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HYPERSPACES OF DITOPOLOGICAL TEXTURE SPACES AND
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İSMAİL U. TİRYAKİ

I want to dedicate this manuscript to memory of my advisor who is actually my second father,
Dr. L. Michael Brown, sleep in peace.

Abstract. The author consider hyperspaces in the setting of textures and di-
topological texture spaces. According to that, the definitions of hypertexture,
plain hypertexture and hyperspace of ditopological texture space are presented.
Then the author obtained some properties of hypertextures in the categorical
respect and give some examples of hypertextures.

1. Introduction

Hyperspace theory has been beginning in the early of XX century with the
work of Felix Hausdorff (1868-1942) and Leopold Vietoris (1891-2002). Given a
topological space X, the hyperspace CL(X) of all nonempty closed subset of X is
equipped with the Vietoris topology [11, Chapter 12, p.750] that is the smallest
topology Tv on CL(X) for which {A ∈ CL(X) | A ⊆ U} ∈ Tv for U ∈ T and
{A ∈ CL(X) | A ⊆ B} is Tv-closed for each T-closed set B [12]. This definition
leads us to involve lower sets with respect to set containment, so it will play a
crucial role to obtain Hypertexture notion.
Texture spaces have been introduced by L.M. Brown and the primary motiva-

tion of ditopological texture spaces is to offer a new extension of classical fuzzy
sets [1, 2] and to study the relationship between ditopological texture spaces and
fuzzy topologies. Nowadays, the theory is being developed independently of this
motivation.
As pointed out in [16], if (N,≤) is a poset then the set L = {L ⊆ N | n ∈

L,m ≤ n =⇒ m ∈ L} of lower subsets of N is a plain texturing of N . In this
paper the author use the same technique to obtain plain and standard texture using
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hyperspace notion. We called these textures plain hypertexture and hypertexture
respectively.
The main goal of this article is to introduce Hyperspaces of Ditopological Texture

Spaces and Hypertextures. Basic concepts used in the paper are collected in the
section of Preliminaries. In the Third section, Vietoris topology is used in our new
setting and the definition of hyperspace of a ditopological texture space is given.
The fourth section is devoted to Hypertexture notion and in this section we give two
types of hypertexture which is called standard hypertexture and plain hypertexture
with several examples, and also we investigate some categorical aspects of them.
Besides all of these, we obtain a functor from dfTex to dfPTex which is not exists
in classical case where dfTex is a category whose objects are texture spaces and
whose morphisms are difunctions. If the objects are restricted to be plain textures
we obtain the full subcategory dfPTex [6, Definition 3.3]. This section is ended
by the notion of complementation on Hypertexture. The last section is related to
future work, we try to sketch our next step.

2. Preliminaries

We recall some basic notions related to textures, ditopological texture spaces
and hyperspaces as well for the benefit of general readers who do not have any clue
on these subjects. We also refer to [3, 4, 5, 6, 7, 8, 14, 15, 12] for motivation and
background material.
Textures: Let S be a set. We work within a subset S of the power set P(S) called

a texturing. A texturing is a point-separating, complete, completely distributive
lattice with respect to inclusion. It contains S and ∅, arbitrary meets coincide with
intersections, and finite joins coincide with unions. If S is a texturing of S the pair
(S, S) is called a texture space or a texture [5].
Most definitions and results concerning textures are most simply expressed using

the p-sets and q-sets: for s ∈ S

Ps =
⋂
{A ∈ S | s ∈ A}, Qs =

∨
{A ∈ S | s /∈ A}.

Example 2.1. (1) The discrete texture is (X,P(X)) on the set X. For x ∈ X,
Px = {x}, Qx = X \ {x}.

(2) The texture (L,L) is defined, where L = (0, 1] and L = {(0, r] | 0 ≤ r ≤ 1}.
Here, for r ∈ L, Pr = Qr = (0, r].

(3) The unit interval texture is (I, I), where I = [0, 1], I = {[0, r) | r ∈ I} ∪
{[0, r] | r ∈ I}. Here, for r ∈ I, Pr = [0, r] and Qr = [0, r).

(4) The product texture (S × T, S ⊗ T) of textures (S, S) and (T,T) is defined
in [6]. Here the product texturing S ⊗ T of S × T consists of arbitrary
intersections of sets of the form

(A× T ) ∪ (S ×B), A ∈ S and B ∈ T.

For (s, t) ∈ S × T , P(s,t) = Ps × Pt and Q(s,t) = (Qs × T ) ∪ (S ×Qt).
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(5) If X is a set, then the product of (X,P(X)) and (L,L) is the texture
corresponding to the Hutton algebra IX of classic fuzzy subsets of X [5].

Types of texture:

(i) Complemented: If (S, S) is a texture and σ : S → S an inclusion reversing
involution then (S, S, σ) is referred to as a complemented texture. For a discrete
texture πX(A) = X \A (set complement) is a common complementation. But not
every texture possesses a complementation.

(ii) Simple: If (S, S) is a texture then M ∈ S is called a molecule if M 6= ∅ and
M ⊆ A ∪B,A,B ∈ S implies M ⊆ A or M ⊆ B. For each s ∈ S, Ps is a molecule.
The texture (S, S) is called simple if p-sets Ps are the only molecules.

(iii) (Nearly, Almost) Plain: If (S, S) is a texture then the point s ∈ S is called a
plain point if Ps 6⊆ Qs.
(a) (S, S) is plain if every point s ∈ S is plain. Equivalently, if S is closed under

arbitrary unions.
(b) (S, S) is nearly plain if given s ∈ S there exists a plain point w ∈ S with

Qs = Qw [17].
(c) (S, S) is almost plain if given s, t ∈ S with Pt 6⊆ Qs there exists a plain point

u ∈ S with Pt 6⊆ Qu and Pu 6⊆ Qs [19].
The p-sets and q-sets establish a form of duality with respect to the set com-

plementation to be encoded in general textures. The following auxiliary notion of
core set of a set A in S will be useful to expose the nature of this duality. For a set
A ∈ S, the core of A (denoted by A[) is defined by [6, Theorem 1.2].

