SEMI-SYMMETRIC AND RICCI SEMI-SYMMETRIC LIGHTLIKE HYPERSURFACES OF AN INDEFINITE GENERALIZED SASAKIAN SPACE FORM

ABHITOSH UPADHYAY ${ }^{1}$, RAM SHANKAR GUPTA ${ }^{1}$ AND A. SHARFUDDIN ${ }^{2}$
(Communicated by Uday C. DE)

Abstract

In this paper, we study semi-symmetric, Ricci semi-symmetric lightlike hypersurfaces of a indefinite generalized Sasakian space form with structure vector field tangent to hypersurface. We obtain the condition for Ricci tensor of lightlike hypersurface of indefinite generalized Sasakian space form to be symmetric and parallel.

1. Introduction

In the theory of hypersurfaces of semi-Riemannian manifolds it is interesting to study the geometry of lightlike hypersurfaces due to the fact that the intersection of normal vector bundle and the tangent bundle is non-trivial. Thus, the study becomes more interesting and remarkably different from the study of non-degenerate hypersurfaces. The geometry of lightlike hypersurfaces of semi-Riemannian manifolds was studied in [6].

A semi-Riemannian manifold is called semi-symmetric if $R(X, Y) \cdot R=0$, where $R(X, Y)$ is the curvature operator act as a derivative on R. Semi-symmetric hypersurfaces of Euclidean spaces were classified by Nomizu [10] and a general study of semi-symmetric Riemannian manifolds was made by Szabo [13]. A semiRiemannian manifold is said to be Ricci semi-symmetric [4], if the following condition is satisfied: $R(X, Y) \cdot R i c=0$.

It is clear that every semi-symmetric manifold is Ricci semi-symmetric; however the converse is not true in general. P. J. Ryan [11] raised the following question for hypersurfaces of Euclidean spaces in 1972; "Are the conditions $R(X, Y) \cdot R=0$ and $R(X, Y) \cdot R i c=0$ equivalent for hypersurfaces of Euclidean spaces?". The explicit example of Ricci-symmetric but not semi-symmetric hypersurfaces in Euclidean

[^0]space $E^{n+1}(n \geq 4)$ is given in $[1,4]$. The lightlike hypersurfaces of semi-Euclidean spaces satisfying curvature conditions of semi-symmetry type was studied in [12].

The purpose of the present paper is to study the semi-symmetric and Ricci semisymmetric lightlike hypersurface of indefinite generalized Sasakian space form with structure vector field ξ tangent to hypersurface.

In Section 2, we have collected the formulae and information which are useful in our subsequent sections. In Section 3, we study the semi-symmetric, Ricci semi-symmetric lightlike hypersurfaces of an indefinite generalized Sasakian space form.

2. Preliminaries

An odd-dimensional semi-Riemannian manifold \bar{M} is said to be an indefinite almost contact metric manifold if there exist structure tensors $\{\phi, \xi, \eta, \bar{g}\}$, where ϕ is a $(1,1)$ tensor field, ξ a vector field, η a 1 -form and \bar{g} is the semi-Riemannian metric on \bar{M} satisfying

$$
\left\{\begin{array}{cl}
\phi^{2} X=-X+\eta(X) \xi, & \eta \circ \phi=0, \tag{2.1}
\end{array} \quad \phi \xi=0, \quad \eta(\xi)=1\right.
$$

for any $X, Y \in \Gamma(T \bar{M})$, where $\Gamma(T \bar{M})$ denotes the Lie algebra of vector fields on \bar{M}.

