.17). Conversely,
if the Killing magnetic vector field V is the form of (3.17), then one can easily see
that V × T = Φ(T ) holds. So, the spacelike curve α is a T -magnetic projectory of
the Killing magnetic vector field V.
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ii) and iii) can be proven with the similar procedure in i). �

Corollary 2. If the unit speed spacelike curve α with parallel transport frame
{T,N1, N2} is a T -magnetic, N1-magnetic or N2-magnetic trajectory of a Killing
magnetic vector field V in Minkowski 3-space, then the Killing magnetic vector field
V can be a spacelike, timelike or null vector.

Example 2. Let us consider the unit speed spacelike curve

α(t) =
1√
2

(cosh t, sinh t, t) (3.20)

in Minkowski 3-space. Here, one can easily calculate its Frenet-Serret trihedra and
curvatures as

T =
1√
2

(sinh t, cosh t, 1) ,

N = (cosh t, sinh t, 0) ,

B =
1√
2

(sinh t, cosh t,−1) ,

κ = τ =
1√
2
, (3.21)

respectively. Now, we will obtain its parallel transport frame and curvatures. For
this, we find the θ(t) with the aid of τ(t) = εN1

θ′(t) as

θ(t) = −
∫ t

0

1√
2
dt = − t√

2
. (3.22)

So, the transformation matrix can be expressed as T
N
B

 =

 1 0 0
0 cosh t√

2
− sinh t√

2

0 − sinh t√
2

cosh t√
2

 T
N1
N2

 . (3.23)

Using the method of Cramer, we can obtain the parallel transport trihedra of the
spacelike curve α as follows

T =
1√
2

(sinh t, cosh t, 1) , (3.24)

N1 =

(
1√
2

sinh t sinh t√
2

+ cosh t cosh t√
2
, 1√

2
cosh t sinh t√

2
+ sinh t cosh t√

2
,

− 1√
2

sinh t√
2

)
,

N2 =

(
1√
2

sinh t cosh t√
2

+ cosh t sinh t√
2
, 1√

2
cosh t cosh t√

2
+ sinh t sinh t√

2
,

− 1√
2

cosh t√
2

)



MAGNETIC NON-NULL CURVES IN E3
1 159

and the parallel transport curvatures can be obtained as

k1 = εN1
g(T ′, N1) = κ cosh θ =

1√
2

cosh
t√
2
,

k2 = εN2
g(T ′, N2) = κ sinh θ = − 1√

2
sinh

t√
2
. (3.25)

Here, N1 is a timelike and N2 is a spacelike vector. Now, for example, let us find the
Killing magnetic vector field V when the timelike curve (3.20) is an N1-magnetic
trajectory of the Killing magnetic vector field V according to parallel transport frame
(3.24):
If the spacelike curve α is N1-magnetic according to parallel transport frame,

then from (3.18), we obtain the Killing magnetic vector field V as

V = −µ
(

1√
2

sinh t sinh t√
2

+ cosh t cosh t√
2
,

1√
2

cosh t sinh t√
2

+ sinh t cosh t√
2
,− 1√

2
sinh t√

2

)
(3.26)

− 1√
2

cosh
t√
2

(
1√
2

sinh t cosh t√
2

+ cosh t sinh t√
2
,

1√
2

cosh t cosh t√
2

+ sinh t sinh t√
2
,− 1√

2
cosh t√

2

)
.

When the spacelike curve α is N1-magnetic according to parallel transport frame,
the figure of α and V can be drawn as following:

Figure 2. .

Similarly, the Killing magnetic vector field V when the curve (3.20) is a T -
magnetic or N2-magnetic trajectory of the Killing magnetic vector field V according
to parallel transport frame (3.24) can be found as the above procedure.
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