INEXTENSIBLE FLOW OF A SEMI-REAL QUATERNIONIC CURVE IN SEMI-EUCLIDEAN SPACE \mathbb{R}_{2}^{4}

A. FUNDA YILDIZ, O. ZEKİ OKUYUCU, AND Ö. GÖKMEN YILDIZ

Abstract

In this paper, we investigate a general formulation for inextensible flows of semi-real quaternionic curve in \mathbb{R}_{2}^{4}. We obtain necessary and sufficient conditions for inextensible flow of semi-real quaternionic curves. Moreover, we give the evolution equation of curvatures as a partial differential equation.

1. Introduction

The Irish mathematician Hamilton wanted to generalize the complex numbers by introducing a three-dimensional object failed in the sense that the algebra he constructed for these three-dimensional object did not have the desired properties and then he discovered the quaternion in 1843. Quaternions can be represented as the sum of a scalar and a vector. They are applied to mechanic and physics. The quaternions set Q is isomorphic to \mathbb{R}^{4}, which is a four-dimensional vector space over \mathbb{R}. The Serret-Frenet formulae for a quaternionic curves was given in \mathbb{R}^{3} by K. Bharathi and M. Nagara [7]. Also, they defined Serret-Frenet formulae for quaternionic curves in \mathbb{R}^{4}, by using the formulae in \mathbb{R}^{3}. After these studies, a lot of articles about quaternionic curves are published in \mathbb{R}^{3} and \mathbb{R}^{4}. And then SerretFrenet formulas for quaternionic curves and quaternionic inclined curves have been defined in Semi-Euclidean space by Çöken and Tuna [2]. Gök et al and Kahraman et al defined a new kind of slant helix in Euclidean space \mathbb{R}^{4} [6] and semi-Euclidean space \mathbb{R}_{2}^{4} [5]. It called quaternionic B_{2}-slant and semi-real quaternionic B_{2}-slant helix, respectively. Güngör and Tosun studied quaternionic rectifying curves in \mathbb{R}^{4} 8]. Moreover, Yıldız and Karakuş examined quaternionic normal curves in \mathbb{R}^{4} [11].

In differential geometry studies, contrary what is known the time parameter plays an important role. One of the most important of these studies is envolving curve, which is the family of curves parametrized by time. Also, the time evolution of curve can be treated as flow of curve. Inextensible flows of curves and developable

[^0]surfaces were studied in \mathbb{R}^{3} by Kwon and Park [3, 4]. Inextensible flows of curves were investigated by according to Darboux frame in $\mathbb{R}^{3}[9]$ and were examined in Lie Group [10]. Uçum et al have studied flows for partially null and pseudo null curves. Moreover, Körpınar and Baş have investigated inextensible flows of quaternionic curves in Euclidean space $\mathbb{R}^{4} \quad 12$.

Our aim is to study inextensible flow of semi-real quaternionic curves in \mathbb{R}_{2}^{4}. We give necessary and sufficient conditions for inextensible flows of semi-real quaternionic curves. Also, we give the evolution equation of curvatures as a partial differential equation.

2. Preliminaries

In this section, we will give a brief summary of the semi-real quaternion in the semi Euclidean space \mathbb{R}_{2}^{4}. A semi real quaternion q is expressed as $q=a e_{1}+b e_{2}+$ $c e_{3}+d$ such that

$$
\begin{aligned}
e_{i} \times e_{i} & =-\varepsilon_{e_{i}}, \quad(1 \leq i \leq 3), \\
e_{i} \times e_{j} & =\varepsilon_{e_{i}} \varepsilon_{e_{j}} e_{k}, \quad \text { in } \mathbb{R}_{1}^{3}, \\
e_{i} \times e_{j} & =-\varepsilon_{e_{i}} \varepsilon_{e_{j}} e_{k}, \quad \text { in } \mathbb{R}_{2}^{4},
\end{aligned}
$$

where $(i j k)$ is an even permutation of (123) and $a, b, c, d \in \mathbb{R}$ [2]. Further, any quaternion can be written as $q=S_{q}+V_{q}$ where $S_{q}=d$ and $V_{q}=a e_{1}+b e_{2}+c e_{3}$ denote scalar and vector part of q, respectively. The multiplication of two semi-real quaternions p and q is defined as $p \times q=S_{p} S_{q}+<V_{p}, V_{q}>+S_{p} V_{q}+S_{q} V_{p}+$ $V_{p} \wedge V_{q}$, for every $p, q \in \mathbb{R}_{2}^{4}$ where $<,>$ and \wedge are scalar and cross product in \mathbb{R}_{1}^{3}, respectively. The conjugate of q is $\gamma q=S_{q}-V_{q}$. By using this, for every $p, q \in \mathbb{R}_{2}^{4}$ the symmetric, non-degenerate, bilinear form h is defined as follows

$$
\begin{aligned}
h & : \mathbb{R}_{2}^{4} \times \mathbb{R}_{2}^{4} \rightarrow \mathbb{R} \\
h(p, q) & =\frac{1}{2}\left[\varepsilon_{p} \varepsilon_{\gamma q}(p \times \gamma q)+\varepsilon_{q} \varepsilon_{\gamma p}(q \times \gamma p)\right]
\end{aligned}
$$