A[ =
⋂{⋃

{Ai | i ∈ I} |{Ai | i ∈ I} ⊆ S, A =
∨
{Ai | i ∈ I}

}
.

The relation between this concept and the other textural concepts in any texture
space is given below, and also we clearly have A[ = A for a plain textures.

Theorem 2.2. In any texture (S, S), the following statements hold:
(1) s 6∈ A⇒ A ⊆ Qs ⇒ s 6∈ A[ for all s ∈ S, A ∈ S.
(2) A[ = {s | A * Qs} for all A ∈ S.
(3) For Aj ∈ S, j ∈ J we have (

∨
j∈J Aj)

[ =
⋃
j∈J A

[
j.

(4) A is the smallest element of S containing A[ for all A ∈ S.
(5) For A,B ∈ S, if A * B then there exists s ∈ S with A * Qs and Ps * B.
(6) A =

⋂
{Qs | Ps * A} for all A ∈ S.

(7) A =
∨
{Ps | A * Qs} for all A ∈ S.

Direlations and difunctions

We denote the p—sets and q—sets for (S × T,P(S)⊗ T) by P (s,t), Q(s,t). Then
r ∈ P(S)⊗ T is called a relation from (S, S) to (T,T) if it satisfies

R1 r 6⊆ Q(s,t), Ps′ 6⊆ Qs =⇒ r 6⊆ Q(s′,t).
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R2 r 6⊆ Q(s,t) =⇒ ∃s′ ∈ S such that Ps 6⊆ Qs′ and r 6⊆ Q(s′,t).

R ∈ P(S)⊗ T is called a corelation from (S, S) to (T,T) if it satisfies

CR1 P (s,t) 6⊆ R,Ps 6⊆ Qs′ =⇒ P (s′,t) 6⊆ R.
CR2 P (s,t) 6⊆ R =⇒ ∃s′ ∈ S such that Ps′ 6⊆ Qs and P (s′,t) 6⊆ R.

A pair (r,R) consisting of a relation r and correlation R is now called a direlation.

Example 2.3. For any texture (S, S) the identity direlation (i, I) on (S, S) is given
by

i =
∨
{P (s,s) | s ∈ S} and I =

⋂
{Q(s,s) | s ∈ S}.

Given a direlation (r,R) : (S, S)→ (T,T) and B ∈ T we define r←B, R←B ∈ S
by

r←B =
∨
{Ps | ∀t, r 6⊆ Q(s,t) =⇒ Pt ⊆ B},

R←B =
⋂
{Qs | ∀t, P (s,t) 6⊆ R =⇒ B ⊆ Qt}.

A difunction (f, F ) : (S, S) → (T,T) is a direlation that is characterized by the
equality f←B = F←B for all B ∈ T.
If (f, F ) : (S, S)→ (T,T) is a difunction then by [6, Corollary 2.12] the map θ :

T → S defined by θ(B) = f←B = F←B preserves arbitrary joins and intersections.
Conversely, by [7, Proposition 4.1] if θ : T → S is a mapping that preserves arbi-

trary joins and intersections then there exists a unique difunction (f, F ) : (S, S)→
(T,T) that satisfies f←B = θ(B) = F←B for all B ∈ T.
Textures and difunctions form a category denoted by dfTex, and also plain

textures and difunctions between them form a category denoted by dfPTex.

Ditopology:

For a texture (S, S), the texturing S is usually not closed under the operation
of taking the set complement. Hence we must forgo the usual relation between
open and closed sets and consider a dichotomous topology (ditopology for short)
consisting of a topology (family of open sets) τ ⊆ S and a generally unrelated
cotopology (family of closed sets) κ ⊆ S. We then call (S, S, τ , κ) a ditopological
texture space [4].

The notion of ditopology can also be used in other settings. For example it has
recently been carried over to completely distributive lattices, producing “Hutton
dispaces" [20].

It should be stressed that a ditopology is considered as a single structure, with
the open and closed sets playing an equal role. This is in contrast to a bitopology
consisting of two distinct topologies, complement with their open and closed sets.
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Let (S, S, σ) be complemented texture and (τ , κ) be a ditopology on (S, S), if
κ = σ(τ), then the ditopology (τ , κ) is said to be complemented.

Hyperspace:

If (X,T) is a topological space then the notion of a hyperspace of (X,T) is meant
a specified family of subsets of X with a topology depending on T and referred to
here as the Vietoris topology. For convenience, a hyperspace is generally assumed
not to contain the empty set ∅, while to avoid pathology all its members are taken
to be closed sets under the topology T. Hence the largest hyperspace of (X,T) is
the set

CL(X) = {A ⊆ X | A is a non-empty T-closed subset of X}

with the Vietoris topology, that is the smallest topology Tv on CL(X) for which
{A ∈ CL(X) | A ⊆ U} ∈ Tv for U ∈ T and {A ∈ CL(X) | A ⊆ B} is Tv-
closed for each T-closed set B. As here we will generally follow the notation of [12]
for basic concepts relating to hyperspaces. As seen in [12], for example, stronger
conditions on the elements of the hyperspace may need to be imposed to ensure
better properties of the hyperspace or a closer relation between the properties of
the topologies T and Tv.

3. Basic Definitions and the Discrete Case

To study hyperspaces in our new setting, we will need to replace the topological
space (X,T) with a ditopological texture space (S, S, τ , κ). This introduces with
a new element, namely the texturing S, as well as replacing the topology T by
the ditopology (τ , κ). It is natural to restrict our attention to the sets in S when
defining required notion of hyperspace, and bearing in mind that we may wish to
impose additional conditions as in the classical case. Now, we will base it on a
set H ⊆ S. Letting H be a texturing of H, this leads to the texture (H,H), and
the notion of Vietoris topology Tv generalizes naturally to the Vietoris ditopology
(τv, κv), where τv is the smallest topology on H for which {A ∈ H | A ⊆ G} ∈ τv
for G ∈ τ and κv the smallest cotopology on H for which {A ∈ H | A ⊆ K} ∈ κv
for all K ∈ κ. Hence we make the following general definition:

Definition 3.1. With the notation as above a hyperspace of a ditopological tex-
ture space (S, S, τ , κ) is defined as the ditopological texture space of the form
(H,H, τv, κv).