An indefinite almost contact metric manifold \bar{M} is called an indefinite Cosymplectic manifold if [7],

$$
\begin{equation*}
\left(\bar{\nabla}_{X} \phi\right) Y=0, \quad \text { and } \quad \bar{\nabla}_{X} \xi=0 \tag{2.2}
\end{equation*}
$$

for any $X, Y \in T \bar{M}$, where $\bar{\nabla}$ denote the Levi-Civita connection on \bar{M}.
An indefinite almost contact metric manifold $\{\bar{M}, \phi, \xi, \eta, \bar{g}\}$ is called an indefinite generalized Sasakian space form if there exist three functions f_{1}, f_{2} and f_{3} on \bar{M} such that [2]

$$
\begin{align*}
\bar{R}(X, Y) Z=f_{1}\{g(Y, Z) X-g(X, Z) Y\} & +f_{2}\{g(X, \phi Z) \phi Y-g(Y, \phi Z) \phi X \\
+2 g(X, \phi Y) \phi Z\} & +f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X \tag{2.3}\\
& +g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi\}
\end{align*}
$$

for any $X, Y, Z \in \Gamma(T \bar{M})$.
We write as follows:

$$
\begin{gather*}
\bar{R}(X, Y, Z, W)=\bar{g}(\bar{R}(X, Y) Z, W) \tag{2.4}\\
\operatorname{Ric}(X, Y)=\operatorname{trace}\{Z \rightarrow \bar{R}(X, Z) Y\} \tag{2.5}
\end{gather*}
$$

where Ric denotes the Ricci tensor on \bar{M} for $X, Y, Z, W \in \Gamma(T \bar{M})$.
For a $(0, k)$-tensor field T on $\bar{M}, k \geq 1$, the $(0, k+2)$ tensor field $\bar{R} \cdot T=0$ is called curvature conditions of semi-symmetry type [4] and given by

$$
\begin{array}{r}
(\bar{R} . T)\left(X_{1}, \ldots . X_{k}, X, Y\right)=-T\left(\bar{R}(X, Y) X_{1}, X_{2}, \ldots, X_{k}\right) \\
-\ldots-T\left(X_{1}, \ldots, X_{k-1}, \bar{R}(X, Y) X_{k}\right) \tag{2.6}
\end{array}
$$

for $X, Y, X_{1}, X_{k} \in \Gamma(T \bar{M})$.
A semi-Riemannian space form \bar{M} is said to be semi-symmetric if $\bar{R} \cdot \bar{R}=0$. Thus, from (2.6) and properties of curvature tensor, we have

$$
\begin{array}{r}
(\bar{R}(X, Y) . \bar{R})(U, V) W=\bar{R}(X, Y) \bar{R}(U, V) W-\bar{R}(U, V) \bar{R}(X, Y) W \\
-\bar{R}(\bar{R}(X, Y) U, V) W-\bar{R}(U, \bar{R}(X, Y) V) W=0 \tag{2.7}
\end{array}
$$

for any $X, Y, U, V, W \in \Gamma(T \bar{M})$.
A semi-Riemannian space form \bar{M} is said to be Ricci semi-symmetric if $\bar{R} . R i c=0$, i.e.,
(2.8) $(\bar{R}(X, Y) \cdot \operatorname{Ric})\left(X_{1}, X_{2}\right)=-\operatorname{Ric}\left(\bar{R}(X, Y) X_{1}, X_{2}\right)-\operatorname{Ric}\left(X_{1}, \bar{R}(X, Y) X_{2}\right)=0$
for any $X, Y, X_{1}, X_{2} \in \Gamma(T \bar{M})$.
Let (M, g) be a hypersurface of a $(2 m+1)$-dimensional semi-Riemannian manifold (\bar{M}, \bar{g}) with index $s, 0<s<2 m+1$ and $g=\bar{g}_{\mid M}$. Then M is lightlike hypersurface of \bar{M} if g is of constant rank $(2 m-1)$ and the normal bundle $T M^{\perp}$ is a distribution of rank 1 on M [6]. A non-degenerate complementary distribution $S(T M)$ of $\operatorname{rank}(2 m-1)$ to $T M^{\perp}$ in $T M$, that is, $T M=T M^{\perp} \perp S(T M)$, is called screen distribution. The following result (cf. [6], Theorem 1.1, page 79) has an important role in studying the geometry of lightlike hypersurface.