The norm of q is denoted by

$$
\|q\|^{2}=-a^{2}-b^{2}+c^{2}+d^{2}
$$

If $q \times \gamma q=0$ then q is called a semi-real spatial quaternion. If $h(p, q)=0$ then p and q are called h-orthogonal where $p, q \in \mathbb{R}_{2}^{4}[2]$. If $\|q\|^{2}=1$, then q is called a semi-real unit quaternion.

Now, we give the definition of semi-real quaternionic curve and its Serret-Frenet apparatus. \mathbb{R}_{2}^{4} is identified with the space of unit semi-quaternions and is denoted by Q_{v}. Let

$$
\beta: I \subset R \longrightarrow Q_{v}, \quad \beta(s)=\sum_{i=1}^{4} \beta_{i}(s) e_{i}, \quad e_{4}=1
$$

be a smooth curve β with nonzero curvatures $\left\{K, k,\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} K\right)\right\}$ defined over the interval $I=[0,1]$. Let the parameter s be chosen such that the tangent $T=$ $\beta^{\prime}(s)=\sum_{i=1}^{4} \beta_{i}^{\prime}(s) e_{i}$ has unit magnitude and the Serret-Frenet apparatus of β are $\left\{T, N, B_{1}, B_{2}\right\}$. The Frenet equations are

$$
\begin{align*}
T^{\prime}(s) & =\varepsilon_{N} K N(s) \tag{2.1}\\
N^{\prime}(s) & =-\varepsilon_{t} \varepsilon_{N} K T(s)+\varepsilon_{n} k B_{1}(s) \\
B_{1}^{\prime}(s) & =-\varepsilon_{t} k N(s)+\varepsilon_{n}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} K\right) B_{2}(s) \\
B_{2}^{\prime}(s) & =-\varepsilon_{b}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} K\right) B_{1}
\end{align*}
$$

where $h(T, T)=\varepsilon_{T}, h(N, N)=\varepsilon_{T}, h\left(B_{1}, B_{1}\right)=\varepsilon_{n} \varepsilon_{T}$ and $h\left(B_{1}, B_{1}\right)=\varepsilon_{b} \varepsilon_{T}$ [1]

3. Flow of Semi-Real Quaternionic Curve

Throughout this paper, we assume that $\alpha:[0, l] \times[0, w] \rightarrow Q_{v}$ is a one parameter family of smooth semi-real quaternionic curve in Q_{v} where l is arclength of initial curve and u is the curve parametrization variable, $0 \leq u \leq l$. Let $\alpha(u, t)$ be the position vector of the semi-real quaternionic curve at time t. The arclength variation of $\alpha(u, t)$ is given by

$$
\begin{equation*}
s(u, t)=\int_{0}^{u}\left\|\frac{\partial \alpha}{\partial u}\right\| d u=\int_{0}^{u} v d u \tag{3.1}
\end{equation*}
$$

The operator $\frac{\partial}{\partial s}$ is given in term of u by $\frac{\partial}{\partial s}=\frac{1}{v} \frac{\partial}{\partial u}$.
Definition 1. Let α be smooth semi-real quaternionic curve with the Frenet frame $\left\{T, N, B_{1}, B_{2}\right\}$. Any flow of α can be given by

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t}=f_{1} T+f_{2} N+f_{3} B_{1}+f_{4} B_{2} \tag{3.2}
\end{equation*}
$$

where f_{1}, f_{2}, f_{3} and f_{4} are scalar speed functions of α.
In Q_{v}, the inextensible condition of the length of the curve can be expressed by (4)

$$
\begin{equation*}
\frac{\partial}{\partial t} s(u, t)=\int_{0}^{u} \frac{\partial v}{\partial t} d u=0 . \tag{3.3}
\end{equation*}
$$

Definition 2. A semi-real quaternionic curve evolution $\alpha(u, t)$ and its flow $\frac{\partial \alpha}{\partial t}$ in Q_{v} are said to be inextensible if

$$
\begin{equation*}
\frac{\partial}{\partial t}\left\|\frac{\partial \alpha}{\partial u}\right\|=0 \tag{3.4}
\end{equation*}
$$