The following example shows that Definition 3.1 includes the classical case. Here,
as usual, we represent a topological space (X,T) by the complemented ditopological
texture space (X,P(X), πX ,T,Tc), where πX(A) = X\A for A ∈ P(X) is the usual
set complement and Tc = {X \ A | A ∈ T}. We will have more to say regarding
complementation in a more general setting later on.
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Example 3.2. Let (X,T) be a topological space and (CL(X),Tv) a hyperspace.
The corresponding (complemented) ditopological spaces are (X,P(X), πX ,T,Tc)
and (CL(X),P(CL(X)), πCL(X),Tv,Tcv), respectively. Then by settingH = CL(X),
the families H = P(H), τv = T and κv = Tc give us a natural representa-
tion of (CL(X),Tv) as the (complemented) hyperspace of (X,P(X), πX ,T,Tc) is
(H,H, πH , τv, κv).

For the remainder of this section we continue to consider discrete textures but
generalize the classical case by permitting general ditopologies (τ , κ) on (X,P(X)).
Hence, in what follows we consider the complemented texture (X,P(X), πX) and a
ditopology (τ , κ) which is not necessarily complemented, that is for which κ 6= τ c.
Our ditopological hyperspace is now (CL(X),P(CL(X)), πCL(X), τv, κv). We can
expect a close relationship here with the bitopological [13] case and the reader is
referred in particular to the work of Bruce S. Burdick [9, 10] in this respect.

4. Hypertextures

Rather than restricting the elements of the hyperspace as above we show in this
section and the next that by taking H = S and choosing the texturing H carefully
we can in fact obtain closer links between the original ditopologies and Vietoris
ditopologies than in the classical situation. This can be regarded as an important
bonus for working in a textural setting. We concentrate in this section on defining
two suitable texturings of S, referred to here as Hypertextures. The fact that the
definition of the Vietoris ditopology involves lower sets with respect to the relation
set inclusion will play an important role, here.

Definition 4.1. Let (S, S) be a texture. For A ∈ S we set

Â = {B ∈ S | B ⊆ A} and Ŝ = {Â | A ∈ S}.

Also,

LS = {B ⊆ S | B ∈ B, A ⊆ B =⇒ A ∈ B}.

It is immediate from the definitions that Ŝ ⊆ LS. Both Ŝ and LS are texturings
of S. Indeed (S,⊆) and (Ŝ,⊆) are clearly isomorphic as complete lattices under
the mapping θ : S → Ŝ, A 7→ Â, while (S,LS) is the plain texture associated with
the partially ordered set (S,⊆) as in [16]. We will refer to (S, Ŝ) as the standard
hypertexture of (S, S) (or just as the hypertexture if there is no fear of confusion),
while (S,LS) will be called the plain hypertexture.

Proposition 1. In (S,LS), we have the following equalities

PA = {B ∈ S | B ⊆ A} and QA = {B ∈ S | A 6⊆ B}

for A ∈ S.
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Proof. We show the first equality, the other one can be easily shown by using
definition.
We begin by proving {B ∈ S : B ⊆ A} ⊆

⋂
{B ∈ LS : A ∈ B}, take C ∈ {B ∈

S : B ⊆ A} and for any A ∈ B, we obtain C ⊆ A =⇒ C ∈ B.
On the other hand, suppose that

⋂
{B ∈ LS : A ∈ B} 6⊆ {B ∈ S : B ⊆ A}, so

there exists C ∈
⋂
{B ∈ LS : A ∈ B}, but C 6∈ {B ∈ S : B ⊆ A}. If we choose

A ∈ B =↓ A ∈ LS =⇒ C ∈↓ A and hence we obtain C ⊆ A, this contradicts with
C 6⊆ A. �

Using the similar idea, if we choose the texture (S, Ŝ), then we have the followings:

PA =
⋂
{B̂ | A ∈ B̂} = Â and QA =

∨
{B̂ | A /∈ B̂} = (

∨
{B | A 6⊆ B})̂.

The following lemma gives a necessary and suffi cient condition for the equality
Ŝ = LS.

Lemma 4.2. For a given texture (S, S) we have Ŝ = LS if and only if every lower
set in S contains the union of the members of S.

Proof. Necessity is clear since for each A in S, Â is a lower set in which A is the
largest, hence the union of the members of S. For suffi ciency take B ∈ LS and let
A =

⋃
{B | B ∈ B}. Then by hypothesis A ∈ B so for B ∈ B we have B ⊆ A since

B is a lower set. Hence B ⊆ Â. Likewise Â ⊆ B, which completes the proof. �

Example 4.3. (1) We consider the discrete texture (X,P(X)) in the case thatX =

{a, b} is a two-point set. We have P̂(X) 6= LP(X), showing that these texturings
are different even in this simple case. Indeed,

P̂(X) = {{̂a, b}, {̂a}, {̂b}, ∅̂} = {P(X), {{a}, ∅}, {{b}, ∅}, {∅}},

while {{a}, {b}, ∅} is the one and unique lower set in P(X) not belonging to P̂(X)
so

LP(X) = P̂(X) ∪ {{a}, {b}, ∅}.

