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SOME QUESTIONS ON PLANE CURVES

E. PASCALI

(Communicated by Kazım İLARSLAN)

Abstract. We consider some properties of simple plane curves, starting from
a unusual metric formulation of the tangent line.

1. Introduction

In previous paper ([12] ) a new notion of tangency is formulated in suitable
metric spaces and an equivalent metric formulation of the notion of tangency at a
point of the graphic of a real function ([12] (Example 2.6) and [11](Teorema 1.1))
is considered.

Then it is possible to reconsider the notion of tangent line at a point of a plane
curve (and also of normal line) in a very different way with respect the classical
one. This paper is devoted to consider such notion and to investigate some new
aspects and questions on plane curves.

It is well know that ”... Not all curves are rectificable; some do not have a
tangent at any of their points...” ( see[15] (pag.46)).

From your study at every point of a plane curve there is, in a some specified
meaning, at least a ”tangent direction” and it is possible, from a pure theoretical
point of view, to have many ”‘tangent directions”’ at every point.

In the last section we present some open problems wich seem news and interest-
ing.

Following [12], we consider two abstract operations. Let (X, d) be a metric space
and A,B be non-empty, compact (or locally compact) subsets of X. Assume that
x0 ∈ A ∩B is an accumulation point of A. We define the functions:

(1.1) Dx0
(A,B) = lim inf

A\{x0}∋x→x0

d(x,B)

d(x, x0)
;

(1.2) Dx0
(A,B) = lim sup

A\{x0}∋x→x0

d(x,B)

d(x, x0)
;

where d(x,B) = inf{d(x, y)| y ∈ B}.
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When Dx0
(A,B) = Dx0(A,B), we write Dx0(A,B). We remark that: 0 ≤

Dx0
(A,B) ≤ Dx0(A,B) ≤ 1; hence we have: Dx0(A,B) = 0 =⇒ Dx0

(A,B) =
Dx0(A,B) = 0.

The previous operations are investigated, early and with other motivations, from
different authors (see [6] [16], [17], [7],[8],[9], [13], [14]).

In [11] we prove the following result, establishing the connession with the usual
notion of tangent line.

Take as metric space R2, endowed with the usual euclidean metric, let f : R → R
be a continuous function and Gf ⊂ R2 its graph. Let p0 = (x0, f(x0)) ∈ Gf , and

consider the functions Dp0
, Dp0 . For r a straight line through p0, the following

conditions are equivalent:

(i) r is the tangent line to Gf at p0;

(ii) Dp0(r,Gf ) = 0 and Dp0
(s,Gf ) > 0 for every line s ̸= r through p0;

(iii) Dp0(Gf , r) = 0 and Dp0
(Gf , s) > 0 for every line s ̸= r through p0.

Then one can agree the following definition:

Definition 1.1. Let A,B be non-empty, compact (or locally compact) sets of the
metric space X and let x0 be an accumulation point of A and B. We say that A is
tangent to B in x0 if and only if Dx0(A,B) = 0.

We say that A,B are tangent in x0 if and only if both Dx0(A,B) and Dx0(B,A)
exist and Dx0(A,B) = Dx0(B,A) = 0.

We remark that if A is tangent to B or A,B are tangent in x0 with respect to
the metric d, then the same occur with respect every metric d1 equivalent to d.

Furthermore for D and D we have the following result:

Proposition 1.1. Let A,B,C be non-empty, compact (or locally compact) subsets
of the metric space X; let x0 be an accumulation point for A,B and C. We have
the following

(1.3) Dx0(A,C)−Dx0(A,B) ≤ Dx0(B,C) · [1 +Dx0(A,B)]

(1.4) Dx0
(A,C) +Dx0(A,B) ≥ Dx0

(B,C) · [1−Dx0(A,B)].

(1.5) Dx0
(A,B) = 0 ⇐⇒ Dx0

(B,A) = 0.

and if Dx0(A,B) and Dx0(B,A) exist, then: Dx0(A,B) = 0 ⇐⇒ Dx0(B,A) = 0.

For the proof, compare [12](cfr. Propositions 2.1 and 2.3 and remark 2.2).
Now we consider the metric space (X, d), where X = R2 and d is the usual

euclidean metric; we denote with ℜ(x) the set of half-straight lines through the
point x, that is: r ∈ ℜ(x) ⇐⇒ ∃v ∈ R2, ||v|| = 1, r = {x+ tv|t ≥ 0}.

