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ZERO-BASED INVARIANT SUBSPACES IN THE BERGMAN
SPACE

BOUABDALLAH FATIHA AND BENDAOUD ZOHRA

Abstract. It is known that Beurling’s theorem concerning invariant sub-
spaces is not true in the Bergman space (in contrast to the Hardy space case).
However, Aleman, Richter, and Sundberge proved that every cyclic invariant
subspace in the Bergman space Lpa(D), 0 < p < +∞, is generated by its ex-
tremal function. This implies, in particular, that for every zero-based invariant
subspace in the Bergman space the Beurling’s theorem stands true. Here, we
calculate the reproducing kernel of the zero-based invariant subspace Mn in
the Bergman space L2a(D) where the associated wandering subspaceMn	zMn

is one-dimensional, and spanned by the unit vector Gn(z) =
√
n+ 1zn.

1. Introduction

Let D denote the open unit disk in the complex plane. The Bergman space
Lpa(D) is the space of all holomorphic functions f : D −→ C such that

‖f‖p
Lpa

=

∫
D
|f(z)|pdS(z) < +∞, (1.1)

where dS(z) = π−1dxdy is the normalized area measure. It is well-known that for
1 ≤ p < +∞, the Bergman space Lpa(D) is a Banach space and for 0 < p < 1, it is
a complete metric space. For p = 2, the evaluation at z ∈ D is a bounded linear
functional on the Hilbert space L2a(D). By the Riesz representation Theorem, there
exists a unique function Kz in L2a(D) such that:

f(z) =

∫
D
f(w)Kz(w)dS(w) (1.2)

for all f in L2a(D). The function K(z, w) defined on D× D by K(z, w) = Kz(w) is
called the Bergman kernel of D (it’s also called the reproducing kernel of L2a(D)).
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Let en(z) =
√
n+ 1zn for n ≥ 0. Then, {en} forms an orthonormal basis for

L2a(D). Thus,

K(z, w) =

+∞∑
n=0

(n+ 1)znwn =
1

(1− zw)2
. (1.3)

A closed subspace M ⊂ Lpa(D) is said to be invariant if zM ⊂ M . A sequence
Λ ⊂ D is said to be a zero sequence if there exists a non-zero function f ∈ Lpa(D)
such that f vanishes precisely on Λ. An invariant subspace of the form

M = {f ∈ Lpa(D) : f(z) = 0, z ∈ Λ} (1.4)

is called a zero-based invariant subspace. For a function f ∈ Lpa(D), the closure of
all polynomial multiples of f in Lpa(D) is an invariant subspace which is denoted
by [f ]; this subspace is also known as the invariant subspace generated by f . An
invariant subspaceM is said to be cyclic ifM = [f ] for some f ∈ Lpa(D). It is known
that every zero-based invariant subspace is cyclic. For an invariant subspace M ,
we consider the extremal problem

sup
{
ReG(j)(0) : G ∈M, ‖G‖Lpa ≤ 1

}
, (1.5)

where j is the multiplicity of the common zero at the origin of all the functions inM .
The solution to this problem is called the extremal function for M . This problem
was first introduced by Hedenmalm [6] for the case p = 2, and subsequently by
Duren et al. [4] for 0 < p < +∞. In the Hardy spaces, by Beurling’s Theorem, every
invariant subspace other than the trivial one {0} is generated by an inner function
(which is an extremal function in that context). In other words, every invariant
subspace of the Hardy space is cyclic. On the other hand, the invariant subspaces
of the Bergman space L2a(D) need not be singly generated. Nevertheless, for the
Bergman space L2a(D), the Beurling-type Theorem holds true and every invariant
subspace M is generated by M 	 zM , that is, M = [M 	 zM ] = [M ∩ (zM)⊥].
In [1], the author proved that every zero-based invariant subspace of Lpa(D) is

generated by its extremal function. The proof uses the density of the polynomials
functions in some weighted Bergman spaces.
In this paper, we calculate the reproducing kernel of the wandering subspace

Mn 	 zMn of the zero-based invariant subspace Mn in the Bergman space L2a(D).