Lemma 1. The evolution equation for the speed v is given by

$$
\begin{equation*}
\frac{\partial v}{\partial t}=\varepsilon_{T} \frac{\partial f_{1}}{\partial u}-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} v \kappa f_{2} \tag{3.5}
\end{equation*}
$$

Proof. As $\frac{\partial}{\partial u}$ and $\frac{\partial}{\partial t}$ are commutative and $v^{2}=h\left(\frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial u}\right)$, we have

$$
2 v \frac{\partial v}{\partial t}=\frac{\partial}{\partial t} h\left(\frac{\partial \alpha}{\partial u}, \frac{\partial \alpha}{\partial u}\right)=2 h\left(\frac{\partial \alpha}{\partial u}, \frac{\partial}{\partial u}\left(\frac{\partial \alpha}{\partial t}\right)\right) .
$$

Thus, we obtain

$$
\frac{\partial v}{\partial t}=\varepsilon_{T} \frac{\partial f_{1}}{\partial u}-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} v \kappa f_{2}
$$

Theorem 1. The flow of semi-real quaternionic curve is inextensible if and only if

$$
\begin{equation*}
\frac{\partial f_{1}}{\partial s}=\varepsilon_{t} \varepsilon_{N} \kappa f_{2} \tag{3.6}
\end{equation*}
$$

Proof. Let the flow of semi-real quaternionic curve be inextensible. From equation (3.3) and (3.5), we have

$$
\frac{\partial}{\partial t} s(u, t)=\int_{0}^{u} \frac{\partial v}{\partial t} d u=\int_{0}^{u}\left(\varepsilon_{T} \frac{\partial f_{1}}{\partial u}-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} v \kappa f_{2}\right) d u=0
$$

This clearly forces

$$
\frac{\partial f_{1}}{\partial s}=\varepsilon_{t} \varepsilon_{N} \kappa f_{2}
$$

Lemma 2. Let the flow of $\alpha(u, t)$ be inextensible. Derivatives of the elements of Frenet frame with respect to evolution parameter can be given as follows;

$$
\begin{aligned}
\frac{\partial T}{\partial t} & =\left(\varepsilon_{N} f_{1} \kappa+\frac{\partial f_{2}}{\partial s}-\varepsilon_{t} f_{3} k\right) N+\left(\varepsilon_{n} f_{2} k+\frac{\partial f_{3}}{\partial s}-\varepsilon_{b} f_{4}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) B_{1} \\
& +\left(\varepsilon_{n} f_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+\frac{\partial f_{4}}{\partial s}\right) B_{2} \\
\frac{\partial N}{\partial t} & =-\left(\varepsilon_{T} f_{1} \kappa+\varepsilon_{T} \varepsilon_{N} \frac{\partial f_{2}}{\partial s}-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} f_{3} k\right) T+\varepsilon_{n} \varepsilon_{T} \psi_{1} B_{1}+\varepsilon_{b} \varepsilon_{T} \psi_{2} B_{2} \\
\frac{\partial B_{1}}{\partial t} & =-\left(f_{2} k+\varepsilon_{n} \frac{\partial f_{3}}{\partial s}-\varepsilon_{n} \varepsilon_{b} f_{4}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) T-\varepsilon_{N} \psi_{1} N+\varepsilon_{b} \varepsilon_{T} \psi_{3} B_{2} \\
\frac{\partial B_{2}}{\partial t} & =-\left(\varepsilon_{n} \varepsilon_{b} f_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+\varepsilon_{b} \frac{\partial f_{4}}{\partial s}\right) T-\varepsilon_{N} \psi_{2} N-\varepsilon_{n} \varepsilon_{T} \psi_{3} B_{1} . \\
\text { where } \psi_{1} & =h\left(\frac{\partial N}{\partial t}, B_{1}\right), \psi_{2}=h\left(\frac{\partial N}{\partial t}, B_{2}\right), \psi_{3}=h\left(\frac{\partial B_{1}}{\partial t}, B_{2}\right) .
\end{aligned}
$$

Proof. Let $\frac{\partial \alpha}{\partial t}$ be inextensible. Then, considering that $\frac{\partial}{\partial t}$ and $\frac{\partial}{\partial s}$ are commutative, we get

$$
\frac{\partial T}{\partial t}=\frac{\partial}{\partial t}\left(\frac{\partial \alpha}{\partial s}\right)=\frac{\partial}{\partial s}\left(\frac{\partial \alpha}{\partial t}\right)=\frac{\partial}{\partial s}\left(f_{1} T+f_{2} N+f_{3} B_{1}+f_{4} B_{2}\right)
$$

substituting (3.6) in the last equation, we have

$$
\begin{align*}
\frac{\partial T}{\partial t} & =\left(\varepsilon_{N} f_{1} \kappa+\frac{\partial f_{2}}{\partial s}-\varepsilon_{t} f_{3} k\right) N+\left(\varepsilon_{n} f_{2} k+\frac{\partial f_{3}}{\partial s}-\varepsilon_{b} f_{4}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) B_{1} \\
& +\left(\varepsilon_{n} f_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+\frac{\partial f_{4}}{\partial s}\right) B_{2} \tag{3.7}
\end{align*}
$$

