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GENERALIZED FRACTIONAL HERMITE-HADAMARD TYPE
INEQUALITIES FOR m—CONVEX AND (a,m)-CONVEX
FUNCTIONS

ERHAN SET AND BARIS QELIK

ABSTRACT. In the present article, we derive some new inequalities of Hermite-
Hadamard type involving left-sided and right-sided generalized fractional in-
tegral operators for products of two m-convex and («, m)- convex functions,
respectively. It is worth mentioning that the presented results have close con-
nection with those in [6]. These new results generalize the existing Hermite-
Hadamard type inequalities for products of two functions. Therefore the ideas
of this article may stimulate further research in this field.

1. INTRODUCTION AND PRELIMINARIES

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are very important in the literature (see, e.g.,[11, p.137],[7]). These inequalities
state that if f : I — R is a convex function on the interval I of real numbers and
a,b € I with a < b, then

(*57) Sbla/abmd“W' ()

The inequality has evoked the interest of many mathematicians. Especially
in the last three decades numerous generalizations, variants and extensions of this
inequality have been obtained, to mention a few, see (|2} 8][4, 5] [7, [8, 10, [T} 13}, 14])
and the references cited therein.

m— convexity was defined by Toader as follows:

Definition 1. (see [I7]) The function f : [0,b] — R, b > 0, is said to be m—
conver, where m € [0,1], if we have

[tz +m(l—t)y) <tf(z) +m(l—1t)f(y)
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for all z,y € [0,b] and t € [0, 1].

One says that f is m— concave if (—f) is m— convex. Denote by K,,(b) the
class of all m— convex functions on [0, b] for which f(0) < 0.

Obviously, for m = 1, Definition [I| recaptures concept of standard convex func-
tions on [0,b] and for m = 0 the concept of starshaped functions. The notion of
m— convexity has been further generalized in [J] as it is stated in the following
definition.

Definition 2. (see [9]) The function f :[0,b] — R, b > 0, is said to be (a,m)—
conver, where (a,m) € [0,1]2, if one has

flte +m(1 —t)y) <t f(z) +m(l —t*)f(y)
for all x,y € [0,b] and t € [0,1].

Denote by K2 (b) the class of (a, m)— convex functions on [0, b] for which f(0) <
0.

It can be easily seen that when (a, m) € {(1,1), (1, m)} one obtains the following
classes of functions: convex and m— convex, respectively. Note that K1 (b) is proper
subclass of m— convex and (a,m)— functions on [0,b]. The interested reader can
find more about partial ordering of convexity in [I1].

We recall some necessary definitions and preliminary results which are used and
referred to throughout this paper as follows:

Definition 3. Let f € Ly[a,b]. The Riemann-Liowville integrals J, f and J* f of
order o > 0 with a > 0 are defined by

I f@) = o [ e =07 0 2>

and .
1 —
T f@) = g [ =0 pw a <
respectively where I'(ar) = [ e~ 'u®"'du. Here is JO, f(z) = J)_f(z) = f(z).

Some Hermite-Hadamard type inequalities for products of two functions are
proposed by Chen in [6] as follows:

Theorem 1. Let f,g : [0,00) — [0,00), 0 < a < b, be functions such that fg €
Li[a,b]. If f is mi— convex and g is ma— convex on [a,b] with my,ma € (0,1],
then one has
['(a)
———J* f(b)g(b
(b—a)a a+f( )g( )

f(a)g(a) ma b
< n (@ () (12)

a+2 (a+1)(a+2
mi

et () * e b ()0 ()
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and
o) .,
T )
f(b)g(b) my ( a )
b — 1.3
ot2 Tarnery’ W\, (1.3)
mi b 2mimeo a a
R L ()Y -y rip— L0 - B G Y ()
et () st ()0 ()
Theorem 2. Let f,g : [0,00) — [0,00), 0 < a < b, be functions such that
fg € Li[a,b]. If f is (a1, m1)— convex and g is (a2, m2)— convex on [a,b] with
(a1, m1), (ag, m2) € (0,1]2, respectively, then one has

