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STOCHASTIC STABILITY IN TERMS OF AN ASSOCIATED
TRANSFER FUNCTION MATRIX FOR SOME HYBRID

SYSTEMS WITH MARKOVIAN SWITCHING

CHAFAI IMZEGOUAN

Abstract. This work is devoted to stability for a dynamical system with
Markovian switched controller and a finite number of linear differential sub-
systems. We suppose suffi cient conditions on a state space representation of
an associated transfer function matrix which guarantees stochastic stability.
The given examples are detailed to illustrate the main result.

1. Introduction

Much attention has been drown by switched dynamical systems due to their
extensive applications in many fields such as economic systems, financial markets,
communication networks..., (For more information see [4]). The important problem
is to ensure stability because the typical problem of switched systems is as follow: it
can be that all sub-systems of the jump system are stable but the switched system
can be unstable [20].
We refer the reader to the book by Sun and Ge ([17]) for examples, and a

recent systematic manner presentation of the stability theory of general switched
systems under different switching mechanisms. The other new stability issues,
concepts and methods for Markovian switching systems, were introduced by Benaîm
et al. in [2] where the same system was studied supposing also that the matrices
of the subsystems are Hurwitz (all eigenvalues with negative real parts) without
supposing that the subsystems are in companion form. The authors have dealt
with the stability problem, but only for planar randomly switched systems and
they have proved that under some conditions on the Hurwitz matrices, the norm of
the continuous component may go to zero or to infinity depending on the existence
of few or many jumps.
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Zhu et al. ([23]) have studied stability of random switching systems of differen-
tial equations. They have presented suffi cient conditions in terms of a Lyapunov
function and they also established verifiable conditions for stability and instability
of systems arising in approximation. They have used a logarithm transformation to
derive necessary and suffi cient conditions for systems that are linear in the continu-
ous state component. They have concluded their paper with several examples, and
have noticed a somewhat different behavior from the well-known Hartman-Grobman
theorem. A deterministic counterpart in R2 was detailed by Balde et al.[1] in the
case of arbitrary switching. Also, an implemented method of simulation as Scilab
and Matlab toolboxes was presented in [5] and [6] for the deterministic switching
case.
In this paper, we consider a hybrid system modulated by a random-switching

process which is equivalent to finite number of ordinary differential equations cou-
pled by a switching or jump component. The hybrid system with Markovian
switched controller is supposed associated with a transfer matrix G(s) with s a
complex number. The motivation behind this quite new formulation is well de-
scribed in the articles by Kouhi and al. ([11] and [12]). The main contribution
in this paper consists on the use of the stochastic machinery in order to obtain
some quite new stochastic stability results under verifiable conditions on the para-
meters and dynamics of the considered Markovian switched controller systems, and
to give the suitable form to make the system switch to a finite number of states in
a stochastic approach rather than two states in [11] and [12]. The justification of
existence of a Lyapunov function is based on the Kalman-Yakubovic-Popov lemma.
This paper is organized as follows: We start by defining the Markovian switching

system. Then, we give the conditions under which the system is considered in
companion form. Next, the two different stochastic stability are recalled. After that,
we establish under some conditions on state space realization of the transfer matrix
G that the random-switched system is asymptotically almost surely stable. Finally,
the examples are displayed to demonstrate the applicability and effectiveness of the
theoretical result.

2. Problem Statement

Consider the closed loop system with state realization (A,B,C,D) associated
with the transfer matrix G(s) = C(sI −A)−1B +D{

ẋ(t) = Ax(t) +Bu(t)

y(t) = Cx(t) +Du(t),
(1)

with state feedback of the form ur(t) = 1
N (1−r(t))Kx(t), where r(t) = {1, 2, ..., N}

and K = D−1C. Then, System (1) becomes

ẋ(t) = Ax(t) +
1

N
(1− r(t))BD−1Cx(t). (2)
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We can rewrite (2) in the following form

ẋ(t) = Ar(t)x(t), (3)

with Ar(t) = A+ 1
N (1− r(t))BD−1C and random signal r(t) ∈M = {1, 2, ..., N}.

This system is represented schematically as

Figure 1. Dynamical system with Markovian switched controller.