Now, if we consider orthogonality of $\left\{T, N, B_{1}, B_{2}\right\}$, then we get

$$
\begin{aligned}
0 & =\frac{\partial}{\partial t} h(T, N)=h\left(\frac{\partial T}{\partial t}, N\right)+h\left(T, \frac{\partial N}{\partial t}\right) \\
& =\varepsilon_{N}\left(\varepsilon_{N} f_{1} \kappa+\frac{\partial f_{2}}{\partial s}-\varepsilon_{t} f_{3} k\right)+h\left(T, \frac{\partial N}{\partial t}\right) \\
0 & =\frac{\partial}{\partial t} h\left(T, B_{1}\right)=h\left(\frac{\partial T}{\partial t}, B_{1}\right)+h\left(T, \frac{\partial B_{1}}{\partial t}\right) \\
& =\varepsilon_{n} \varepsilon_{T}\left(\varepsilon_{n} f_{2} k+\frac{\partial f_{3}}{\partial s}-\varepsilon_{b} f_{4}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right)+h\left(T, \frac{\partial B_{1}}{\partial t}\right) \\
0 & =\frac{\partial}{\partial t} h\left(T, B_{2}\right)=h\left(\frac{\partial T}{\partial t}, B_{2}\right)+h\left(T, \frac{\partial B_{2}}{\partial t}\right) \\
& =\varepsilon_{b} \varepsilon_{T}\left(\varepsilon_{n} f_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+\frac{\partial f_{4}}{\partial s}\right)+h\left(T, \frac{\partial B_{2}}{\partial t}\right) \\
0 & =\frac{\partial}{\partial t} h\left(N, B_{1}\right)=h\left(\frac{\partial N}{\partial t}, B_{1}\right)+h\left(N, \frac{\partial B_{1}}{\partial t}\right) \\
& =\varepsilon_{n} \varepsilon_{T} \psi_{1}+h\left(N, \frac{\partial B_{1}}{\partial t}\right), \\
0 & =\frac{\partial}{\partial t} h\left(N, B_{2}\right)=h\left(\frac{\partial N}{\partial t}, B_{2}\right)+h\left(N, \frac{\partial B_{2}}{\partial t}\right) \\
& =\varepsilon_{b} \varepsilon_{T} \psi_{2}+h\left(N, \frac{\partial B_{2}}{\partial t}\right), \\
0 & =\frac{\partial}{\partial t} h\left(B_{1}, B_{2}\right)=h\left(\frac{\partial B_{1}}{\partial t}, B_{2}\right)+h\left(B_{1}, \frac{\partial B_{2}}{\partial t}\right) \\
& =\varepsilon_{b} \varepsilon_{T} \psi_{3}+h\left(B_{1}, \frac{\partial B_{2}}{\partial t}\right)
\end{aligned}
$$

which brings about that

$$
\begin{aligned}
\frac{\partial N}{\partial t} & =-\left(\varepsilon_{T} f_{1} \kappa+\varepsilon_{T} \varepsilon_{N} \frac{\partial f_{2}}{\partial s}-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} f_{3} k\right) T+\varepsilon_{n} \varepsilon_{T} \psi_{1} B_{1}+\varepsilon_{b} \varepsilon_{T} \psi_{2} B_{2} \\
\frac{\partial B_{1}}{\partial t} & =-\left(f_{2} k+\varepsilon_{n} \frac{\partial f_{3}}{\partial s}-\varepsilon_{n} \varepsilon_{b} f_{4}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) T-\varepsilon_{N} \psi_{1} N+\varepsilon_{b} \varepsilon_{T} \psi_{3} B_{2} \\
\frac{\partial B_{2}}{\partial t} & =-\left(\varepsilon_{n} \varepsilon_{b} f_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+\varepsilon_{b} \frac{\partial f_{4}}{\partial s}\right) T-\varepsilon_{N} \psi_{2} N-\varepsilon_{n} \varepsilon_{T} \psi_{3} B_{1}
\end{aligned}
$$

where $\psi_{1}=h\left(\frac{\partial N}{\partial t}, B_{1}\right), \psi_{2}=h\left(\frac{\partial N}{\partial t}, B_{2}\right), \psi_{3}=h\left(\frac{\partial B_{1}}{\partial t}, B_{2}\right)$.
Theorem 2. Let the flow of $\alpha(u, t)$ be inextensible. Then the evolution equation of κ is