The following condition hold:

(1.6) ∀r ∈ ℜ(x) =⇒ x ∈ r;

(1.7) ∀r ∈ ℜ(x), every bounded sequence in r is compact ;

(1.8) ∀r, s ∈ ℜ(x) =⇒ ∃Dx(r, s),∃Dx(s, r) and Dx(r, s) = Dx(s, r);

(1.9) ∀r, s ∈ ℜ(x) : Dx(r, s) = 0 =⇒ r = s;

(1.10) 0 < d(x, y) =⇒ ∃r ∈ ℜ(x), ∃s ∈ ℜ(y) : y ∈ r and x ∈ s;
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(1.11)
∀x ∈ R2,∀(rn), rn ∈ ℜ(x) : ∃(rnk

) ⊆ (rn), ∃s ∈ ℜ(x) such that lim
n

Dx(rnk
, s) = 0.

We remark that, in (1.10), if r = {x + tv|t ≥ 0} and s = {y + tu|t ≥ 0}, then
u = −v; moreover Dx(r, s) =

d(x,s)
d(x,x0)

= d(y,r)
d(y,x0)

∀x ∈ r, x ̸= x0, ∀y ∈ s, y ̸= x0.

The following propositions hold:

Proposition 1.2. Let A ⊂ R2 be a non-empty subset, if there exists r∗ ∈ ℜ(x0)
such that Dx0(A, r

∗) = 0, then r∗ is unique.

Proof. We assume there exist r∗, r∗∗ such that Dx0(A, r∗) = Dx0(A, r∗∗) = 0.
By (1.4), we have:

0 = Dx0(A, r
∗)+Dx0(A, r

∗∗) ≥ Dx0(r
∗, r∗∗)(1−Dx0(A, r∗)) = Dx0(r

∗, r∗∗) = Dx0(r
∗, r∗∗).

Then, by (1.9), r∗ = r∗∗. �
Furthermore, we have the proposition:

Proposition 1.3. Let A ⊂ R2 be a non-empty subset, if there exists r∗, r∗∗ ∈ ℜ(x0)
such that: Dx0(A, r

∗∗) = Dx0(r
∗, A) = 0, then r∗ = r∗∗.

Proof. From (1.3), we have:

Dx0(r
∗, r∗∗)−Dx0(r

∗, A) ≤ Dx0(A, r
∗∗)(1 +Dx0(r

∗, A)) = 0.

Hence Dx0(r
∗, r∗∗) = 0.

Proposition 1.4. Let C ⊂ R2 be a non-empty subset, if we assume that:

(1.12) Dx0
(r1, C) > Dx0

(r2, C)

then

(1.13) r1 ̸= r2 and 0 <
Dx0

(r1, C)−Dx0
(r2, C)

1 +Dx0
(r1, C)

≤ Dx0(r1, r2).

Proof. Because, by (1.4) with A = r2, B = r1,

Dx0
(r1, C)(1−Dx0(r1, r2)) ≤ Dx0(r1, r2) +Dx0(r2, C),

then we receive

0 <
Dx0

(r1, C)−Dx0
(r2, C)

1 +Dx0
(r1, C)

≤ Dx0(r1, r2).

Hence, by (1.9), r1 ̸= r2. �

2. Some results on simple plane curves

In this section we will restrict the considerations on a given simple plane curve.
Now, let γ : [0, 1] → R2 be continuous and iniective, denote Γ = {γ(t)|t ∈ [0, 1]}
and x0 = γ(t0), t0 ∈]0, 1[.

We prove the following proposition:

Proposition 2.1.

(2.1) ∃r1 ∈ ℜ(x0) such that Dx0
(r1,Γ) = min{Dx0

(s,Γ)|s ∈ ℜ(x0)}

(2.2) ∃r2 ∈ ℜ(x0) such that Dx0
(r2,Γ) = max{Dx0

(s,Γ)|s ∈ ℜ(x0)}

(2.3) ∃r3 ∈ ℜ(x0) such that Dx0(r3,Γ) = min{Dx0(s,Γ)|s ∈ ℜ(x0)}
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(2.4) ∃r4 ∈ ℜ(x0) such that Dx0(r4,Γ) = max{Dx0(s,Γ)|s ∈ ℜ(x0)}

Proof. (2.1). Let (rn) be a sequence in ℜ(x0) such that:

(2.5) lim
n

Dx0
(rn,Γ) = inf{Dx0

(s,Γ)|s ∈ ℜ(x0)}.

By (1.11) we can assume, without loss of generality:

∃r ∈ ℜ(x0) such that lim
n

Dx0(rn, r) = 0.

Moreover, by (1.4), with A = rn, B = r, C = Γ, and by (1.8), we argue:

Dx0
(r,Γ)(1−Dx0(rn, r) ≤ Dx0

(rn,Γ) +Dx0(rn, r) ∀n ∈ N,

then we have:

Dx0
(r,Γ) ≤ lim

n
Dx0

(rn,Γ) = inf{Dx0
(s,Γ)|s ∈ ℜ(x0)},

and so the thesis follows.
(2.2). Arguing as in the previous proof, let (rn) be a sequence in ℜ(x0) and

r ∈ ℜ(x0) such that:

(2.6) lim
n

Dx0
(rn,Γ) = sup{Dx0

(s,Γ)|s ∈ ℜ(x0)}.