Theorem 2.1. Let $(M, g, S(T M))$ be a lightlike hypersurface of \bar{M}. Then, there exists a unique vector bundle $\operatorname{tr}(T M)$ of rank 1 over M such that for any non-zero section E of $T M^{\perp}$ on a coordinate neighbourhood $U \subset M$, there exists a unique section N of $\operatorname{tr}(T M)$ on U satisfying $\bar{g}(N, E)=1$ and $\bar{g}(N, N)=\bar{g}(N, W)=0$, $\forall W \in \Gamma\left(\left.S(T M)\right|_{u}\right)$.
Then, we have the following decomposition:

$$
\begin{equation*}
T M=S(T M) \perp T M^{\perp}, \quad T \bar{M}=S(T M) \perp\left(T M^{\perp} \oplus \operatorname{tr}(T M)\right) \tag{2.9}
\end{equation*}
$$

Throughout this paper, all manifolds are supposed to be paracompact and smooth. We denote by $\Gamma(E)$ the smooth sections of the vector bundle E, by \perp and \oplus the orthogonal and the non-orthogonal direct sum of two vector bundles, respectively.

Let $\bar{\nabla}, \nabla$ and ∇^{t} denote the linear connections on \bar{M}, M and vector bundle $\operatorname{tr}(T M)$, respectively. Then, the Gauss and Weingarten formulae are given by

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+h(X, Y), \quad \forall X, Y \in \Gamma(T M) \tag{2.10}\\
& \bar{\nabla}_{X} V=-A_{V} X+\nabla_{X}^{t} V, \quad \forall V \in \Gamma(\operatorname{tr}(T M)) \tag{2.11}
\end{align*}
$$

where $\left\{\nabla_{X} Y, A_{V} X\right\}$ and $\left\{h(X, Y), \nabla_{X}^{t} V\right\}$ belongs to $\Gamma(T M)$ and $\Gamma(\operatorname{tr}(T M))$, respectively and A_{V} is the shape operator of M with respect to V. Moreover, in view of decomposition (2.9), equations (2.10) and (2.11) take the form

$$
\begin{align*}
& \bar{\nabla}_{X} Y=\nabla_{X} Y+B(X, Y) N \tag{2.12}\\
& \bar{\nabla}_{X} N=-A_{N} X+\tau(X) N \tag{2.13}
\end{align*}
$$

for any $X, Y \in \Gamma(T M)$ and $N \in \Gamma(\operatorname{tr}(T M))$, where $B(X, Y)$ and $\tau(X)$ are local second fundamental form and a 1-form on U, respectively. It follows that

$$
\begin{gathered}
B(X, Y)=\bar{g}\left(\bar{\nabla}_{X} Y, E\right)=\bar{g}(h(X, Y), E), B(X, E)=0, \text { and } \\
\tau(X)=\bar{g}\left(\nabla_{X}^{t} N, E\right)
\end{gathered}
$$

Let P denote the projection morphism of $\Gamma(T M)$ on $\Gamma(S(T M))$ and $\nabla^{*}, \nabla^{* t}$ denote the linear connections on $S(T M)$ and $S T M^{\perp}$, respectively. Then from the decomposition of tangent bundle of lightlike hypersurface, we have

$$
\begin{equation*}
\nabla_{X} P Y=\nabla_{X}^{*} P Y+h^{*}(X, P Y) \tag{2.14}
\end{equation*}
$$

$$
\begin{equation*}
\nabla_{X} E=-A_{E}^{*} X+\nabla_{X}^{* t} E \tag{2.15}
\end{equation*}
$$

for any $X, Y \in \Gamma(T M)$ and $E \in \Gamma\left(T M^{\perp}\right)$, where h^{*}, A^{*} are the second fundamental form and the shape operator of distribution $S(T M)$ respectively.