D)
o T I B

L f(a)g(a) + 02 maf(a)g (b)

o)+ o+ a (a4 a1)(a+ a1 + az)

o mg@f (o) (1.4)

+
(a4 a)(a+ ar + asz)

1 1 1 1 b b
+{=- - + mimaf | — | g ;
a at+a; atay at+oapt o my ma

IA

and

IN

L e+ 02 smaf(0)g ()

ap +az +a (a+ar)(a+ar +a
aq

e e VY (m) (15)

n 1 1 1 n 1 s a a
— — — mim —_— .
« o+ aq o+ oo a4+ a; + o 12 mq g mo

In [I2], Raina introduced a class of functions defined formally by

- 5(0),0(1),.. o a(k) \ R
= — ; 1.
p,)x(x) Fp,)\ ('T) kz::o F(pk _|_ A)m (p7 > 07 |£L’| < )7 ( 6)
where the coefficients o(k) (k € N =NU{0}) is a bounded sequence of positive real
numbers and R is the set of real numbers. With the help of (1.6]), Raina [12] and
Agarwal et al. [I] defined the following left-sided and right-sided fractional integral
operators respectively, as follows:

(Frasw?) @ = [ =P E =00t > a0, (D)
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b
(Toab—sw®) (@) = / (t =2 F S w(t —2)le(t)dt (0<z<b), (L8)

x

where A, p > 0, w € R and ¢(t) is such that the integral on the right side exits.
It is easy to verify that J7, ..., ¢(z) and J7, , ., ¢(z) are bounded integral
operators on L(a,b), if

M= F \q1lw(b —a)’] < oo (1.9)

In fact, for ¢ € L(a,b), we have

1T v atawe@)]]1 < Mb—a)*|e|ly (1.10)
and

1T 5 b (@)1 < M(b —a)*[¢lh (L.11)

. "
lolly = ( / IsO(t)Ipdt) |

Here, many useful fractional integral operators can be obtained by specializing
the coefficient o (k). For instance the classical Riemann-Liouville fractional integrals
J¢ and Jg* of order « follow easily by setting A = o, 0(0) = 1 and w = 0 in
and . Some recent results and properties concerning the fractional integral
operators can be found [I5], 16} 18] [19].

In this paper, some new Hermite-Hadamard type inequalities for products of two
different convex functions via generalized fractional integral operator are obtained.

where

2. INEQUALITIES FOR PRODUCT OF m-CONVEX AND (,m)-CONVEX FUNCTIONS

Theorem 3. Let f,g : [0,00) — [0,00), 0 < a < b, be functions such that fg €
Lila,b]. If f is mi— convex and g is ma— convex on [a,b] with m1,me € (0,1],
then one has

G Toaas) F90) 1)

< f@g(@Fn o - o]+ f(a)g () £ lulo - o)

2

ro@)f () s lu -1+ 1 () o (o) Fi fulo - )

ma ma
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and

IN
By
—~
S
S~—
=2
S
S~—
=1
5-
g
~~
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|
&
=
+
=
>
S~—
Q
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=1
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=

where a > 0 and

1 m2
Ul(k}) = J(k)m7 UQ(k) = U(k)(a+pk+l)(a+Pk+2)7
oa(k) = o (k) my oa(k) = o(k) 2mama

(a+ pk + 1) (a + pk +2)’ (a+ pk + 1) (o + pk +2)°

Proof. By using the definitions of f and g, we can write

flta+ (1=00) < 1@ + (-0 () (23
and
glta+ (1= 1)) < tg(a) +ma(l —t)g (;;) . (2.4)
By multiplying and (2.4)), we get
Flta+ (1= Db)glta+ (1 — 6)b) (2.5)
< f(a@la) + maf(alg ()11

smng(a)f (Yot =0+ mumaf () () (- 02

ma
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If we multiply both sides of (2.5)) by t*~'F7 [w(b — a)?t”], then integrating with
respect to t over [0, 1], we obtain

IN

pa

/1 tVFT [w(b— a)?t?]f(ta + (1 — £)b)g(ta + (1 — t)b)dt
0

/ba (Z:Z)(H P w(b —u)] f(u)g(w) ad—ub

f(a)g(a) / 1L (b — a)?t7)dt

( :;a,a-l—;w)(fg(b))