2. Hardy and Bergman spaces

The Hardy space H2 consists of all holomorphic functions defined on the open
unit disk D such that

‖f‖H2 = sup
0<r<1

(∫
T
|f(rz)|2ds(z)

) 1
2

< +∞, (2.1)

where T is the unit circle, and ds is the arc length measure, normalized so that the
mass of T equals 1. In terms of Taylor coeffi cients, the norm takes a more appealing
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form. If f(z) =
∑
n anz

n, then

‖f‖H2 =

(∑
n

|an|2
) 1

2

. (2.2)

On the other hand, the Bergman space L2a(D) consists of all holomorphic functions
defined on D such that

‖f‖L2a =

(∫
D
f(z)2dS(z)

) 1
2

< +∞, (2.3)

where dS is area measure normalized so that the mass of D equals 1. Though the
integral expression of the norm is more straightforward than that in the Hardy
space, it is more complicated in terms of Taylor coeffi cients. If f(z) =

∑
n anz

n,
then

‖f‖L2a =

(∑
n

|an|2
n+ 1

) 1
2

. (2.4)

The Bergman space L2a(D) contains H2 as a dense subspace. It is intuitively clear
from the definition of the norm of H2 that functions have well-defined boundary
values in L2(T). However, this is not the case for L2a(D). In fact, there is a function
in which it fails to have radial limits at every point of T. This is a consequence of a
more general statement due to MacLane [9]. Apparently, the spaces H2 and L2a(D)
are very different from a function-theoretical perspective.

2.1. Hardy space theory. The classical factorization theory for the Hardy spaces
(i.e., the spaces Hp with 0 < p ≤ +∞), which relies on work due to Blaschke,
Riesz, and Szegö, requires some familiarity with the concepts of Blaschke product:
singular inner function, inner function and outer function. Let H∞ stands for the
space of bounded analytic functions in D supplied with the supremum norm. Given
a sequence A = {aj}j of points in D and consider the product

BA(z) =
∏
j

aj
|aj |

aj − z
1− ajz

for z ∈ D (2.5)

which converges to a function in H∞ with norm 1 if and only if the Blaschke
condition

∑
j 1−|aj | < +∞ is fulfilled. In this case, A is said the Blaschke sequence

and BA the Blaschke product. Note that, for Blaschke sequence A, BA vanishes
precisely on A in D with appropriate multiplicities depending on how many times a
point is repeated in the sequence. Moreover, the function BA has boundary values of
modulus 1 almost everywhere, provided that the limits are taken in nontangential
approach regions. We note also that if the sequence A fails to be Blaschke, the
product BA collapses to 0. Define the singular inner function in H∞ as follows:

Sµ(z) = exp

(
−
∫
T

ζ + z

ζ − z dµ(ζ)

)
for z ∈ D, (2.6)
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where µ is a finite positive Borel measure on the unit circle T. This is the general
criterion for a function in H∞ to be inner; to have boundary values of modulus
1 almost everywhere. A product of an unimodular constant, a Blaschke product,
and a singular inner function, is still inner, and all inner functions are obtained this
way.
If h is a real-valued L1 function on T, the associated outer function is

Oh(z) = exp

(∫
T

ζ + z

ζ − z h(ζ)ds(ζ)

)
for z ∈ D, (2.7)

which is an analytic function in D with |Oh(z)| = exp(h(z)) almost everywhere on
the unit circle. The boundary values of Oh being thought of in the non-tangential
sense. The function Oh is in H2 if and only if exp(h) is in L2(T). The factorization
Theorem in H2 states that every nonidentically vanishing f in H2 has the form

f(z) = γBA(z)Sµ(z)Oh(z) for z ∈ D, (2.8)

where γ is an unimodular constant and exp(h) ∈ L2(T).
The natural setting for the factorization theory is a larger class of functions

known as the Nevanlinna class. It consists of all functions of the above type,
where no additional requirement is made on h, and where the singular measure µ
is allowed to take negative values as well. It is well-known that f ∈ N if and only
if the function f is holomorphic in D, and

sup
0<r<1

∫
T

log+ |f(rz)|ds(z) < +∞, (2.9)

where N is the Nevanlinna class.