By (1.4), with A = r,B = rn, C = Γ, and by (1.8), we obtain:

Dx0
(rn,Γ)(1−Dx0(rn, r) ≤ Dx0

(r,Γ) +Dx0(rn, r) ∀n ∈ N.

Then
Dx0

(r,Γ) ≥ lim
n

Dx0
(rn,Γ) = sup{Dx0

(s,Γ)|s ∈ ℜ(x0)}.

The proof of (2.3) (and (2.4)) is similar. �
The elements of ℜ(x0) in (2.1), (2.2) can be considered as different types of

”‘tangent direction”’ to the curve γ at the point x0 and the elements in (2.4) as
”‘normal direction”’.

In the classical theory of tangency, the tangent line is strictly related to the limit
of secant lines to Γ; this can be a justification for the following proposition:

Proposition 2.2.

(2.7) ∃s1 ∈ ℜ(x0) such that Dx0
(s1,Γ) = lim inf

Γ\x0∋x→x0

Dx0
(rxx0 ,Γ)

(2.8) ∃s2 ∈ ℜ(x0) such that Dx0
(s2,Γ) = lim sup

Γ\x0∋x→x0

Dx0
(rxx0 ,Γ)

(2.9) ∃s3 ∈ ℜ(x0) such that Dx0(s3,Γ) = lim inf
Γ\x0∋x→x0

Dx0(rxx0 ,Γ)

(2.10) ∃s4 ∈ ℜ(x0) such that Dx0(s4,Γ) = lim sup
Γ\x0∋x→x0

Dx0(rxx0 ,Γ).

where rxx0 is the half-straight line with v = x−x0

||x−x0||

Proof. (2.7). We can assume that:

∃(xn) with xn ∈ Γ \ {x0} such that : lim
n

Dx0
(rn,Γ) = lim inf

Γ\{x0}∋x→x0

D(rxx0 ,Γ),

where rn = rxnx0 . Without loss of generality, we assume
∃r ∈ ℜ(x0) for which limn Dx0(rn, r) = 0.
Then we have: limn Dx0

(rn,Γ) = Dx0
(r,Γ).
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In fact, we consider (1.4) twice; first with A = rn, B = r, C = Γ and next
changing A and B. Then

Dx0
(r,Γ)(1−Dx0(rn, r)) ≤ Dx0

(rn,Γ) +Dx0(rn, r);

Dx0
(rn,Γ)(1−Dx0(rn, r)) ≤ Dx0

(r,Γ) +Dx0
(rn, r);

hence

Dx0
(r,Γ) ≤ lim

n
Dx0

(rn,Γ) ≤ Dx0
(r,Γ).

In a similar way we prove the other equalities. �
We remark that the following general inequalities are true:

min{Dx0
(r,Γ)|r ∈ ℜ(x0)} ≤ inf{Dx0

(rxx0 ,Γ)|x ∈ Γ\x0} ≤ lim inf
Γ\{x0}∋x→x0

Dx0
(rxx0 ,Γ) ≤

≤ lim sup
Γ\{x0}∋x→x0

Dx0
(rxx0 ,Γ) ≤ sup{Dx0

(rxx0 ,Γ)|x ∈ Γ\x0} ≤ max{Dx0
(r,Γ)|r ∈ ℜ(x0)};

min{Dx0(r,Γ)|r ∈ ℜ(x0)} ≤ inf{Dx0(rxx0 ,Γ)|x ∈ Γ\x0} ≤ lim inf
Γ\{x0}∋x→x0

Dx0(rxx0 ,Γ) ≤

≤ lim sup
Γ\{x0}∋x→x0

Dx0(rxx0 ,Γ) ≤ sup{Dx0(rxx0 ,Γ)|x ∈ Γ\x0} ≤ max{Dx0(r,Γ)|r ∈ ℜ(x0)}.

We can prove the following proposition:

Proposition 2.3. If

(2.11) lim inf
Γ\{x0}∋x→x0

Dx0
(rxx0

,Γ) = 0,

then

(2.12) ∃r∗ ∈ ℜ(x0) for which Dx0(r
∗,Γ) = 0.

Proof. By the previous inequalities, we deduce:

min{Dx0(s,Γ)|s ∈ ℜ(x0)} = 0.

Then, from Proposition 2.1, ∃r∗ ∈ ℜ(x0) such that 0 ≤ Dx0(r
∗,Γ) = 0; hence the

thesis follows. �
Furthemore, we have the following theorem:

Theorem 2.1.

(2.13) min{Dx0
(s,Γ)|s ∈ ℜ(x0)} = 0.