+maf(a)g (b> /01 t*(1 =) F7 o [w(b — a)’t’]dt

ma

+mag(a)f (b> /01 1°(1 = £)FS o [w(b — @) tP)dt

my
+myms f <ﬂ21> g <T22> /01 N1 = )2 F] JJw(b — a)PtP)dt
f(a)g(a) go U(kggf ;k;l)pk /O etk gy

it () S o

b b\ = o(k)ywkb—a)®* [+ . .
+mime f <m1 g(m2>kz_0r@é+fﬂf)/o tote 1(1—t)2dt

F@g(@) 73 ol — a1+ (g (o) F7 (b~ a)”

2

rata)f (o) Faalo-arl4 1 () o (o) Fa lwlo— o]
Analogously, we obtain
F((LT=t)a+tb)g((1 —t)a+ tb)
< 27090+ maf 0 ()1 -1 26)

sng)f ()t 0) +mima () o (L) (102

m2
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If we multiply both sides of (2.6) by t*~'F7  [w(b — a)?t?], then integrating with
respect to t over [0, 1], we obtain

/1 1o FT Jw(b — @)t f((1 — t)a + th)g((1 — t)a + th)dt
0

B /ab (z - Z)a_l Fg o [w(v —a)’] f(v)g(v)bCﬁfa

1

= o e o)

F(B)g(®) / 1LY (b — a)°t7)dt

IN

+maf(b)g () /01 (1 — 1) FZ o [w(b — a)Pt?]dt
+mag(b) f (“) /01 11 — ) F3 o [w(b — a)?t?)dt

my
1
+mimaf <TZ1> g (;@) /0 o1 — t)ng,a[w(b el
. o(k)wk(b— )Pk 1
= f(b)g(b) Z (klz(o[(—f—)pk)) /O ta+pk+1dt

I'(a + pk)

a,> i O'(k)wk(b — a)pk /1 ta+pk(1 _ t)dt

0
s f(b)g (“) 3 Zkputl = ot /0 e
( I'(o+ pk)

a o a a -
+a0f () Falo0 - a1+ 7 (7)o () Fien lwlo - 0]
Here, we used the facts that
1
/ toz+ﬂk+1dt _ 1
0 a+pk+2’

1
(a+ pk + 1) (o + pk +2)’

1
/ PR — t)dt =
0
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1
2
toTPRL (1 — )2dt = :
/0 ( ) (a+ pk)(a + pk + 1) (o + pk + 2)
This completes the proof. ([l

Remark 1. If we take o(0) = 1 and w = 0 in the Theorem|[3, then the inequalities

(2.1) and (2.2) reduces to the inequalities (1.2) and (1.3), respectively.

Theorem 4. Let f,g : [0,00) — [0,00), 0 < a < b, be functions such that
fg € Lila,b]. If f is (a1,m1)— convex and g is (az,m2)— convex on [a,b] with
(a1, my), (aa, m2) € (0,1]2, respectively, then one has

1 (o8
(I)—T)a( p,a,a+;11))(fg(b)) (27)
b
< fla)g(a)F7o [w(b—a)’] + f(a)g (mz> FI8, [w(b — a)]
+9(a)f (nil) For [wb—a)f] + f (nl;) g (é) Foe lw(b —a)’]
and
- o 2.8
m( p,oz,bf:,w)(fg<a’)) ( . )
< SO0 [0 - 0]+ F0)g () 728 o~ 0]

raf () F o - a4 £ () o () Fraluo - ],

mi ma

where a > 0 and

o5 (k) := k)oa —i—ozzi—a—i—pk’
o¢(k) == o(k) (a+ pk + al)c(l;nlzpk +a; +as)’
oq7(k) = a(k) @+ pk+ aQ)?;T—lpk + a1 +ag)’
os(k) = o (k) (a+1pk - a+pllc+a1 - a+pllc+oz2 - a+p/€+1a1 +a2> e
Proof. By using the definitions of f and g, we can write
flta+ (1=1)b) <t f(a) +ma(l —t*)f (Tsl) (2.9)