$$
\begin{aligned}
\frac{\partial \kappa}{\partial t}= & \varepsilon_{t} \varepsilon_{N} f_{2} \kappa^{2}+f_{1} \frac{\partial \kappa}{\partial s}+\varepsilon_{N} \frac{\partial^{2} f_{2}}{\partial s^{2}}-2 \varepsilon_{t} \varepsilon_{N} \frac{\partial f_{3}}{\partial s} k-\varepsilon_{t} \varepsilon_{N} f_{3} \frac{\partial k}{\partial s} \\
& -\varepsilon_{t} \varepsilon_{n} \varepsilon_{N} f_{2} k^{2}+\varepsilon_{t} \varepsilon_{b} \varepsilon_{N} f_{4} k\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)
\end{aligned}
$$

Proof. Since $\frac{\partial}{\partial s}\left(\frac{\partial T}{\partial t}\right)=\frac{\partial}{\partial t}\left(\frac{\partial T}{\partial s}\right)$, we have

$$
\begin{aligned}
\frac{\partial}{\partial s}\left(\frac{\partial T}{\partial t}\right) & =\left(-\varepsilon_{t} f_{1} \kappa^{2}-\varepsilon_{t} \varepsilon_{N} \frac{\partial f_{2}}{\partial s} \kappa+\varepsilon_{N} f_{3} \kappa k\right) T \\
& +\left(\varepsilon_{t} f_{2} \kappa^{2}+\varepsilon_{N} f_{1} \frac{\partial \kappa}{\partial s}+\frac{\partial^{2} f_{2}}{\partial s^{2}}-2 \varepsilon_{t} \frac{\partial f_{3}}{\partial s} k-\varepsilon_{t} f_{3} \frac{\partial k}{\partial s}-\varepsilon_{t} \varepsilon_{n} f_{2} k^{2}\right. \\
& \left.+\varepsilon_{t} \varepsilon_{b} f_{4} k\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) N \\
& +\left(\varepsilon_{n} \varepsilon_{N} f_{1} \kappa k+2 \varepsilon_{n} \frac{\partial f_{2}}{\partial s} k-\varepsilon_{t} \varepsilon_{n} f_{3} k^{2}+\varepsilon_{n} f_{2} \frac{\partial k}{\partial s}+\frac{\partial^{2} f_{3}}{\partial s^{2}}\right. \\
& \left.-2 \varepsilon_{b} \frac{\partial f_{4}}{\partial s}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)-\varepsilon_{b} f_{4} \frac{\partial\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)}{\partial s}-\varepsilon_{n} \varepsilon_{b} f_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)^{2}\right) B_{1} \\
& +\left(f_{2} k\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+2 \varepsilon_{n} \frac{\partial f_{3}}{\partial s}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)-\varepsilon_{n} \varepsilon_{b} f_{4}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)^{2}\right. \\
& \left.+\varepsilon_{n} f_{3} \frac{\partial\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)}{\partial s}+\frac{\partial^{2} f_{4}}{\partial s^{2}}\right) B_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{\partial T}{\partial s}\right) & =\frac{\partial}{\partial t}\left(\varepsilon_{N} \kappa N\right)=\varepsilon_{N} \frac{\partial \kappa}{\partial t} N+\varepsilon_{N} \kappa \frac{\partial N}{\partial t} \\
& =\left(-\varepsilon_{T} \varepsilon_{N} f_{1} \kappa^{2}-\varepsilon_{T} \frac{\partial f_{2}}{\partial s} \kappa+\varepsilon_{t} \varepsilon_{T} f_{3} \kappa k\right) T+\varepsilon_{N} \frac{\partial \kappa}{\partial t} N+\varepsilon_{n} \varepsilon_{T} \varepsilon_{N} \psi_{1} \kappa B_{1} \\
& +\varepsilon_{b} \varepsilon_{T} \varepsilon_{N} \psi_{2} \kappa B_{2} .
\end{aligned}
$$

From equality of the component of N in above two equations, we obtain

$$
\begin{aligned}
\frac{\partial \kappa}{\partial t} & =\varepsilon_{t} \varepsilon_{N} f_{2} \kappa^{2}+f_{1} \frac{\partial \kappa}{\partial s}+\varepsilon_{N} \frac{\partial^{2} f_{2}}{\partial s^{2}}-2 \varepsilon_{t} \varepsilon_{N} \frac{\partial f_{3}}{\partial s} k-\varepsilon_{t} \varepsilon_{N} f_{3} \frac{\partial k}{\partial s}-\varepsilon_{t} \varepsilon_{n} \varepsilon_{N} f_{2} k^{2} \\
& +\varepsilon_{t} \varepsilon_{b} \varepsilon_{N} f_{4} k\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)
\end{aligned}
$$