Let us note that in (P(X), P̂(X)) we have

P{a,b} = {̂a, b} = P(X) Q{a,b} = {̂a, b} = P(X),

P{a} = {̂a} = {{a}, ∅} Q{a} = {̂b} = {{b}, ∅},

P{b} = {̂b} = {{b}, ∅} Q{b} = {̂a} = {{a}, ∅},

P∅ = {̂∅} = {∅} Q∅ = {̂∅} = {∅},
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while in (P(X),LP(X)) we have
P{a,b} = {{a, b}, {a}, {b}, ∅} Q{a,b} = {{a}, {b}, ∅},

P{a} = {{a}, ∅} Q{a} = {{b}, ∅},
P{b} = {{b}, ∅} Q{b} = {{a}, ∅},

P∅ = {∅} Q∅ = ∅.
Clearly in (P(X),LP(X)), we have PA 6⊆ QA for all A ∈ P(X) which confirms that
this texture is plain. On the other hand, in (P(X), P̂(X)) we have P{a,b} = Q{a,b}
and P∅ = Q∅, so this texture is not plain. The q-sets of the points {a, b} and ∅ in
(P(X), P̂(X)) are not equal to the q-sets of either of the plain points {a} or {b}
so this texture is not nearly plain either (see [17] for a discussion of nearly plain
textures).

(2) Now let us consider the texture (L,L) where L = (0, 1] and L = {(0, r] |
0 ≤ r ≤ 1}, (0, 0] being interpreted as the empty set. This is the Hutton texture
of the unit interval. It is well known to be a simple but non-plain texture, and
indeed for 0 ≤ r ≤ 1 we have Pr = Qr = (0, r]. Again we consider briefly the
textures (L, L̂) and (L,LL). Clearly we have lower sets in L of the form {(0, s] |
0 ≤ s < k}, 0 < k ≤ 1, which do not belong to L̂ so again L̂ ⊂ LL. In L̂

we have P(0,r] = Q(0,r] = (̂0, r] for 0 ≤ r ≤ 1 so the texture (L, L̂) is not plain

and likewise it is not nearly plain. In (L,LL), however, we have P(0,r] = (̂0, r],
Q(0,r] = {(0, k] | 0 ≤ k < r} for 0 ≤ r ≤ 1. In particular P∅ = P(0,0] = {∅},
Q∅ = Q(0,0] = {∅}, so P(0,r] 6⊆ Q(0,r] for all r which confirms that (L,LL) is plain.
(3) An important texture is the unit interval texture (I, I) where I = [0, 1] and

I = {[0, r], [0, r) | 0 ≤ r ≤ 1}. It is well known that this is a plain texture with
its canonical ditopology which plays the same role in ditopological texture spaces
as the unit interval in general topology. Again we consider briefly the textures
(I, Î) and (I,LI). In (I, Î) we have ̂[0, r] = {[0, s], [0, s) | 0 ≤ s ≤ r ≤ 1} and
[̂0, r) = {[0, s) | 0 ≤ s ≤ r ≤ 1} ∪ {[0, s]} | 0 ≤ s < r ≤ 1}.
The lower sets in LI not belonging to Î have the form {[0, s), [0, s] | 0 ≤ s < r} for

0 < r ≤ 1, so Î ⊂ LI and (I, Î) is not plain. The p,q-sets in (I, Î) are P[0,r] = ̂[0, r],
P[0,r) = [̂0, r); Q[0,r] = [̂0, r) = Q[0,r) so [0, r], 0 ≤ r ≤ 1 are plain points and
[0, r), 0 ≤ r ≤ 1 are not. Since the q-set of [0, r) is equal to the q-set of the
plain point [0, r] for all r, it follows that (I, Î) is a nearly plain texture. In (I,LI)
the p,q-sets are easily seen to be the same with the p,q-sets in (I, Î), except for
Q[0,r) = {[0, s), [0, s] | 0 ≤ s < r}, so we now have P[0,r) 6⊆ Q[0,r) confirming that
(I,LI) is plain.

We begin by investigating the relationship between the textures (S, S) and (S, Ŝ)
in more detail. We have already mentioned the isomorphism θ : S→ Ŝ, A 7→ Â and
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we denote its inverse by η : Ŝ → S. By [7, Proposition 4.1] we have a difunction
(h,H) : (S, S) → (S, Ŝ) characterized by h←B̂ = η(B̂) = H←B̂ ∀B̂ ∈ Ŝ and a
difunction (k,K) : (S, Ŝ)→ (S, S) characterized by k←A = θ(A) = K←A ∀A ∈ S.

Proposition 2. The textures (S, S) and (S, Ŝ) are dfTex isomorphic.

Proof. With the notation above we prove k ◦ h = iS , where (iS , IS) is the identity
difunction on (S, S). By [6, Lemma 2.7 and Definition 2.8] it is suffi cient to prove
(k ◦ h)←A = i←S A = A for all A ∈ S. By [6, Lemma 2.16] we have (k ◦ h)← =

h←(k←A)) = h←(θ(A)) = h←(Â) = η(Â) = A by the characteristic properties of h
and k. The equality K ◦H = IS follows likewise, giving (k,K) ◦ (h,H) = (iS , IS).
Finally (h,H) ◦ (k,K) = (iS, IS) follows by a similar argument, so (h,H) (and
(k,K)) set up a dfTex isomorphism between (S, S) and (S, Ŝ). �

Since almost plainness [17] is preserved under dfTex isomorphisms we have:

Corollary 1. The texture (S, Ŝ) is almost plain if (and only if) (S, S) is almost
plain. �

In view of the complete lattice isomorphism θ : S→ Ŝ, A 7→ Â and as a result of
the Theorem 2.2, we have the following corollary. In addition, we have also similar
corollary for (S,LS), but here we give the following statements only for the texture
(S, Ŝ), briefly.

Corollary 2. In hypertexture (S, Ŝ), we have

(1) A 6∈ B̂ =⇒ B̂ ⊆ QA =⇒ A 6∈ Â[ for all A ∈ S and B̂ ∈ Ŝ,
(2) Â[ = {B|Â 6⊆ QB} for all Â ∈ Ŝ,
(3) Âj ∈ Ŝ, j ∈ J we have (

∨̂
j∈J

Aj)
[ =

⋃
j∈J

Âj
[
,

(4) Â is the smallest element of Ŝ containing Â[ for all A ∈ S,
(5) For A,B ∈ Ŝ, if Â 6⊆ B̂ then there exists C ∈ Ŝ with Â 6⊆ QC and PC 6⊆ B̂,
(6) Â =

⋂
{QB |PB 6⊆ Â} for all Â ∈ Ŝ,

(7) Â =
∨
{PB |Â 6⊆ QB} for all Â ∈ Ŝ.