By direct calculations using Gauss-Weingarten formulae, (2.14) and (2.15), we find

$$
\begin{array}{rrr}
g\left(A_{N} Y, P W\right)=\bar{g}\left(N, h^{*}(Y, P W)\right) ; & \bar{g}\left(A_{N} Y, N\right)=0, \\
g\left(A_{E}^{*} X, P Y\right)=\bar{g}(E, h(X, P Y) ; & \bar{g}\left(A_{E}^{*} X, N\right)=0, \tag{2.17}
\end{array}
$$

for any $X, Y, W \in \Gamma(T M), E \in \Gamma\left(T M^{\perp}\right)$ and $N \in \Gamma(\operatorname{tr}(T M))$.
Locally, we define on U

$$
\begin{equation*}
C(X, P Y)=\bar{g}\left(h^{*}(X, P Y), N\right), \quad \lambda(X)=\bar{g}\left(\nabla_{X}^{* t} E, N\right) \tag{2.18}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
h^{*}(X, P Y)=C(X, P Y) E, \quad \nabla_{X}^{* t} E=\lambda(X) E . \tag{2.19}
\end{equation*}
$$

On the other hand, by using (2.12), (2.13), (2.15) and (2.18), we obtain

$$
\lambda(X)=\bar{g}\left(\nabla_{X} E, N\right)=\bar{g}\left(\bar{\nabla}_{X} E, N\right)=-\bar{g}\left(E, \bar{\nabla}_{X} N\right)=-\tau(X) .
$$

Thus, locally (2.14) and (2.15) become

$$
\begin{equation*}
\nabla_{X} P Y=\nabla_{X}^{*} P Y+C(X, P Y) E, \quad \nabla_{X} E=-A_{E}^{*} X-\tau(X) E \tag{2.20}
\end{equation*}
$$

Finally, (2.16) and (2.17), locally become

$$
\begin{array}{ll}
g\left(A_{N} Y, P W\right)=C(Y, P W) ; & \bar{g}\left(A_{N} Y, N\right)=0, \\
g\left(A_{E}^{*} X, P Y\right)=B(X, P Y) ; & \bar{g}\left(A_{E}^{*} X, N\right)=0 . \tag{2.22}
\end{array}
$$

We note that second equation of (2.21) implies that $A_{N} X \in \Gamma(S(T M))$ for $X \in \Gamma(T M)$, i.e. A_{N} is $\Gamma(S(T M))$ valued. On the other hand, from $\bar{g}\left(\bar{\nabla}_{X} E, E\right)=0$, we have

$$
\begin{equation*}
B(X, E)=0 . \tag{2.23}
\end{equation*}
$$

In general, the induced connection ∇ on M is not a metric connection. Since $\bar{\nabla}$ is a metric connection, we have

$$
0=\left(\bar{\nabla}_{X} \bar{g}\right)(Y, Z)=X(\bar{g}(Y, Z))-\bar{g}\left(\bar{\nabla}_{X} Y, Z\right)-\bar{g}\left(Y, \bar{\nabla}_{X} Z\right) .
$$

By using (2.12) in this equation, we obtain

$$
\begin{equation*}
\left(\nabla_{X} g\right)(Y, Z)=B(X, Y) \theta(Z)+B(X, Z) \theta(Y), \quad X, Y \in \Gamma\left(\left.S(T M)\right|_{u}\right) \tag{2.24}
\end{equation*}
$$

where θ is a differential 1-form locally defined on M by $\theta(\cdot)=\bar{g}(N, \cdot)$.
If \bar{R} and R are the curvature tensors of \bar{M} and M, then using (2.12) in the equation $\bar{R}(X, Y) Z=\bar{\nabla}_{X} \bar{\nabla}_{Y} Z-\bar{\nabla}_{Y} \bar{\nabla}_{X} Z-\bar{\nabla}_{[X, Y]} Z$, we obtain

$$
\begin{array}{r}
\bar{R}(X, Y) Z=R(X, Y) Z+B(X, Z) A_{N} Y-B(Y, Z) A_{N} X \\
+\left\{\left(\nabla_{X} B\right)(Y, Z)-\left(\nabla_{Y} B\right)(X, Z)+\tau(X) B(Y, Z)-\tau(Y) B(X, Z)\right\} N \\
\left(\nabla_{X} B\right)(Y, Z)=X B(Y, Z)-B\left(\nabla_{X} Y, Z\right)-B\left(Y, \nabla_{X} Z\right) . \tag{2.26}
\end{array}
$$

3. Semi-symmetric and Ricci semi-symmetric Lightlike Hypersurfaces in Indefinite Generalized Sasakian Space Form
In this section, we consider semi-symmetric and Ricci semi-symmetric lightlike hypersurfaces M in an indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$.