Corollary 1. In theorem (2), from rest of the equality, we get

$$
\begin{aligned}
\kappa \psi_{1} & =\varepsilon_{T} f_{1} k \kappa+2 \varepsilon_{T} \varepsilon_{N} \frac{\partial f_{2}}{\partial s} k-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} f_{3} k^{2}+\varepsilon_{T} \varepsilon_{N} f_{2} \frac{\partial k}{\partial s}+\varepsilon_{n} \varepsilon_{T} \varepsilon_{N} \frac{\partial^{2} f_{3}}{\partial s^{2}} \\
& -2 \varepsilon_{n} \varepsilon_{b} \varepsilon_{T} \varepsilon_{N} \frac{\partial f_{4}}{\partial s}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)-\varepsilon_{n} \varepsilon_{b} \varepsilon_{T} \varepsilon_{N} f_{4} \frac{\partial\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)}{\partial s} \\
& -\varepsilon_{b} \varepsilon_{T} \varepsilon_{N} f_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)^{2} \\
\kappa \psi_{2} & =\varepsilon_{t} \varepsilon_{b} f_{2} k\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+2 \varepsilon_{t} \varepsilon_{n} \varepsilon_{b} \frac{\partial f_{3}}{\partial s}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)-\varepsilon_{t} \varepsilon_{n} f_{4}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)^{2} \\
& +\varepsilon_{t} \varepsilon_{n} \varepsilon_{b} f_{3} \frac{\partial\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)}{\partial s}+\varepsilon_{t} \varepsilon_{b} \frac{\partial^{2} f_{4}}{\partial s^{2}}
\end{aligned}
$$

Theorem 3. Let the flow of $\alpha(u, t)$ be inextensible. Then the evolution equation of k is

$$
\begin{aligned}
\frac{\partial k}{\partial t} & =\varepsilon_{t} \varepsilon_{N} f_{2} \kappa k+\varepsilon_{t} \varepsilon_{n} \varepsilon_{N} \frac{\partial f_{3}}{\partial s} \kappa-\varepsilon_{t} \varepsilon_{n} \varepsilon_{b} \varepsilon_{N} f_{4} \kappa\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+\varepsilon_{T} \frac{\partial \psi_{1}}{\partial s} \\
& -\varepsilon_{n} \varepsilon_{T} \psi_{2}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)
\end{aligned}
$$

Proof. Noticing that $\frac{\partial}{\partial s}\left(\frac{\partial N}{\partial t}\right)=\frac{\partial}{\partial t}\left(\frac{\partial N}{\partial s}\right)$, it is seen that

$$
\begin{aligned}
\frac{\partial}{\partial s}\left(\frac{\partial N}{\partial t}\right) & =\left(-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} f_{2} \kappa^{2}-\varepsilon_{T} f_{1} \frac{\partial \kappa}{\partial s}-\varepsilon_{T} \varepsilon_{N} \frac{\partial^{2} f_{2}}{\partial s^{2}}+\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \frac{\partial f_{3}}{\partial s} k+\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} f_{3} \frac{\partial k}{\partial s}\right) T \\
& +\left(-\varepsilon_{T} \varepsilon_{N} f_{1} \kappa^{2}-\varepsilon_{T} \frac{\partial f_{2}}{\partial s} \kappa+\varepsilon_{t} \varepsilon_{T} f_{3} \kappa k-\varepsilon_{t} \varepsilon_{n} \varepsilon_{T} \psi_{1} k\right) N \\
& +\left(\varepsilon_{n} \varepsilon_{T} \frac{\partial \psi_{1}}{\partial s}-\varepsilon_{T} \psi_{2}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) B_{1} \\
& +\left(\varepsilon_{T}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right) \psi_{1}+\varepsilon_{b} \varepsilon_{T} \frac{\partial \psi_{2}}{\partial s}\right) B_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{\partial N}{\partial s}\right) & =\frac{\partial}{\partial t}\left(-\varepsilon_{t} \varepsilon_{N} \kappa T+\varepsilon_{n} k B_{1}\right) \\
& =\left(-\varepsilon_{t} \varepsilon_{N} \frac{\partial \kappa}{\partial t}-\varepsilon_{n} f_{2} k^{2}-\frac{\partial f_{3}}{\partial s} k+\varepsilon_{b} f_{4} k\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) T \\
& +\left(-\varepsilon_{t} f_{1} \kappa^{2}-\varepsilon_{t} \varepsilon_{N} \frac{\partial f_{2}}{\partial s} \kappa+\varepsilon_{N} f_{3} \kappa k-\varepsilon_{n} \varepsilon_{N} \psi_{1} k\right) N \\
& +\left(-\varepsilon_{t} \varepsilon_{n} \varepsilon_{N} f_{2} k \kappa-\varepsilon_{t} \varepsilon_{N} \frac{\partial f_{3}}{\partial s} \kappa+\varepsilon_{t} \varepsilon_{b} \varepsilon_{N} f_{4} \kappa\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+\varepsilon_{n} \frac{\partial k}{\partial t}\right) B_{1} \\
& +\left(-\varepsilon_{t} \varepsilon_{n} \varepsilon_{N} f_{3} \kappa\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)-\varepsilon_{t} \varepsilon_{N} \frac{\partial f_{4}}{\partial s} \kappa+\varepsilon_{n} \varepsilon_{b} \varepsilon_{T} \psi_{3} k\right) B_{2}
\end{aligned}
$$