Let us now consider the relation between the textures (S, S) and (S,LS).

Theorem 4.4. The function

LS
γ−→ S, B 7→

∨
B =

∨
B∈B

B

defines a difunction (l, L) : (S, S) → (S,LS) characterized by l←B = γ(B) = L←B
for all B ∈ LS.

Proof. Clearly γ maps LS into S so in order to apply [7, Proposition 4.1] we must
verify that it preserves arbitrary joins and meets.
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To show γ preserves joins we take Bi ∈ LS for i ∈ I and note from the definition
that

⋃
i∈I Bi 7→

∨(⋃
i∈I Bi

)
under γ. Hence we must show that

∨(⋃
i∈I Bi

)
=⋃

i∈I
(∨

Bi
)
. Let A ∈

⋃
i∈I Bi. Then there exists i ∈ I with A ∈ Bi so A ⊆∨

Bi ⊆
⋃
i∈I
(∨

Bi
)
and we deduce

∨(⋃
i∈I Bi

)
⊆
⋃
i∈I
(∨

Bi
)
. Now suppose

that
⋃
i∈I
(∨

Bi
)
6⊆
∨(⋃

i∈I Bi
)
. Then there exists s ∈ S with

⋃
i∈I
(∨

Bi
)
6⊆ Qs

and Ps 6⊆
∨(⋃

i∈I Bi
)
so there exists i ∈ I with

∨
Bi 6⊆ Qs and now we have

A ∈ Bi with A 6⊆ Qs which gives the contradiction Ps ⊆ A ⊆
∨
Bi ⊆

∨(⋃
Bi
)
.

To establish the preservation of meets we again take Bi ∈ LS for i ∈ I and note
from the definition that

⋂
i∈I Bi 7→

∨(⋂
i∈I Bi

)
under γ. Hence we must show

that
∨(⋂

i∈I Bi
)
=
⋂
i∈I
(∨

Bi
)
. Now A ∈

⋂
i∈I Bi =⇒ A ⊆

∨
Bi for all i so

A ⊆
⋂
i∈I
(∨

Bi
)
and we have

∨(⋂
i∈I Bi

)
⊆
⋂
i∈I
(∨

Bi
)
. Now suppose that⋂

i∈I
(∨

Bi
)
6⊆
∨(⋂

i∈I Bi
)
. Then there exists s ∈ S with

⋂
i∈I
(∨

Bi
)
6⊆ Qs and

Ps 6⊆
∨(⋂

i∈I Bi
)
. Now take t ∈ S with Ps 6⊆ Qt and Pt 6⊆

∨(⋂
i∈I Bi

)
. We

deduce Ps ⊆
∨
Bi 6⊆ Qt for all i ∈ I, so there exists Ai ∈ Bi, i ∈ I with Ai 6⊆ Qt.

Now Bi is a lower set, so Pt ⊆
⋂
i∈I Ai ∈ Bi for all i ∈ I, whence Pt ⊆

∨(⋂
i∈I Bi

)
which is a contradiction. Finally, it preserves arbitrary joins and meets, that is, we
can apply [7, Proposition 4.1], thereby γ maps LS into S and defines a difunction
characterized by the conditions given in the statement of the Theorem. �

In the light of the above discussion, we have the following clear corollary.

Corollary 3. For the difunctions (k,K) and (l, L) defined on (S, Ŝ) and (S, S),
respectively, the composition of these two difunctions is also difunction and it can
be easily characterized by (l ◦ k)←B =

∨̂
B = (L ◦K)←B for B ∈ LS.

We know from [6, p.190] that the category whose objects are textures and whose
morphisms are difunctions is denoted by dfTex, and if the objects restricted to
plain textures we obtain full subcategory dfPTex and we have inclusion functor
P : dfPTex → dfTex. Since (S,LS) is a plain texture for any texture (S, S) it
is natural to ask whether it can be used as a basis for a functor from dfTex to
dfPTex which is does not exist in classical case. The following proposition is an
affi rmative answers for this question.

Proposition 3. Let B be defined by B(S, S) = (S,LS) and for a dfTex morphism
(f, F ) : (S, S)→ (T,T) let B(f, F ) = (g,G) : (S,LS)→ (T,LT) be characterized by
g←B = {A ∈ S | ∃B ∈ B, A ⊆ f←B} = G←B for B ∈ LT. Then B : dfTex →
dfPTex is a functor.

Proof. It is clear that for B ∈ LT the set β(B) = {A ∈ S | ∃B ∈ B, A ⊆ f←B}
is a lower set in S so β certainly maps into LS and it is trivial that it preserves
arbitrary intersections and unions. Hence the difunction (g,G) : (S,LS)→ (T,LT)
is well defined by g←B = β(B) = G←B.
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We begin by showing B preserves composition of morphisms. Let

(S, S)
(f, F )

−−−−−−−−−→ (T,T)
(m,M)

−−−−−−−−−−→ (U,U)

be morphisms and B(f, F ) = (g,G),B(m,M) = (n,N),B((m,M) ◦ (f, F )) =
(r,R). For C ∈ LU we have