Proof. We can assume: min{Dx0(s,Γ)|s ∈ ℜ(x0)} = λ > 0; then, for every
s ∈ ℜ(x0) we have: Dx0(s,Γ) >

λ
2 . Now, we consider two directions s1 and s2;

then there exists a ball B about the centre x0 for which, in such ball, Γ has the half-
lines about directions s1 and s2 . We can assume: D(s1, s2) <

λ
2 , we consider, in

B, the convex (open) cone C given by s1 and s2. We have C ∩ Γ = ∅. In effect, if
this fact is not true, eventually with a change of the radius of the ball B, we have,
for x ∈ s1 :

d(x, s2)

d(x, x0)
=

d(x, x2)

d(x, x0)
≥ d(x, x∗)

d(x, x0)
≥ d(x,Γ)

d(x, x0)
,

where x2 is a point of s2 and x∗ is a point of Γ.



106 E. PASCALI

After a finite steps, we can consider a ball B∗ of x0 such that: B∗ ∩ Γ = {x0}.
Then a contradiction.

Now the following proposition holds:

Proposition 2.4.

(2.14) ∃r∗ ∈ ℜ(x0) such that Dx0(r
∗,Γ) = 0.

By proposition 1.4 , we deduce easily the following result.

Proposition 2.5. If

(2.15) ∃r∗ ∈ ℜ(x0) such that Dx0(Γ, r
∗) = 0

then
Dx0(Γ, r

∗) = Dx0(r
∗,Γ) = 0.

Hence the direction r∗ and Γ are tangent in x0.
The following theorem is true:

Theorem 2.2.

(2.16) lim inf
Γ\{x0}∋x→x0

Dx0(rxx0 ,Γ) = 0.

Proof. Let s∗ ∈ ℜ(x0) such that: Dx0(s∗,Γ) = 0; then there exists a se-

quence (xn) for which: xn ∈ s∗; xn ̸= x0 and limn
d(xn,Γ)
d(xn,x0)

= 0. Moreover

we can assume there exists a sequence (yn) ⊂ Γ (and yn ̸= x0) such that we

have: d(xn,yn)
d(xn,x0)

= d(xn,Γ)
d(xn,x0)

and limn
d(xn,yn)
d(xn,x0)

= 0. From the following inequality:
d(xn,yn)
d(xn,x0)

≥ |d(xn,x0)−d(x0,yn)
d(xn,x0)

| = |1− d(x0,yn)
d(xn,x0)

|, we have: limn d(yn, x0) = 0.

We denote rn = rx0yn
; we can assume there exists r∗ ∈ ℜ(x0) such that

limn Dx0(rn, r
∗) = 0.

Then: d(xn,Γ)
d(xn,x0)

= d(xn,yn)
d(xn,x0)

≥ d(xn,rn)
d(xn,x0)

= Dx0(s
∗, rn).

Hence: 0 ≤ limn Dx0(s
∗, rn) ≤ limn

d(xn,Γ)
d(xn,x0)

= 0.

Moreover, from: Dx0(s
∗, r∗) − Dx0(s

∗, rn) ≤ Dx0(rn, s
∗)(1 + Dx0(s

∗, rn)), we
deduce Dx0(s

∗, r∗) = 0. Hence: s∗ = r∗.
Now, because Dx0(rn,Γ)−Dx0(rn, s

∗) ≤ Dx0(s
∗,Γ)(1 +Dx0(rn, s

∗)) = 0; the
following condition holds: 0 ≤ Dx0(rn,Γ) ≤ Dx0(rn, s

∗).Hence: limn Dx0(rn,Γ) =
0.

3. Open problems

From a theoretical point of view some questions arise in consideration of the
obtained results.

-The first is the question to reconsider this point of view with respect to other
metric in R2 not equivalent to euclidean metric, for example with a non homoge-
neous metric. In such situation it is possible to need a change of the sets ℜ(x) with
some appropriate ”‘geodetic”’ directions and that the theorem 2.2 is not true.

-In the framework of the euclidean metric we can consider one of the following
non-empty sets (see proposition 2.1))

T1 =
{
r ∈ ℜ(x)|Dx0

(r,Γ) = min
{
Dx0

(s,Γ)
}}

T2 =
{
r ∈ ℜ(x)|Dx0

(r,Γ) = max
{
Dx0

(s,Γ)
}}

N1 =
{
r ∈ ℜ(x)|Dx0(r,Γ) = min

{
Dx0(s,Γ)

}}
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N2 =
{
r ∈ ℜ(x)|Dx0(r,Γ) = max

{
Dx0(s,Γ)

}}
.

Then we can consider the more interesting question of the existence of plane
simple curve for wich one of the sets have, for every point x a number, fixed and
greater than 2, of elements.

Of course, starting from proposition 2.2, analogous set can be defined and for it
the same question considered.
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