We start a stochastic counterpart of the results obtained in [11] and [12] by
considering a N states Markovian switched controller of the system in order to
be able to perform some useful simulations, and prove stochastic stability under a
Markovian transition rule rather than an arbitrary switching. Which means that
we deal with the weaker notion of stability than the guaranteed one considered in
[11].

3. Formulation

Throughout this paper, we denote n dimensional identity matrix by In or just
I. R and C denote the field of real and complex numbers respectively. The space
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of n × n matrices with real entries is denoted by Rn×n. We denote a state space
representation of the m×m transfer function matrix G(s) = C(sI−A)−1B+D by
(A,B,C,D), where we always assume that A ∈ Rn×n, B ∈ Rn×m has full column
rank, C ∈ Rm×n has full row rank, and 0 < D = DT ∈ Rm×m for some integers
n ≥ m.
We also use |y| to denote the Euclidean norm for a row or column vector y, vT is
the transpose of v ∈ Rn1×n2 with ni ≥ 1. For Z ∈ Rn×n being a square symmetric
matrix, we use λmax(Z) and λmin(Z) to denote the maximum and minimum eigen-
value of Z respectively.
Let us consider a dynamical linear system with random switching in a probability
space (Ω,F , P r), and assume that its state equation is described by the following
differential equation

ẋ(t) = Ar(t)x(t),
(
x(0), r(0)

)
= (x0, r0) ∈ Rn ×M, (4)

where x(t) is the continuous state, Ar(t) = A+ 1
N (1−r(t))BD−1C, and {r(t), t ≥ 0}

is a Markovian jump process with values in a finite state spaceM = {1, 2, ..., N}.
r(t) describes the switching between the N modes. Its evolution is governed by the
following probability transition

Pr(r(t+ ∆t) = j/r(t) = i) =

{
qij∆t+ o(∆t) if i 6= j,

1 + qii∆t+ o(∆t) otherwise,
(5)

where qij is the transition rate from mode i to j such that i, j ∈ M with qij ≥ 0

when i 6= j, and qii = −
2∑

j=1,j 6=i
qij and o(∆t) is such that lim

∆t→0

o(∆t)
∆t = 0.

The jump process r(t) has a constant generator Q = (qij) and the process
(x(t), r(t)) defined by (4) and (5), is associated with an infinitesimal operator L
defined as follows:
For each i ∈M and any g(., i) ∈ C1(Rn)

Lg(x, i) = 〈Aix,∇g(x, i)〉+Qg(x, .)(i),

where 〈., .〉 is the usual inner product in Rn, ∇g(x, i) denote the gradient (with
respect to the variable x) of g(x, i) and Qg(x, .)(i) =

∑
j∈M

qijg(x, j).

Assume that the Markov chain r(t) is irreducible in the sense that the system of
equations {

πQ = 0

π1 = 1
(6)

has a unique positive solution, where 1 is a column vector with all component being
1. The positive solution is termed a stationary distribution.
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It is known that if P is a transition matrix of a irreducible Markov chain, then,

lim
n→∞

Pn =


π1 π2 . . . πN
. . .
. . .
. . .
π1 π2 . . . πN

 ,

where π = (π1, π2, ..., πN ) is a stationary distribution satisfying

πP = π.

In the sequel, we will be interested by determining a Lyapunov function for
the class of random switching Systems (4), with Ar(t) is a Hurwitz matrix valued
function taking values Ai, i ∈ {1, 2, ..., N} which are related through a transfer
function matrix.
We recall that it is known that the theoretical justification of stability for this

kind of random switching systems can be assured only through the existence of a
suitable Lyapunov function.

Definition 3.1. [12] An m ×m rational transfer function matrix G(s) is said to
be strictly positive real (SPR) if there exists a real scalar α > 0 such that G(s) is
analytic for Re(s) ≥ −α, and

G(jω − α) +GT (−jω − α) ≥ 0, ∀ω ∈ R.

Now, we give a lemma which relates the property of G(s) is SPR and the state
space realization (A,B,C,D) when G is a symmetric transfer matrix.

Lemma 3.1. [12] Given a Hurwitz matrix A, the symmetric transfer function
matrix G(s) = C(sI − A)−1B + D with D = DT > 0 is SPR if and only if
A(A−BD−1C) has no real negative eigenvalue.