(n ◦ g)←C = g←(n←C) = g←B

where B = {B ∈ T | ∃C ∈ C, B ⊆ m←C} ∈ LT. Now
g←B = {A ∈ S | ∃B ∈ B, A ⊆ f←B}

= {A ∈ S | ∃B ∈ T,∃C ∈ C, B ⊆ m←C,A ⊆ f←B}
= {A ∈ S | ∃C ∈ C, A ⊆ f←(m←C)}
= {A ∈ S | ∃C ∈ C, A ⊆ (m ◦ f)←C)}
= r←C

which gives B((m,M) ◦ (f, F )) = B(m,M) ◦B(f, F ). Finally we establish that B
preserves identity morphisms. Let B(iS , IS) = (j, J). Then for B ∈ LS we have
j←B = {A ∈ S | ∃B ∈ B, A ⊆ i←S B} = B since i←S B = B. Hence B(iS , IS) is the
identity on B(S, S) = (S,LS), as required. �

We end this section by considering complementation. Hence throughout σ will
denote an order-reversing involution σ : S → S. It is natural to ask if σ can be
suitably extended to the textures (S, Ŝ) and (S,LS). Now, we have:

Proposition 4. If the texture (S, S) is complemented with σ : S → S, then the

mapping σ̂ : Ŝ→ Ŝ defined by σ̂(Â) = σ̂(A), A ∈ S describes a complementation on
(S, Ŝ).

Proof. In view of the complete lattice isomorphism θ : S → Ŝ, A 7→ Â mentioned
earlier, it can be shown easily the with help of following information. In general, a
texturing need not be closed under set complementation, but it may be that there
exists a map σ : S → S satisfying some suitable conditions [6, p. 172]. Thus the
map σ satisfies A ⊆ B =⇒ σ(B) ⊆ σ(A) for all A,B ∈ S by using the complete
lattice isomorphism and we have θ(σ(B)) ⊆ θ(σ(A)) =⇒ σ̂(B) ⊆ σ̂(A). That is,
σ̂(B̂) ⊆ σ̂(Â) for all Â, B̂ ∈ Ŝ, and for the second condition satisfied by σ, we have
σ̂(σ̂(Â)) = σ̂(σ̂(A)) = ̂σ(σ(A)) = Â for all Â ∈ Ŝ. Finally, the map σ̂ defines a
complementation on (S, Ŝ). �

For (S,LS) we begin by recalling from [16, Theorem 2.10] that every complemen-
tation σL on a plain texture (N,LN ) is grounded, that is generated by an order
reversing involution n 7→ n′ on the partially ordered set (N,≤) by the equality
σL(Pn) = Qn′ . If we use the same idea by taking order reversing involution σ on
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(S,⊆), then we can obtain a complementation σL on (S,LS). The following gives
an explicit formulae for this complementation.

Lemma 4.5. By the above notation, the complementation σL on (S,LS) defined
by σL(PA) = Qσ(A) for all A ∈ S is given explicitly by

σL(B) = {A ∈ S | A /∈ σ(B)}, ∀B ∈ LS,

where σ(B) = {σ(B) | B ∈ B}.

Proof. We note first that for B ∈ LS we have B =
⋃
A∈B

↓ A =
⋃
{PA | A ∈ B}

where ↓ A denotes the lower set of A, so

σL(B) = σL
(⋃
{PB | B ∈ B}

)
=
⋂{

σL(PB) | B ∈ B
}
=
⋂{

Qσ(B) | B ∈ B
}
.

Suppose first that
⋂{

Qσ(B) | B ∈ B
}
6⊆ {A ∈ S | A /∈ σ(B)}. Then we have

A ∈
⋂
B∈BQσ(B) with A ∈ σ(B). Hence we have B ∈ B with A = σ(B) and so we

have A ∈ Qσ(B) = {A ∈ S | σ(B) 6⊆ A}. This contradicts with A = σ(B).

Secondly, suppose that {A ∈ S | A /∈ σ(B)} 6⊆
⋂{

Qσ(B) | B ∈ B
}
. Now we

have B ∈ B with {A ∈ S | A /∈ σ(B)} 6⊆ Qσ(B) and so A ∈ S with A /∈ σ(B) and
A /∈ Qσ(B) = {A ∈ S | σ(B) 6⊆ A}. This gives us σ(B) ⊆ A, whence σ(A) ⊆ B and
so σ(A) ∈ B as B is a lower set. But now A ∈ σ(B), which is a contradiction. �

In view of [16, Proposition 2.8], we have the following useful characterization.

Proposition 5. Let σL be a complementation on (S,LS) and define σ : S → LS
by σ(A) = σL(PA) for all A ∈ S. Then we have the following properties:

(i) ∀A,B ∈ S, A ⊆ B ⇔ σ(B) ⊆ σ(A),
(ii) ∀A,B ∈ S, A ∈ σ(B) =⇒ B ∈ σ(A),
(iii) ∀B ∈ S, B ∈ LS, B /∈ B =⇒ ∃A ∈ S with B ⊆ σ(A) and B /∈ σ(A).
Conversely, if σ : S→ LS is a mapping satisfying the conditions above (i)-(iii),

then σL : LS → LS defined by

σL(B) =
⋂
{σ(B)|B ∈ B} (4.1)

is a complementation on LS satisfying σ(A) = σL(PA) for each A ∈ S.

Proof. With the given hypothesis, we have:

(i) A ⊆ B ⇔ PA ⊆ PB ⇔ σL(PB) ⊆ σL(PA)⇔ σ(B) ⊆ σ(A),
(ii) A ∈ σ(B) =⇒ PA ⊆ σL(PB) =⇒ PB = σL(σL(PB)) ⊆ σL(PA) =⇒

B ∈ σ(A),
(iii) if B 6∈ B then PB 6⊆ B so σL(B) 6⊆ σL(PB) = σ(B), so there exists A ∈ S

with A ∈ σL(B) and A 6∈ σL(PB) = σ(B), this gives us PA ⊆ σL(B) thus
we get σL(σL(B)) ⊆ σL(PA) = σ(A) =⇒ B ⊆ σ(A). Also, B 6∈ σ(A) by
(ii), since A 6∈ σ(B).
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Conversely, let σ : S → LS be a map satisfying (i)-(iii) and for B ∈ LS define
σL(B) by (4.1). To show σL(S) ∈ LS, let A ∈ σL(B) and take C ⊆ A. In this
case, A ∈ σL(B) =

