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A NOTE ON THE DIOPHANTINE EQUATIONS x2 ± 5α · pn = yn

GÖKHAN SOYDAN

Abstract. Suppose that x is odd, n ≥ 7 and p /∈ {2, 5} are primes. In this
paper, we prove that the Diophantine equations x2 ± 5αpn = yn have no
solutions in positive integers α, x, y with gcd(x, y) = 1.

1. Introduction

The Diophantine equation

x2 +B = yn, x, y ≥ 1, n ≥ 3, (1.1)

where B is a product of at least two prime powers were studied in some recent
papers. First we assume that q is an odd prime. All solutions of the Diophantine
equation (1.1) where B = 2aqb were given in [15] for q = 3, in [17] for q = 5, in
[6] for q = 11, in [19] for q = 13, in [9] for q = 17, 29, 41, in [27] for q = 19. Next
assume that q is a general odd prime. In [29], Zhu, Le, Soydan and Tógbe gave
all the solutions of the equation x2 + 2aqb = yn, x ≥ 1, y > 1, gcd(x, y) = 1, a ≥
0, b > 0, n ≥ 3 under some conditions.
Many authors also considered the Diophantine equation (1.1) where B is a prod-

uct of at least two distinct odd primes. The cases B = 5a13b and B = 5a17b

when x and y are coprime were solved completely in [18] and [21], respectively.
In 2010, the complete solution (n, a, b, x, y) of the Diophantine equation (1.1) for
the case B = 5a11b when gcd(x, y) = 1, except for the case when abx is odd, was
given by Cangul, Demirci, Soydan and Tzanakis, [7]. Six years later, the remaining
case of the Diophantine equation (1.1) for the case B = 5a11b were covered by
Soydan and Tzanakis, [26]. All solutions of the Diophantine equation (1.1) for the
cases B = 7a11b -except for the case when ax is odd and b is even-, B = 11a17b,
B = 2a5b13c, B = 2a3b11c, B = 2a5b17c and B = 2a3b17c - 2a13b17c can be found
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in [24]-[25], [4], [13], [5], [11] and [12], respectively. In [20], Pink gave all the non-
exceptional solutions of the equation (1.1) (according to terminology of that paper)
for the case B = 2a3b5c7d. For a survey concerning equation (1.1) see [4], [2].
Now we assume that n ≥ 7 and p /∈ {2, 5} are primes. Here we consider the

Diophantine equations
x2 + 5αpn = yn (1.2)

and
x2 − 5αpn = yn (1.3)

where x, y ≥ 1, α ≥ 0 and gcd(x, y) = 1. There are many papers concerning
partials solutions for the equations (1.2) and (1.3). The known results except the
ones mentioned above include the following theorem.

Theorem 1. (i) Let p > 7 be an odd prime with p 6≡ 7 (mod 8) and (n, h0) = 1
where h0 denote the class number of the field Q(

√−p). Under these conditions if
α = 0, then the equation (1.2) has no solutions.
(ii) Let p > 2 be a prime. If α = 0, then (1.3) has no solutions.

Proof. (i) See [1].
(ii) See [10]. �

Our main result is following.

Theorem 2. Suppose that x is odd, n ≥ 7 and p /∈ {2, 5} are primes. Then the
Diophantine equations

x2 + 5αpn = yn (1.4)

and
x2 − 5αpn = yn (1.5)

have no solutions in positive integers α, x, y with gcd(x, y) = 1.

Here the equation (1.4) is an extension of the equation (1.1) the cases when
B = 5a11b, B = 5a13b, B = 5a17b in [7], [26], [18], [21], respectively.

2. Preliminaries

This section introduces some well known notions and results that will be used
to prove the main result.

2.1. The modular method. The most important progress in the field of the Dio-
phantine equations has been with Wile’s proof of Fermat’s Last Theorem [28]. His
proof is based on deep results about Galois representations associated to elliptic
curves and modular forms. The method of using such results to deal with Diophan-
tine problems, is called the modular method. Especially modular method is useful
to solve Diophantine equations of the form

axp + byp = czp, axp + byp = cz2, axp + byp = cz3, ...(p prime).
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Modular method follows these steps: associate to a (hypotetical) solution of such
a Diophantine equation a certain elliptic curve, called a Frey curve, with discrimi-
nant an explicitly known constant times a p-th power. Next (under some technical
assumptions) apply Ribbet’s level lowering theorem [22] to show that Galois rep-
resentation on the p-torsion of the Frey curve occurs from a newform of weight 2
and a fairly small level N say. If there are no such newforms then there are no
non-trivial 1 solutions to the original Diophantine equation.
Now we stop here, since we only need some of these steps of the modular method

in this work (For the details concerning modular method see [8, Chapter 15] and
[23]).

2.2. Signature (n, n, 2). Here we follow the paper of Siksek [23, Section 14] and
we give recipes for signature (n, n, 2) which was firstly described by Bennett and
Skinner [3]. (See also [14]).
Assume that n ≥ 7 is prime and a, b, c, A,B and C are nonzero integers with Aa,

Bb and Cc pairwise coprime, satisfying

Aan +Bbn = Cc2. (2.1)

We suppose that

ordr(A) < n, ordr(B) < n for all primes r (2.2)

and
C is squarefree.