For $X \in \Gamma(T M)$, we write

$$
\begin{equation*}
\phi X=t X+\beta(X) N \tag{3.1}
\end{equation*}
$$

where $t X$ is the tangential parts of ϕX and β is the one form on M.
Definition 3.1. Let M be a lightlike hypersurface of a $(2 m+1)$-dimensional indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. We say that M is semisymmetric if the following condition is satisfied

$$
\begin{equation*}
(R(X, Y) \cdot R)\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=0 \tag{3.2}
\end{equation*}
$$

for $X, Y, X_{1}, X_{2}, X_{3}, X_{4} \in \Gamma(T M)$. We note that $(R(X, Y) \cdot R)\left(X_{1}, X_{2}, X_{3}, E\right)=0$ for $E \in \Gamma\left(T M^{\perp}\right)$, therefore equation (3.2) reduces to

$$
\begin{equation*}
(R(X, Y) \cdot R)\left(X_{1}, X_{2}, X_{3}, P X_{4}\right)=0 \tag{3.3}
\end{equation*}
$$

We have following :
Lemma 3.1. Let M be a lightlike hypersurface of $a(2 m+1)$-dimensional indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then the Gauss equation of M is given by

$$
\begin{array}{r}
R(X, Y) Z=B(Y, Z) A_{N} X-B(X, Z) A_{N} Y+f_{1}\{g(Y, Z) X-g(X, Z) Y\} \\
+f_{2}\{g(X, \phi Z) t Y-g(Y, \phi Z) t X+2 g(X, \phi Y) t Z\} \tag{3.4}\\
+f_{3}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi \\
-g(Y, Z) \eta(X) \xi\}
\end{array}
$$

Proof: From (2.3), (2.25), (3.1) and comparing the tangential part, we obtain (3.4).

Theorem 3.1. Let M be a lightlike hypersurface of $a(2 m+1)$-dimensional indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then, we have

$$
\begin{array}{r}
\operatorname{Ric}(X, Y)=-(2 m-1) f_{1} g(X, Y)-f_{2}\{g(t X, \phi Y)+2 g(\phi X, t Y) \\
+g(E, \phi Y) g(t X, N)-2 g(X, \phi E) g(t Y, N)\}+f_{3}\{g(X, Y) \\
+(2 m-2) \eta(X) \eta(Y)\}+\sum_{i=1}^{2 m-1} \epsilon_{i} B\left(w_{i}, Y\right) C\left(X, w_{i}\right) \tag{3.5}\\
-\alpha B(X, Y)
\end{array}
$$

where $\left\{\left(w_{i}\right), i=1,2, \ldots,(2 m-1)\right\}$ is the orthogonal basis of $S(T M)$ and $\alpha=\sum_{i=1}^{2 m-1} \epsilon_{i} C\left(W_{i}, W_{i}\right)$.

Proof: By the definition of Ricci curvature

$$
\operatorname{Ric}(X, Y)=\sum_{i=1}^{2 m-1} \epsilon_{i} g\left(R\left(X, w_{i}\right) Y, w_{i}\right)+\bar{g}(R(X, E) Y, N)
$$

From (3.4), we have

$$
\begin{array}{r}
\operatorname{Ric}(X, Y)=-(2 m-1) f_{1} g(X, Y)-f_{2}\{g(t X, \phi Y)+2 g(\phi X, t Y) \\
+g(E, \phi Y) g(t X, N)-2 g(X, \phi E) g(t Y, N)\}+f_{3}\{g(X, Y) \\
+(2 m-2) \eta(X) \eta(Y)\}+\sum_{i=1}^{2 m-1} \epsilon_{i}\left\{B\left(W_{i}, Y\right) C\left(X, W_{i}\right)\right. \tag{3.6}\\
\left.-B(X, Y) C\left(W_{i}, W_{i}\right)\right\} .
\end{array}
$$

Since $\sum_{i=1}^{2 m-1} \epsilon_{i} C\left(W_{i}, W_{i}\right)=\alpha$, hence (3.5) follows from (3.6).
From theorem 3.1, we have:
Proposition 3.1. The Ricci tensor of a lightlike hypersurface in a $(2 m+1)$ dimensional indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is degenerate if $f_{2}=0$.