⋂
{σ(B)|B ∈ B}, so we have A ∈ σ(B) for all B ∈ B. By (ii)

we obtain B ∈ σ(A) since C ⊆ A, then we have σ(A) ⊆ σ(C) by (i). Hence we
get B ∈ σ(C) for all B ∈ B and again using (ii) we have C ∈ σ(B) for all B ∈ B.
Thus, C ∈ σL(B) holds and thereby σL(B) ∈ LS, so we deduce that σL : LS → LS
is a mapping.
For B ⊆ C in LS, by (4.1), we obtain σL(C) ⊆ σL(B). In order to show that σL

is a complementation, we should prove σL(σL(B)) = B. To show that equality, we
begin by proving the following;

PA = σL(σ(A)), ∀A ∈ S. (4.2)

By (4.1), we have σL(σ(A)) = ∩{σ(K)|K ∈ σ(A)}, and K ∈ σ(A) =⇒ A ∈
σ(K) =⇒ PA ⊆ σ(K) by (ii), so clearly PA ⊆ σL(σ(A)). To show σL(σ(A)) ⊆ PA,
let take B 6∈ PA. Then we have B 6⊆ A =⇒ σ(A) 6⊆ σ(B) by (i), so we may take
K ∈ σ(A) satisfying K 6∈ σ(B). By (ii) we have B 6∈ σ(K), and so B 6∈ σL(σ(A))
which gives σL(σ(A)) ⊆ PA and hence (4.2) is satisfied.
Now we ready to show σL(σL(B)) = B, first suppose that σL(σL(B)) 6⊆ B for

some B ∈ LS and take B ∈ σL(σL(B)) with B 6∈ B. By (iii) we have A ∈ S
satisfying B ⊆ σ(A) and B 6∈ σ(A). From the first inclusion, we obtain PA =
σL(σ(A)) ⊆ σL(B) by (4.2) so A ∈ σL(B). Now by using (4.1) for σL(B) replaced
with B we get σL(σL(B)) ⊆ σ(A), which gives a contradiction. Hence σL(σL(B)) ⊆
B.
To prove the opposite inclusion, suppose that B 6⊆ σL(σL(B)), so there exits

B ∈ B such that B 6∈ σL(σL(B)) =
⋂
{σ(A)|A ∈ σL(B)}. Thus, for all A ∈ σL(B)

we have B 6∈ σ(A) and this implies A 6∈ σ(B) by (ii), but this contradicts with
A ∈ σL(B).
This completes the proof that σL is a complementation, and by using (4.2) we

obtain σL(PA) = σL(σL(σ(A))) = σ(A), as required. �

Now, as we indicated earlier, by using the idea in [16, Theorem 2.10], we give
the following theorem

Theorem 4.6. Any complementation σL on the plain hypertexture (S,LS) is grounded,
and the corresponding involution A → A′ = σ(A) is order reversing. Conversely,
if A → A′ = σ(A) is an order reversing involution on (S,⊆) then σ(A) = Qσ(A)
defines a grounded complementation σL on LS for which σ(A) = σL(PA) for all
A ∈ S.

Proof. It can be easily proved by using Lemma 4.5 and Proposition 5. �

The following example illustrates the above construction.

Example 4.7. Consider the texture (L,L) of Examples 4.3(2). The standard
complementation for this texture is λ defined by λ((0, r]) = (0, 1 − r], 0 ≤ r ≤ 1.
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As noted earlier there are two types of lower set in L defining the p-sets and q-sets
in (L,LL), respectively:

P(0,r] = {(0, k] | 0 ≤ k ≤ r} and Q(0,r] = {(0, k] | 0 ≤ k < r}.

By using the equalities λL(P(0,r]) = Qλ((0,r]) = Q(0,1−r], λL(Q(0,r]) = Pλ((0,r]) =
P(0,1−r] or the formula given in Lemma 4.5 we clearly have:

λL({(0, k] | 0 ≤ k ≤ r}) = {(0, s] | 0 ≤ s < 1− r}

and

λL({(0, k] | 0 ≤ k < r}) = {(0, s] | 0 ≤ s ≤ 1− r}.

We note that λ is not restriction of λL on (L, L̂). However, we do have the following
commutativity diagram, which represents a form of compatibility:

LL
γ−−−−−−−−→ Ly λL

y λ

LL
γ−−−−−−−−→ L

We must establish λ(γ(B)) = γ(λL(B)) for all B ∈ LL. There are two cases to
consider:
1) If B has the form {(0, k] | 0 ≤ k ≤ r}, 0 ≤ r ≤ 1, then γ(B) = (0, r],

λ((0, r]) = (0, 1−r] and λL(B) = {(0, s] | 0 ≤ s < 1−r}. Thus, γ(λL(B)) = (0, 1−r]
establishes the required equality.

2) If B has the form {(0, k] | 0 ≤ k < r}, 0 ≤ r ≤ 1, then the proof is similar and
is omitted.

Note 1. It will probably strike the reader that the complemented texture (L,LL, λL)
bears a close resemblance to the unit interval texture (Examples 4.3(3)) with its
standard complementation. Indeed it is not diffi cult to prove that these two textures
are actually isomorphic in the sense of [4], and the details are left to the interested
reader. This shows that the plain hypertexture of a texture with very poor mathe-
matical properties (for example (L,L, λ) has no plain points at all) can, in certain
cases, be a texture with excellent properties.

We now present an example which shows that the complementation σL does not
always have the compatibility property mentioned above.