From above equations, we get

$$
\begin{aligned}
\frac{\partial k}{\partial t} & =\varepsilon_{t} \varepsilon_{N} f_{2} \kappa k+\varepsilon_{t} \varepsilon_{n} \varepsilon_{N} \frac{\partial f_{3}}{\partial s} \kappa-\varepsilon_{t} \varepsilon_{n} \varepsilon_{b} \varepsilon_{N} f_{4} \kappa\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)+\varepsilon_{T} \frac{\partial \psi_{1}}{\partial s} \\
& -\varepsilon_{n} \varepsilon_{T} \psi_{2}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)
\end{aligned}
$$

Corollary 2. In theorem (3), from rest of the equality, we obtain
$\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right) \psi_{1}=-\varepsilon_{b} \frac{\partial \psi_{2}}{\partial s}-\varepsilon_{t} \varepsilon_{n} \varepsilon_{T} \varepsilon_{N} f_{3} \kappa\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \frac{\partial f_{4}}{\partial s} \kappa+\varepsilon_{n} \varepsilon_{b} \psi_{3} k$
Theorem 4. Let the flow of $\alpha(u, t)$ be inextensible. Then the evolution equation of $\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)$ is

$$
\frac{\partial\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)}{\partial t}=\varepsilon_{n} \varepsilon_{b} \varepsilon_{N} \psi_{2} k+\varepsilon_{n} \varepsilon_{b} \varepsilon_{T} \frac{\partial \psi_{3}}{\partial s}
$$

Proof. Noticing that $\frac{\partial}{\partial s}\left(\frac{\partial B_{1}}{\partial t}\right)=\frac{\partial}{\partial t}\left(\frac{\partial B_{1}}{\partial s}\right)$, it is seen that

$$
\begin{aligned}
\frac{\partial}{\partial s}\left(\frac{\partial B_{1}}{\partial t}\right) & =\left(-\frac{\partial f_{2}}{\partial s} k-f_{2} \frac{\partial k}{\partial s}-\varepsilon_{n} \frac{\partial^{2} f_{3}}{\partial s^{2}}+\varepsilon_{n} \varepsilon_{b} \frac{\partial f_{4}}{\partial s}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right. \\
& \left.+\varepsilon_{n} \varepsilon_{b} f_{4} \frac{\partial\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)}{\partial s}+\varepsilon_{t} \psi_{1} \kappa\right) T \\
& +\left(-\varepsilon_{N} f_{2} \kappa k-\varepsilon_{n} \varepsilon_{N} \frac{\partial f_{3}}{\partial s} \kappa+\varepsilon_{n} \varepsilon_{b} \varepsilon_{N} f_{4} \kappa\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)-\varepsilon_{N} \frac{\partial \psi_{1}}{\partial s}\right) N \\
& +\left(-\varepsilon_{n} \varepsilon_{N} \psi_{1} k-\varepsilon_{T} \psi_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) B_{1}+\left(\varepsilon_{b} \varepsilon_{T} \frac{\partial \psi_{3}}{\partial s}\right) B_{2}
\end{aligned}
$$

and

$$
\begin{aligned}
\frac{\partial}{\partial t}\left(\frac{\partial B_{1}}{\partial s}\right) & =\frac{\partial}{\partial t}\left(-\varepsilon_{t} k N+\varepsilon_{n}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right) B_{2}\right) \\
& =\left(\varepsilon_{t} \varepsilon_{T} f_{1} k \kappa+\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \frac{\partial f_{2}}{\partial s} k-\varepsilon_{T} \varepsilon_{N} f_{3} k^{2}\right. \\
& \left.-\varepsilon_{b} f_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)^{2}-\varepsilon_{n} \varepsilon_{b} \frac{\partial f_{4}}{\partial s}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) T \\
& +\left(-\varepsilon_{t} \frac{\partial k}{\partial t}-\varepsilon_{n} \varepsilon_{N} \psi_{2}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) N \\
& +\left(-\varepsilon_{t} \varepsilon_{n} \varepsilon_{T} \psi_{1} k-\varepsilon_{T} \psi_{3}\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)\right) B_{1} \\
& +\left(-\varepsilon_{t} \varepsilon_{b} \varepsilon_{T} \psi_{2} k+\varepsilon_{n} \frac{\partial\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)}{\partial t}\right) B_{2}
\end{aligned}
$$