Proposition 3.2. The Ricci tensor of a lightlike hypersurface in a $(2 m+1)$ dimensional indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is symmetric if $f_{2}=0$ and the shape operator of a lightlike hypersurface of $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is symmetric with respect to the second fundamental form of M.
Proof. From (3.5), we have

$$
\begin{align*}
\operatorname{Ric}(X, Y)- & \operatorname{Ric}(Y, X)=-f_{2}\{g(t X, \phi Y)-g(t Y, \phi X)+2 g(\phi X, t Y) \\
& -2 g(\phi Y, t X)+g(E, \phi Y) g(t X, N)-g(E, \phi X) g(t Y, N) \\
& -2 g(X, \phi E) g(t Y, N)+2 g(Y, \phi E) g(t X, N)\} \tag{3.7}\\
+ & \sum_{i=1}^{2 m-1} \epsilon_{i}\left\{B\left(W_{i}, Y\right) C\left(X, W_{i}\right)-B\left(W_{i}, X\right) C\left(Y, W_{i}\right)\right\} .
\end{align*}
$$

On the other hand, using equation (2.21) and (2.22), we get

$$
\begin{equation*}
\sum_{i=1}^{m} \epsilon_{i} B\left(W_{i}, Y\right) C\left(X, W_{i}\right)=B\left(Y, A_{N} X\right) \tag{3.8}
\end{equation*}
$$

From (3.7) and (3.8), we find

$$
\begin{array}{r}
\operatorname{Ric}(X, Y)-\operatorname{Ric}(Y, X)=-f_{2}\{g(t X, \phi Y)-g(t Y, \phi X) \\
+2 g(\phi X, t Y)-2 g(\phi Y, t X)+g(E, \phi Y) g(t X, N) \tag{3.9}\\
-g(E, \phi X) g(t Y, N)-2 g(X, \phi E) g(t Y, N) \\
+2 g(Y, \phi E) g(t X, N)\}+B\left(Y, A_{N} X\right)-B\left(X, A_{N} Y\right) .
\end{array}
$$

If $f_{2}=0$ and the shape operator is symmetric with respect to the second fundamental form of M, then the result follows from (3.9).

Corollary 3.1. The Ricci tensor of a lightlike hypersurface in a (2m+1)-dimensional indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$ is symmetric if $f_{2}=0$ and $C\left(X, A_{\xi}^{*} Y\right)=C\left(Y, A_{\xi}^{*} X\right)$.

Theorem 3.2. Let M be a totally geodesic lightlike hypersurface of a cosymplectic indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then, the Ricci tensor of M is parallel with respect to ∇ if f_{1}, f_{3} are constants and $f_{2}=0$.
Proof: The derivative of Ricci tensor is given by

$$
\left(\nabla_{Z} \operatorname{Ric}\right)(X, Y)=\nabla_{Z} \operatorname{Ric}(X, Y)-\operatorname{Ric}\left(\nabla_{Z} X, Y\right)-\operatorname{Ric}\left(X, \nabla_{Z} Y\right)
$$