Furthermore, if (A,B,C,D) is a minimal realization of G(s), then the suffi cient
condition is also necessary.

Lemma 3.2. [8] The pair (A,B) is controllable if and only if

rank
([
B,AB, ..., An−1B

])
= n.

The pair (A,C) is observable if and only if

rank
([
CT , ATCT , ..., (AT )n−1CT

])
= n.

Let us now recall respectively the definitions of stochastically ( mean square )
stability and ( asymptotic ) almost surely stability.

Definition 3.2. [22] A jump linear System (4) is said to be
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(1) stochastically (mean square) stable if for any initial state x0 and initial
distribution ρ, we have∫ +∞

0

Eρ{|x(t;x0, r0)|2}dt < +∞.

(2) (asymptotically) almost surely stable if for any initial state x0 and initial
distribution ρ, we have

Pr{ lim
t→+∞

|x(t;x0, r0)| = 0} = 1.

Lemma 3.3 ([22] page 81). Any mean square stable jump linear system is almost
surely stable.

Before displaying the main result, let us given a basic result in systems theory
by Kalman-Yakubovic-Popov (KYP). It gives algebraic conditions for the existence
of a certain type of Lyapunov function for first state.

Lemma 3.4 (KYP). [12] Let A be Hurwitz, (A,B) be controllable, and (A,C) be
observable. Then, G(s) = C(sI − A)−1B + D is SPR if and only if there exist
matrices P = PT > 0, L, W , and a number α > 0 satisfying
ATP + PA+ αP = −LTL
BTP +WTL = C
D +DT = WTW .

4. Main result

In this section, we present our main result in this paper concerning stochastic
stability (Asymptotic almost surely stability) for System (4) by using Lyapunov
function. We give suffi cient conditions which guarantee stochastic stability under
some conditions on the transfer matrix G(s).

Theorem 4.1. Assume that the transfer function matrix G(s) is SPR, with (A,B)
controllable and (A,C) observable. Then the dynamical random switching System
(4) is asymptotically almost surely stable.

Proof. Let us consider the arbitrary square matrices of order n, Pi and Pj satisfying
Pi = Pj = P = PT > 0 for i 6= j on M. We define a Lyapunov function by the
following expression

V (x(t), r(t)) = xT (t)Pr(t)x(t).
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At time t, let x(t) = x and r(t) = i ∈ M. The infinitesimal operator acting on
V (., .) and emanating from the point (x, i) at time t is given by

LV (x, i) = 〈Aix,∇V (x, i)〉+QV (x, .)(i)

= xTATi
∂

∂x
V (x, i) +

∑
j∈M

qijV (x, j)

= xT
(
ATi Pi + PiAi

)
x+ xT

∑
j∈M

qijPjx

= xT
[
(A+

1

N
(1− i)BD−1C)TPi + Pi(A+

1

N
(1− i)BD−1C)

]
x,

with
∑
j∈M

qijPj = 0, because Pi = Pj ,∀i, j ∈ M and
∑
j∈M

qij = 0. Now, we

show that for any i ∈ M, LV (x, i) ≤ 0.The matrix G(s) is SPR, (A,B) and
(A,C) are controllable and observable respectively, then, by Lemma 3.4, there
exist P = PT > 0, L, W and α > 0 such that

ATP + PA = −αP − LTL (7)

BTP +WTL = C (8)

D +DT = WTW. (9)

We first take i = 1. By (7), we have

LV (x, 1) = xT (A+
1

N
(1− 1)BD−1C)TP1 + P1(A+

1

N
(1− 1)BD−1C)x

= xT (ATP + PA)x

= −xT (αP + LTL)x

< 0.

For i = 2, we get

LV (x, 2) = xT
[
(A+

1

N
(1− 2)BD−1C)TP2 + P2(A+

1

N
(1− 2)BD−1C)

]
x

= xT
[
(AT − 1

N
(BD−1C)T )P + P (A− 1

N
(BD−1C))

]
x

= xT
[
ATP − 1

N
CTD−1BTP + PA− 1

N
PBD−1C

]
x.