From above equations, we obtain

$$
\frac{\partial\left(r-\varepsilon_{t} \varepsilon_{T} \varepsilon_{N} \kappa\right)}{\partial t}=\varepsilon_{n} \varepsilon_{b} \varepsilon_{N} \psi_{2} k+\varepsilon_{n} \varepsilon_{b} \varepsilon_{T} \frac{\partial \psi_{3}}{\partial s} .
$$

References

[1] Çöken A. C. and A. Tuna, "On the quaternionic inclined curves in the semi-Euclidean space $E_{2}^{4}, "$ Applied mathematics and computation, vol. 155, no. 2, pp. 373-389, 2004.
[2] Tuna, A., "Serret Frenet formulae for quaternionic curves in semi Euclidean space," Master Thesis, Süleyman Demirel University, Graduate School of Natural and Applied Science, Department of Mathematics, Isparta, Turkey, 2002.
[3] Kwon, D. Y. and F.C. Park, "Evolution of inelastic plane curves," Applied Mathematics Letters, vol. 12, no. 6, pp. 115-119, 1999.
[4] Kwon, D. Y. and F. C. Park and D. P. Chi, "Inextensible flows of curves and developable surfaces," Applied Mathematics Letters, vol. 18, no. 10, pp. 1156-1162, 2005.
[5] Kahraman, F., İ. Gök and H. H. Hacisalihoğlu, "On the quaternionic B_{2} slant helices in the semi-Euclidean space," Applied Mathematics and Computation, vol. 218, no. 11, pp. 6391-6400, 2012.
[6] Gök, İ. and O. Z. Okuyucu F. Kahraman and H. H. Hacisalihoğlu, "On the quaternionic B_{2}-slant helices in the Euclidean space $E^{4}, "$ Advances in Applied Clifford Algebras, vol. 21, no. 4, pp. 707-719, 2011.
[7] Bharathi K. and M. Nagaraj, "Quaternion valued function of a real variable Serret-Frenet formula," Indian Journal of Pure and Applied Mathematics, vol. 18, no. 6, pp. 507-511, 1987.
[8] Gungor M. A. and M. Tosun, "Some characterizations of quaternionic rectifying curves," Differential Geom.-Dynamical Systems, vol. 13, pp. 89-100, 2011.
[9] Yıldız, Ö. G., S. Ersoy and M. Masal, "A note on inextensible flows of curves on oriented surface," Cubo (Temuco), vol. 16, no. 3, pp. 11-19, 2014.
[10] Yıldız Ö. G. and O. Z. Okuyucu, "Inextensible Flows of Curves in Lie Groups," Caspian Journal of Mathematical Sciences, vol. 2, no. 1, pp. 23-32, 2014.
[11] Yıldız Ö. G. and S. Ö. Karakus, "On the Quaternionic Normal Curves in the Semi-Euclidean Space E^{4}," Mathematical Combinatorics, vol. 3, pp. 68-76, 2016.
[12] Körpınar T. and S. Baş "Characterization of Quaternionic Curves by Inextenaible Flows," Prespacetime Journal, vol. 7, no. 12, pp. 1680-1684, 2016.

Current address: A. Funda Yıldız: Bilecik Şeyh Edebali University, Faculty of Science and Arts, Department of Mathematics, Bilecik, Turkey.

E-mail address: ahufundataran@hotmail.com
ORCID: http://orcid.org/0000-0002-7371-2362
Current address: O. Zeki Okuyucu: Bilecik Şeyh Edebali University, Faculty of Science and Arts, Department of Mathematics, Bilecik, Turkey.

E-mail address: osman.okuyucu@bilecik.edu.tr
ORCID: http://orcid.org/0000-0003-4379-0252
Current address: Ö. Gökmen Yıldız: Bilecik Şeyh Edebali University, Faculty of Science and Arts, Department of Mathematics, Bilecik, Turkey.

E-mail address: ogokmen.yildiz@bilecik.edu.tr
ORCID: http://orcid.org/0000-0002-2760-1223

[^0]: Received by the editors: January 05, 2017, Accepted: April 06, 2017.
 2010 Mathematics Subject Classification. Primary 53C44; Secondary 53C50.
 Key words and phrases. Curvature flows, inextensible, semi real quaternionic curve, semiEuclidean space.