Then, from (2.24) and (3.5), we have

$$
\begin{array}{r}
\left(\nabla_{Z} R i c\right)(X, Y)=-(2 m-1)\left[Z\left(f_{1}\right) g(X, Y)+f_{1}\{B(Z, X) \theta(Y)\right. \\
+B(Z, Y) \theta(X)\}]-Z\left(f_{2}\right)\{g(t X, \phi Y)+2 g(\phi X, t Y) \\
+g(E, \phi Y) g(t X, N)-2 g(X, \phi E) g(t Y, N)\}-f_{2}\{B(Z, t X) \theta(\phi Y) \\
+B(Z, \phi Y) \theta(t X)+g\left(\left(\nabla_{Z} t\right) X, \phi Y\right)+g\left(t X,\left(\nabla_{Z} \phi\right) Y\right) \\
+B(Z, \phi Y) g(t X, N)+g\left(\nabla_{Z} E, \phi Y\right) g(t X, N) \\
+g\left(E,\left(\nabla_{Z} \phi\right) Y\right) g(t X, N)+g(E, \phi Y) g\left(\left(\nabla_{Z} t\right) X, N\right) \\
+g(E, \phi Y) g\left(t X, \nabla_{Z} N\right)-2 B(Z, X) \theta(\phi E) g(t Y, N) \\
-2 B(Z, \phi E) \theta(X) g(t Y, N)-2 g(X, \phi E) g\left(\left(\nabla_{Z} t\right) Y, N\right) \\
\left.-2 g(X, \phi E) g\left(t Y, \nabla_{Z} N\right)-2 g\left(X, \nabla_{Z} \phi E\right) g(t Y, N)\right\} \\
+f_{3}\{g(X, Y)+(2 m-2) \eta(X) \eta(Y)\}+f_{3}[B(Z, X) \theta(Y) \\
+B(Z, Y) \theta(X)+(2 m-2)\{B(Z, \xi) \theta(X) \eta(Y)+B(Z, \xi) \theta(Y) \eta(X) \\
+g\left(X, \nabla_{Z} \xi\right) \eta(Y)+g\left(Y, \nabla_{Z} \xi\right) \eta(X)+B(Z, \xi) \theta(Y) \eta(X) \\
\left.\left.+g\left(Y, \nabla_{Z} \xi\right) \eta(X)\right\}\right]+\sum_{i=1}^{2 m-1} \epsilon_{i}\left\{\left(\nabla_{Z} B\right)\left(W_{i}, Y\right) C\left(X, W_{i}\right)\right. \\
+B\left(\nabla_{Z} W_{i}, Y\right) C\left(X, W_{i}\right)+B\left(W_{i}, Y\right) C\left(X, \nabla_{Z} W_{i}\right) \\
\left.+B\left(W_{i}, Y\right)\left(\nabla_{Z} C\right)\left(X, W_{i}\right)\right\}-Z(\alpha) B(X, Y)-\alpha\left(\nabla_{Z} B\right)(X, Y) .
\end{array}
$$

Since, M is totally geodesic lightlike hypersurface of a Cosympletic indefinite generalized Sasakian space form, therefore $B(X, Y)=0$ and $\nabla_{X} \xi=0$, $\forall X, Y \in \Gamma(T M)$. Hence, from (3.10), we find

$$
\begin{array}{r}
\left(\nabla_{Z} R i c\right)(X, Y)=-(2 m-1)\left(Z f_{1}\right) g(X, Y)-Z\left(f_{2}\right)\{g(t X, \phi Y) \\
+2 g(\phi X, t Y)+g(E, \phi Y) g(t X, N)-2 g(X, \phi E) g(t Y, N)\} \\
-f_{2}\left\{g\left(\left(\nabla_{Z} t\right) X, \phi Y\right)+g\left(t X,\left(\nabla_{Z} \phi\right) Y\right)+g\left(\nabla_{Z} E, \phi Y\right) g(t X, N)\right. \\
+g\left(E,\left(\nabla_{Z} \phi\right) Y\right) g(t X, N)+g(E, \phi Y) g\left(\left(\nabla_{Z} t\right) X, N\right) \tag{3.11}\\
+g(E, \phi Y) g\left(t X, \nabla_{Z} N\right)-2 g(X, \phi E) g\left(\left(\nabla_{Z} t\right) Y, N\right) \\
\left.-2 g(X, \phi E) g\left(t Y, \nabla_{Z} N\right)-2 g\left(X, \nabla_{Z} \phi E\right) g(t Y, N)\right\} \\
+f_{3}\{g(X, Y)+(2 m-2) \eta(X) \eta(Y)\} .
\end{array}
$$

From (3.11), it is obvious that $\left(\nabla_{Z} \operatorname{Ric}\right)(X, Y)=0$ if $f_{2}=0$ and f_{1}, f_{3} are constants, which proves the Theorem.