By (7), (8) and (9), we infer

LV (x, 2) = xT
[
− αP − LTL− 1

N
CTD−1(C −WTL)− 1

N
(C −WTL)TD−1C

]
x

= xT
[
− αP − LTL− 1

N
CTD−1C +

1

N
CTD−1WTL

− 1

N
CTD−1C +

1

N
LTWD−1C

]
x
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≤ xT
[
− αP − 1

N
LTL− 1

N
CTD−1C +

1

N
CTD−1WTL

− 1

N
CTD−1C +

1

N
LTWD−1C

]
x

≤ xT
[
− αP − 1

N
LT (L−WD−1C) +

1

N
CTD−1WTL

− 1

N
CTD−1WTWD−1C

]
x

≤ xT
[
− αP − 1

N
LT (L−WD−1C) +

1

N
CTD−1WT (L−WD−1C)

]
x

≤ xT
[
− αP − 1

N
(L−WD−1C)T (L−WD−1C)

]
x

≤ −xT
[
αP +

1

N
(L−WD−1C)T (L−WD−1C)

]
x

≤ 0.

For i = 3, we have

LV (x, 3) = xT
[
(A+

1

N
(1− 3)BD−1C)TP3 + P3(A+

1

N
(1− 3)BD−1C)

]
x

= xT
[
(AT − 2

N
BD−1C)TP + P (A− 2

N
BD−1C)

]
x

= xT
[
ATP − 2

N
CTD−1BTP + PA− 2

N
PBD−1C

]
x.

By (7), (8) and (9), we infer

LV (x, 3) = xT
[
− αP − LTL− 2

N
CTD−1(C −WTL)− 2

N
(C −WTL)TD−1C

]
x

= xT
[
− αP − LTL− 2

N
CTD−1C +

2

N
CTD−1WTL

− 2

N
CTD−1C +

2

N
LTWD−1C

]
x

≤ xT
[
− αP − 2

N
LTL− 2

N
CTD−1C +

2

N
CTD−1WTL

− 2

N
CTD−1C +

2

N
LTWD−1C

]
x

≤ xT
[
− αP − 2

N
LT (L−WD−1C) +

2

N
CTD−1WTL

− 2

N
CTD−1WTWD−1C

]
x
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≤ xT
[
− αP − 2

N
LT (L−WD−1C) +

2

N
CTD−1WT (L−WD−1C)

]
x

≤ xT
[
− αP − 2

N
(L−WD−1C)T (L−WD−1C)

]
x

≤ −xT
[
αP +

2

N
(L−WD−1C)T (L−WD−1C)

]
x

≤ 0.

By the same argument as steps above, we can show that for any i ∈M = {2, ..., N}

LV (x, i) ≤ −xT
[
αP +

i− 1

N
(L−WD−1C)T (L−WD−1C)

]
x ≤ 0.

Let

Mi =

{
αP + LTL for i = 1

αP + i−1
N (L−WD−1C)T (L−WD−1C) for i ≥ 2,

then, for any i ∈M = {1, 2, ..., N}, we have
LV (x, i) ≤ −xTMix,

where Mi is positive defined. That is

LV (x, i) ≤ −min
i∈M

λmin
(
Mi

)
xTx.

By Dynkin’s formula, we get

E
(
V (x, i)

)
− V (x0, r0) = E

[ ∫ t

0

LV
(
x(s), r(s)

)
ds
]

≤ −min
i∈M

λmin
(
Mi

)
E
[ ∫ t

0

xT (s)x(s)ds/(x0, r0)
]
,

then

min
i∈M

λmin
(
Mi

)
E
[ ∫ t

0

xT (s)x(s)ds/(x0, r0)
]
≤ V (x0, r0)− E

(
V (x(t), i)

)
≤ V

(
x0, r0

)
.