and

g(ta+ (1 —t)b) < t*?g(a) + ma(1 —t*?)g (%) . (2.10)
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By multiplying (2.9) and (2.10)), we get

fta+ (1 —¢t)b)g(ta+ (1 —t)b)
< e (o) +maf(ag () (1= )

rng(a)f ()11 - o) 2

+mymg f <nl1)1> g <b> (T =) (1 —t™2). (2.11)

ma

If we multiply both sides of (2.11) by t*~'F7 ,[w(b — a)”t”], then integrating with
respect to t over [0, 1], we obtain

/1 t“ilf;a[w(b —a)Pt?)f(ta + (1 — t)b)g(ta + (1 — t)b)dt
0

- (Y Fa - w0 s

= G i) f90)

1
fla)g(a) /0 gorteetasl e lw(b— a) t’)dt

IN

+maf(a)g (b> /01 N (1 = t22) F] JJw(b — a)PtP]dt

ma2

+mig(a)f (b> /01 2 (1= ) F] L Jw(b — a)PtP]dt

- ) g <b> /01 L = ) (1 = t92) F7 o [w(b — a)tF]dt

ma2

Sk wk (b — a)Pk L
= f(a)g(a)zm/o portastatpk—1

+maf(a)g (7722> ki W /01 gortpk—lyon (1 _ yo) gy
=0
(

+m1g(a)f b> i a(k)wk(b — a)pk /1 ta+p}c—1to¢2(l _ tal)dt

my ) = (o + pk) 0

b b\ = a(k)wkb—a)* [+ .

—|—mmf<>g > —/ta“ 1 —t)(1 — t2)dt
17762 Mo kzzo F(O[+pl€) 0 ( )( )
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— fl@g()7 lu— o]+ 10y (o ) £ lwlb - o)
+o@)f (o) Pt - a1+ f (o) (o) 7ot - 0]

Similarly, we have

f((A=t)a+tb)g((1 —t)a+td)
< 1 f(B)g(b) + maf(b)g (m) (1 o)

a

g () (1 - )

a

Fmyma f (;;) g <) (1— 91)(1 — to2), (2.12)

ma

If we multiply both sides of (2.12) by t*~'F7 ,[w(b— a)’t"], then integrating with
respect to t over [0, 1], we obtain

/1 taflf;a[w(b —a)PtP)f((1 — t)a + tb)g((1 — t)a + tb)dt
0

_ / ’ (Z - Z)a_lf;;a (v — a)’] F()glv) ;2

1

= W( p(fa7b—;w)(fg(a))

< 100 [ i - aprla

1
+maf(b)g <7Z2> /0 te (1 — t*2)Fy JJw(b — a)Pt’]dt

mi

+mag(b) f <a> /01 02 (1=t F7 L Jw(b — a)PtP)dt

Fmamaf <7Zl>g< “ )/01 27 (1 — )(1 — £°2)FS o [w(b — a)t°]dt

ma
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> S(kwk(b = a)Pk 1

I'(a+ pk)

%) k _ pk 1
a) 3 M/ otPh=lgaz (1 _poaygy
0

0
+maf(b)g (a> i_o: g(k)w*(b —a)™" /01 gotph—lyon (1 _ goa) gy
( (o + pk)

+

Here, we used the facts that

1
/ ta1+a2+a+pk—1dt — 1
0 ay +as +a+ pk’
1
getPR Lo (1 o2y — ® :
/0 ( ) (o + pk + a1)(a+ pk + a1 + a2)
1
gotPklpon (] geygp = - 7
/0 ( ) (o + pk + az)(a+ pk + a1 + a9)
1
, 1 1
/ tetPk=l(] gy (1 —to2)dt = —
0 a+pk a4+ pk+a;
1 1
— + .
a+pk+ay a4+ pk+ o+ as
This completes the proof. (I

Remark 2. If we take 0(0) = 1 and w = 0 in the Theorem then the inequalities
(2.7) and (2.8]) reduces to the inequalities (1.4)) and (L.5]), respectively.
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