With assumptions and notation as above without loss of generality, we may
suppose we are in one of the following situations:

(i) abABC ≡ 1 (mod 2) and b ≡ −BC (mod 4).
(ii) ab ≡ 1 (mod 2) and either ord2(B) = 1 or ord2(C) = 1.
(iii) ab ≡ 1 (mod 2), ord2(B) = 2 and C ≡ −bB/4 (mod 4).
(iv) ab ≡ 1 (mod 2), ord2(B) ∈ {3, 4, 5} and c ≡ C (mod 4).
(v) ord2(bB

n) ≥ 6 and c ≡ C (mod 4).
In cases (i) and (ii), we will consider the curve

E1(a, b, c) : Y 2 = X3 + 2cCX2 +BCbnX. (2.3)

In cases (iii) and (iv), we will consider

E2(a, b, c) : Y 2 = X3 + cCX2 +
BCbn

4
X, (2.4)

in case (v),

E3(a, b, c) : Y 2 +XY = X3 +
cC − 1

4
X2 +

BCbn

64
X. (2.5)

These are all elliptic curves defined over Q.

1A solution to the equation axp + byp = czr with a, b, c ∈ Z/{0}, x, y, z ∈ Z, p, q, r ∈ Z>2 is
called nontrivial if xyz 6= 0.
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The following theorem [23, Theo. 16] summarizes some useful fact about these
curves.

Theorem 3. (Bennett and Skinner, [3]) Let i = 1, 2 or 3.
(a) The discriminant ∆(E) of the curve E = Ei(a, b, c) is given by

∆(E) = 2δiC3B2A(ab2)n

where

δi =


6 if i = 1

0 if i = 2

−12 if i = 3.

(b) The conductor N(E) of the curve E = Ei(a, b, c) is given by

N(E) = 2αC2
∏

s|abAB

s (s is odd prime)

where

α =



5 if i = 1, case (i)

6 if i = 1, case (ii)

1 if i = 2, case (iii), ord2(B) = 2 and b ≡ −BC/4 (mod 4)

2 if i = 2, case (iii), ord2(B) = 2 and b ≡ BC/4 (mod 4)

4 if i = 2, case (iv) and ord2(B) = 3

2 if i = 2, case (iv) and ord2(B) ∈ {4, 5}
−1 if i = 3, case (v) and ord2(Bbn) = 6

0 if i = 3, case (v) and ord2(Bbn) ≥ 7.

(c) Suppose that E = Ei(a, b, c) does not have complex multiplication (This would
follow if we assume that ab 6= ±1). Then E = Ei(a, b, c) ∼n f for some newform f
of level

Nn = 2βC2
∏
t|AB

t (t is odd prime)

where

β =



α cases (i)-(iv),

0 case (v) and ord2(B) 6= 0, 6,

1 case (v) and ord2(B) = 0,

−1 case (v) and ord2(B) = 6.

(d) The curves Ei(a, b, c) have non-trivial 2-torsion.

Finally we give an important result [23, Theo. 1] about newforms.



DIOPHANTINE EQUATIONS x2 ± 5α · pn = yn 321

Theorem 4. There are no newforms at levels 1, 2, 3, 4, 5, 7, 8, 9, 10, 12, 13, 16,
18, 22, 25, 28, 60.

Now we are ready to prove Theorem 2.

3. The proof of Theorem 2

First suppose that (x, y, α, p, n) is a solution to (1.4) where x is odd, n ≥ 7 and
p /∈ {2, 5} are primes. Thus the equation (1.4) becomes

(−5)αpn + yn = x2 (3.1)

with 2 - α. We may assume without loss of generality that x ≡ 1 (mod 4). With
the notation in (2.1), we see that (3.1) is a ternary equation of signature (n, n, 2).
We have the following notations which satisfy (2.2)

A = (−5)α, B = 1, C = 1, a = p, b = y, c = x.

Since y is even, x ≡ 1 (mod 4) and n ≥ 7, then with the case (v) (in page 4) we are
interested in the following elliptic curve (called a Frey curve)

E3 : Y 2 +XY = X3 +
x− 1

4
X2 +

yn

64
X.

According to the cases (a) and (b) of Theorem 3, we write the discriminant and
conductor of this elliptic curve, respectively

∆(E3) = 2−12(−5)(ab2)n, N(E3) =
∏

s|abAB

s = 5
∏
s|ab

s

where in the last product s is odd prime. With the case (c) of Theorem 3 we
compute the level Nn = 2

∏
t|AB t = 10 ( t prime). But Theorem 4 tells us that

there is no newform of level 10. Thus we deduce the equation (3.1) has no solutions
where x is odd, p /∈ {2, 5} and n ≥ 7 are primes.
For the case 2 | α, we can write the equation (1.5) as follows.

(−5)αpn + yn = x2. (3.2)

Following same steps as the case 2 - α, we see that (3.2) has no solutions where
p /∈ {2, 5} and n ≥ 7 are primes. So the proof of theorem is completed.
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Bursa-TURKEY

E-mail address : gsoydan@uludag.edu.tr
ORCID: http://orcid.org/0000-0002-6321-4132


	1. Introduction
	2. Preliminaries
	2.1. The modular method
	2.2. Signature (n,n,2)

	3. The proof of Theorem ??
	References