2.2. Inner functions in Bergman space. The Bergman space L2a(D) contains
H2. How then does it relate to N? It turns out that there are functions in N
that are not in L2a(D), and there are functions in L2a(D) which are not in N . The
latter statement follows from the fact alluded to above that there is a function in
L2a(D) lacking nontangential boundary values altogether. On the other hand, all
the functions in N have finite nontangential boundary values almost everywhere.
The former statement follows from a much simpler example: Take µ equal to a
point mass at say 1, and consider the function 1/Sµ. It is in the Nevanlinna class
N , but it is much bigger near 1 to be in L2a(D).
The classical Nevanlinna factorization theory is ill-suited for the Bergman space.

This is particularly apparent from the fact that there are zero sequences for L2a(D)
that are not Blaschke. The question is which functions can replace the Blaschke
products or more general inner functions in the Bergman space setting. There may
be several ways to do this, but only one is canonical from the point of view of
operator theory.
A subspace M of H2 is invariant if it is closed and zM ⊂ M , and the inner

functions in H2 are characterized as elements of unit norm in someM	zM , where
M is a nonzero invariant subspace. We call M 	 zM the wandering subspace for
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M . For a collection L of functions in H2, we let [L] stands for the smallest invariant
subspace containing L. We note that u ∈ H2 is an inner function if and only if

h(0) =

∫
T
h(z)|u(z)|2ds(z) for h ∈ L∞h (D). (2.10)

Here, L∞h (D) is the Banach space of bounded harmonic functions on D. We say a
function G ∈ L2a(D) is L2a(D)-inner provided that

h(0) =

∫
D
h(z)|G(z)|2dS(z) for h ∈ L∞h (D). (2.11)

A function G of unit norm in L2a(D) is L2a(D)-inner if and only if it is in a wandering
subspace M 	 zM for some nonzero invariant subspace M of L2a(D). In contrast,
with the H2 case, where M 	 zM always has dimension 1 (unless M is the zero
subspace), this time the dimension may take any value in the range 1, 2, 3, · · · ,+∞.
This follows from the dilation theory developed by Apostol, Bercovici, Foias, and
Pearcy [2]. The dimension of M 	 zM will be referred to the index of the invariant
subspace M .
For the space H2, Beurling’s invariant subspace Theorem yields to a complete

description:

Theorem 1 (Beurling 1949). Let M be an invariant subspace of H2, and M 	 zM
be called the associated wandering subspace. Then M = [M 	 zM ].
If M is not the zero subspace, then M 	 zM is one-dimensional and spanned by

an inner function φ and M = [φ] = φH2.

A natural question is whether the analogous statement M = [M 	 zM ] (with
the brackets referring to the invariant subspace lattice of L2a(D)) holds for general
invariant subspaces M of L2a(D).

3. Beurling’s theorem

Let ∆ = 1
4 ( ∂2

∂x2 + ∂2

∂y2 ) stand for the Laplace operator in the complex plane.
Then, we have

∆|f |2 = |f ′2 (3.1)

and

∆|f |p =
p2

4
|f |p−2|f ′2. (3.2)

Let M be a zero-based invariant subspace in Lpa(D) and let G be its extremal
function. It was shown by Hedenmalm [5] for p = 2 and by other authors for
arbitrary values of 0 < p < +∞ that G satisfies the equation

∆φ(z) = |G(z)|p − 1, z ∈ D, (3.3)

where φ is a C∞ function in D, it vanishes on the boundary of the unit disk.
Moreover, φ satisfies the inequalities 0 ≤ φ(z) ≤ 1 − |z|2. To study the invariant
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subspaces of the Bergman spaces, Hedenmalm introduced the space

Ap =

{
f ∈ Lpa(D) :

∫
D
φ(z)∆|f(z)|pdS(z) < +∞

}
(3.4)

for 0 < p <∞.
For f ∈ Ap, he defined the following norm:

‖f‖pAp = ‖f‖pDp +

∫
D
φ(z)∆|f(z)|pdS(z). (3.5)

It can be proved that for 1 ≤ p < +∞, the set Ap is a normed vector space.
Moreover, for 0 < p < 1, it enjoys the induced metric

d(f, g) = ‖f − g‖pDp +

∫
D
φ(z)∆|(f − g)(z)|pdS(z). (3.6)

Let Ap0 denote the closure of the polynomials in Ap (with respect to the norm or
metric defined above). It was shown by Hedenmalm [5] for p = 2 and by Khavinson
and Shapiro [8] for p 6= 2 that [G] = G · Ap0 and