Example 4.8. Consider again the texture (X,P(X)), X = {a, b}, of Exam-
ples 4.3(1). The standard complementation π, π(A) = X \ A on (X,P(X)) gives
π({a, b}) = ∅, π({a}) = {b}, π({b}) = {a} and π(∅) = {a, b}. Consider X which
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have the discrete ordering. In this case, it is generated by the (necessarily or-
der reversing) involution n 7→ n on X, see [16]. For the complementation πL on
(P(X),LP(X)) we obtain the following results from Lemma 4.5 :

B π(B) πL(B)

{{a, b}, {a}, {b}, ∅} {∅, {b}, {a}, {a, b}} ∅
{{a}, {b}, ∅} {{b}, {a}, {a, b}} {∅}
{{a}, ∅} {{b}, {a, b}} {{a}, ∅}
{{b}, ∅} {{a}, {a, b}} {{b}, ∅}
{∅} {{a, b}} {{a}, {b}, ∅}
∅ ∅ {{a, b}, {a}, {b}, ∅}

We note that while π interchanges {a} and {b}, πL does not interchange {{a}, ∅}
and {{b}, ∅}, so we do not have compatibility in the sense of Example 4.7.
In place of the involution n 7→ n let us consider the (necessarily order reversing)

involution a 7→ b, b 7→ a. This generates a complementation $ on (X,P(X)), which
leads to the complementation $L on (P(X),LP(X)). It is trivial to verify that $L

is the same as πL except that $L({{a}, ∅}) = {{b}, ∅} and $L({{b}, ∅}) = {{a}, ∅}.
It follows easily that the following diagram is commutative so this time $L has the
required compatibility property.

LP(X)
γ−−−−−−−−→ P(X)y $L

y π

LP(X)
γ−−−−−−−−→ P(X)

Comment. It is not known if we can always find a compatible complementation
on the plain hypertexture of a given texture.

5. Conclusion and Future Work

In this paper, we define hypertexture notion which is inspired by the hyper-
space notion, and we investigate its properties, there is a naturally question arises:
What will we do for the next step? Let us consider a ditopological texture space
(S, S, τ , κ) and the Vietoris ditopology on the corresponding standard and plain
hypertextures (S, Ŝ), (S,LS), respectively. Therefore, we already begin with the
following definition.

Definition 5.1. Let (S, S, τ , κ) be a ditopological texture space.
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(1) The Vietoris ditopology for (S, Ŝ) is (τ̂ , κ̂) where τ̂ is the smallest topology
on (S,LS) satisfying Ĝ ∈ τ̂ whenever G ∈ τ and κ̂ is the smallest cotopology
on (S, Ŝ) satisfying K̂ ∈ κ̂ whenever K ∈ κ.

(2) The Vietoris ditopology for (S,LS) is (τv, κv) where τv is the smallest topol-
ogy on (S,LS) satisfying Ĝ ∈ τv whenever G ∈ τ and κv is the smallest
cotopology on (S,LS) satisfying K̂ ∈ κv whenever K ∈ κ.

In view of the isomorphism A 7→ Â we have at once:

Lemma 5.2. With the above notation, the equalities τ̂ = {Ĝ | G ∈ τ} and κ̂ =
{K̂ | K ∈ κ} are trivial.

Corollary 4. The difunction (h,H) corresponding to the isomorphism A 7→ Â as
above is a dihomeomorphism between (S, S, τ , κ) and (S, Ŝ, τ̂ , κ̂).

It follows that (h,H) preserves the “point free" properties of ditopological tex-
ture spaces, including the compactness properties and the separation properties of
[8]. Also, the notion of extended real dicompactness [20] is preserved under di-
homeomorphisms and so (h,H) preserves this property too. However, it cannot
be expected that properties depending on the point structure will preserve in gen-
eral. For a counterexample we need only consider the texture ({a, b},P({a, b})) of
Examples 4.3(1) with the discrete ditopology τ = κ = P({a, b}). This is trivially
a bi-T2 plain dicompact, hence real dicompact space. However, by the discussion
in Examples 4.3(1) the image of ({a, b},P({a, b})) under (h,H) is not nearly plain
and so cannot support a real dicompact ditopology by [18, Proposition 2.9].
Let us now consider the Vietoris ditopology (τv, κv) on (S,LS) and the difunction

(l, L) : (S, S) → (S,LS) defined in Theorem 4.4. In this case, the following lemma
is obvious.

Lemma 5.3. The difunction (l, L) : (S, S, τ , κ)→ (S,LS, τv, κv) is bicontinuous.

Now we can state that the functor B described in Proposition 3 can be regarded
as mapping from the category dfDitop of ditopological texture spaces to the cat-
egory dfPDitop of plain ditopological texture spaces.

Proposition 6. Let B be defined by B(S, S, τ , κ) = (S,LS, τv, κv) and for a dfDi-
top morphism (f, F ) : (S, S, τ , κ)→ (T,T, µ, ν) let B(f, F ) = (g,G) : (S,LS,
τv, κv) → (T,LT, µv, νv) be characterized by g

←B = {A ∈ S | ∃B ∈ B, A ⊆
f←B} = G←B for B ∈ LT. Then B : dfDitop→ dfPDitop is a functor.

In addition, we continue to investigate the other categorical structure of this
new notion which we call it Hyperdispace and also we will work on some separation
axioms, dicompactness together with difilters for this new structure.
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[14] S. Özçağ and L.M. Brown, Di-uniform texture spaces, Applied General Topology 4 (1),

(2003), 157—192.
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[16] İsmail U. Tiryaki and L.M. Brown Plain Ditopological Texture Spaces, Topology and its

Applications 158 (15) (2011), 2005—2015.
[17] F. Yıldız and L.M. Brown, Categories of dicompact bi-T2 texture spaces and a Banach-Stone

theorem, Quaestiones Mathematicae 30 (2007), 167—192.
[18] F. Yıldız and L.M. Brown, Real dicompact textures, Topology and its Applications, 156 (11),

1970—1984.
[19] F. Yıldız and L.M. Brown, Real dicompactifications of ditopological texture spaces, Topology

and its Applications 156 (18) (2009), 3041—3051.
[20] F. Yıldız and L.M. Brown, Extended real dicompactness and an application to Hutton spaces,

Fuzzy Sets and Systems, 227 (2013), 74—95.
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