This yields that

E
[ ∫ t

0

xT (s)x(s)ds/(x0, r0)
]
≤

V
(
x0, r0

)
mini∈M λmin

(
Mi

) .
Letting t→∞, then

E
[ ∫ +∞

0

|x(s)|2ds/(x0, r0)
]
≤ C(x0, r0),

where C(x0, r0) = V (x0,r0)

min
i∈M

λmin

(
Mi

) . This means that the trivial solution of System
(4) is stochastically (mean square) stable. By Lemma 3.3, System (4) is (asymp-
totically) almost surely stable. The proof of the theorem is complete. �
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Remark 4.1. We remark that if System (4) is 1-dimensional, then, G(s) is a
transfer function value, and the pairs (A,B) and (A,C) are always controllable and
observable respectively. So, we have the following corollary basing on Lemma 3.1

Corollary 4.2. Let the continuous state x(t) of System (4) be 1-dimensional and
A be a Hurwitz matrix, then, the equilibrium point x = 0 is asymptotically almost
surely stable if

A(A−BD−1C) ≥ 0.

Now, we display two examples to demonstrate the applicability and effectiveness
of our theoretical result.

5. Examples

In this section, we give two examples to illustrate our result.

Example 5.1. In this example, we consider G(s) symmetric in order to verify
easily that it is SPR.
Consider System (4) associated to the symmetric transfer matrix G(s) = C(sI−

A)−1B +D, with

A =

−2 −1

1 0

 , B =

2 1

1 −1

 , C =

 1 2

−0.3 −0.3

 and D =

1 0

0 2

 .

The Markov jump process r(t) takes values inM = {1, 2, ..., 5} with generator

Q =


−4 0 1 1 2
1 −2 0 1 0
6 1 −8 0 1
0 1 1 −3 1
2 1 1 1 −5

 .

The stationary distribution of irreducible Markov process r(t) is
π = (0.27, 0.24, 0.09, 0.23, 0.17), which is obtained by solving Equation (6). Note
that the five Hurwitz matrices associated to System (4) are given by

Ai = A+
(1− i)

5
BD−1C, for i ∈ {1, 2, ..., 5}.

Then, we have

A1 =

−2.0000 −1.0000

1.0000 0.0000

 , A2 =

−2.2350 −1.6310

0.8330 −0.3650

 ,

A3 =

−2.4700 −2.2620

0.6660 −0.7300

 , A4 =

−2.7050 −2.8930

0.4990 −1.0950





208 CHAFAI IMZEGOUAN

and

A5 =

−2.9400 −3.5240

0.3320 −1.4600

 .

The hybrid System (4) becomes a switching system associated with five ordinary
differential equations

ẋ(t) =



A1x(t)

.

.

.

A5x(t),

(10)

switching back and forth from one to another according to the movement of the
jump process r(t). Note that (A,B) and (A,C) are controllable and observable re-
spectively;

(
rank([B,AB]) = 2 and rank([CT , ATCT ]) = 2

)
. The transfer function

G(s) = C(sI −A)−1B +D is symmetric

G(s) =
1

(s2 + 2.9s+ 2.425)

s2 + 6.9s+ 9.535 −s− 1

−s− 1 2s2 + 5.8s+ 4.7


and A(A−BD−1C) has no real negative eigenvalue, that means that G(s) is SPR.
Then, by Theorem 4.1 the hybrid System (10) is asymptotically almost surely stable.

Figure 2. Markov jump r(t) with
initial condition r(0) = 5

Figure 3. Trajectory solution of (10)
with initial condition x(0) = [1, 5]T

Example 5.2. Consider the Markovian jump r(t) taking values in M = {1, 2, 3},

with infinitesimal operator Q =

−3 1 2
1 −1 0
0 3 −3

.
Let the 1-dimensional System (4), with following specifications

A = (−1), B = (−3), C = (0.2), and D = (0.6).



STOCHASTIC STABILITY FOR SOME HYBRID SYSTEMS 209

The expression of the transfer function G is G(s) = 0.6s
s+1 .

We note that

A1 = A = (−1), A2 = A− 1

3
BD−1C = (−0.67) and A3 = A− 2

3
BD−1C = (−0.33).

Then, we can rewrite System (4) as the following hybrid system consisting of three
ordinary differential equations

ẋ(t) =


−x(t) if r(t) = 1

−0.67x(t) if r(t) = 2

−0.33x(t) if r(t) = 3.

(11)

Note that A(A − BD−1C) = 0 ≥ 0. Then, by Corollary 4.2, System (11) is
asymptotically almost surely stable.

Figure 4. Markov jump r(t) with
initial condition r(0) = 3.

Figure 5. Trajectory solution of (11)
with initial condition x(0) = 5
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