‖Gf‖p
Lpa

= ‖f‖p
Lpa

+

∫
D
φ(z)∆|f(z)|pdS(z), f ∈ Ap0. (3.7)

Moreover, Khavinson and Shapiro [8] left the following open question : Is Ap = Ap0
? It is clear that [G] ⊂M , and it was already observed thatM ⊂ G ·Ap. Therefore,
if Ap = Ap0, then the Beurlings Theorem is true for M , because

M ⊂ G · Ap = G · Ap0 = [G]. (3.8)

Theorem 2. Let M be a zero-based invariant subspace of Lpa(D), 0 < p < +∞.
Then M is generated by its extremal function G, that is, M = [G].

Proof. We have already mentioned that it suffi ces to show Ap = Ap0. Let f ∈
Ap, 0 < r < 1, and consider the dilated functions fr(z) = f(rz). Since every
fr can be approximated uniformly by the polynomials, it is enough to show that
‖frf‖Ap −→ 0 as r −→ 1−. To do this, let us take

‖fr‖pAp = ‖fr‖pLpa +

∫
D
φ(z)∆|fr(z)|pdS(z). (3.9)

However,

‖fr‖pLpa =

∫
D
|fr(z)|pdS(z) (3.10)

=

∫
rD
|f(z)|p dS(z)

r2
(3.11)

=
1

r2

∫
rD
|f(z)|pdS(z). (3.12)

Therefore,

lim
r↔1−

‖fr‖pLpa =

∫
D
|f(z)|pdS(z) = ‖f‖p

Lpa
. (3.13)
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We now manage to show that

lim
r↔1−

∫
D
φ(z)|fr(z)|pdS(z) =

∫
D
φ(z)|f(z)|pdS(z). (3.14)

From (3.2), we have

∆2φ(z) = ∆(|G(z)|p − 1) (3.15)

=
p2

4
|G(z)|p−2|G′2 (3.16)

≥ 0, (3.17)

then φ is a superbiharmonic function in the unit disk. Moreover,

0 ≤ φ(z) ≤ 1− |z|2 ≤ 2(1− |z|), z ∈ D. (3.18)

�

The main result of this paper is given by the following Theorem.

Theorem 3. Let Mn be a zero-based invariant subspace of L2a(D), where the asso-
ciated wandering subspace Mn 	 zMn is one-dimensional and spanned by the unit
vector Gn(z) =

√
n+ 1zn. The reproducing kernel of Mn 	 zMn is given by the

formula:

KGn
w (z) =

1− (1− n)(wz)n + n(wz)n−1

(1− wz)2 . (3.19)

Proof. We prove that

(1) KGn
w ∈Mn 	 zMn,

(2) < f,KGn
w >L2a= f(z) for all f in Mn 	 zMn, where < ·, · >L2a denotes the

inner product in the Bergman space, i.e.,

< f, g >L2a=
1

π

∫
D
f(z)g(z)dS(z), f, g ∈ L2a(D). (3.20)

For the proof of (1), note that for fixed w ∈ D, the function KGn
w ∈ L2a(z).

Moreover, z 7→ KGn
w (z) is a bounded analytic function. To show that KGn

w ∈ L2a(z),
we need to verify that

< Gng,K
Gn
w >L2a= 0, g ∈ L2a(D). (3.21)

The kernel function of L2a(D) is

Kw(z) =
1

(1− wz)2 , (3.22)

and its reproducing property is

< f,Kw >= f(w), for f ∈ L2a(D). (3.23)
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Then,

< Gng,K
Gn
w > = < Gng,Kw > −Gn(w) < Gng,GnKw > (3.24)

= Gn(w)g(w)−Gn(w) < g,Kw > (3.25)

= Gn(w)g(w)−Gn(w)g(w) (3.26)

= 0 (3.27)

which proves (1).
The proof of (2) follows from

< f,KGn
w > = < f,Kw > −Gn(w) < f,GnKw > (3.28)

= f(w) + 0 (3.29)

= f(w). (3.30)

�

4. Conclusion

The kernel functions play an essential role in the theory of Bergman spaces.
In this paper, we calculated the reproducing kernel of the wandering subspace
Mn 	 zMn of the zero-based invariant subspace Mn in the Bergman space L2a(D) .
In the other cases, the problem remains unsolved.
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