Theorem 3.3. Let M be a Ricci semi-symmetric lightlike hypersurface of an $(2 m+1)$-dimensional indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. If $f_{2}=0$, then, either M is totally geodesic or $\operatorname{Ric}\left(E, A_{N} E\right)=0$ for $E \in \Gamma\left(T M^{\perp}\right)$, where Ric is the Ricci tensor of M and A denotes the shape operator of M.

Proof: Suppose M is Ricci semi-symmetric, then from (2.8), we have:

$$
\begin{equation*}
0=-\operatorname{Ric}\left(R(X, Y) X_{1}, X_{2}\right)-\operatorname{Ric}\left(X_{1}, R(X, Y) X_{2}\right) \tag{3.12}
\end{equation*}
$$

Using (3.5) in (3.12), we find

$$
\begin{align*}
& 0=-B\left(Y, X_{1}\right) \operatorname{Ric}\left(A_{N} X, X_{2}\right)+B\left(X, X_{1}\right) \operatorname{Ric}\left(A_{N} Y, X_{2}\right) \\
& -f_{1}\left\{g\left(Y, X_{1}\right) \operatorname{Ric}\left(X, X_{2}\right)-g\left(X, X_{1}\right) \operatorname{Ric}\left(Y, X_{2}\right)\right\} \\
& -f_{2}\left\{g\left(X, \phi X_{1}\right) \operatorname{Ric}\left(t Y, X_{2}\right)-g\left(Y, \phi X_{1}\right) \operatorname{Ric}\left(t X, X_{2}\right)\right. \\
& \left.+2 g(X, \phi Y) \operatorname{Ric}\left(t X_{1}, X_{2}\right)\right\}-f_{3}\left\{\eta(X) \eta\left(X_{1}\right) \operatorname{Ric}\left(Y, X_{2}\right)\right. \\
& -\eta(Y) \eta\left(X_{1}\right) \operatorname{Ric}\left(X, X_{2}\right)+g\left(X, X_{1}\right) \eta(Y) \operatorname{Ric}\left(\xi, X_{2}\right) \\
& \left.-g\left(Y, X_{1}\right) \eta(X) \operatorname{Ric}\left(\xi, X_{2}\right)\right\}-B\left(Y, X_{2}\right) \operatorname{Ric}\left(X_{1}, A_{N} X\right) \tag{3.13}\\
& +B\left(X, X_{2}\right) \operatorname{Ric}\left(X_{1}, A_{N} Y\right)-f_{1}\left\{g\left(Y, X_{2}\right) \operatorname{Ric}\left(X_{1}, X\right)\right. \\
& \left.-g\left(X, X_{2}\right) \operatorname{Ric}\left(X_{1}, Y\right)\right\}-f_{2}\left\{g\left(X, \phi X_{2}\right) \operatorname{Ric}\left(X_{1}, t Y\right)\right. \\
& \left.-g\left(Y, \phi X_{2}\right) \operatorname{Ric}\left(X_{1}, t X\right)+2 g(X, \phi Y) \operatorname{Ric}\left(X_{1}, t X_{2}\right)\right\} \\
& -f_{3}\left\{\eta(X) \eta\left(X_{2}\right) \operatorname{Ric}\left(X_{1}, Y\right)-\eta(Y) \eta\left(X_{2}\right) \operatorname{Ric}\left(X_{1}, X\right)\right. \\
& \left.+g\left(X, X_{2}\right) \eta(Y) \operatorname{Ric}\left(X_{1}, \xi\right)-g\left(Y, X_{2}\right) \eta(X) \operatorname{Ric}\left(X_{1}, \xi\right)\right\} .
\end{align*}
$$

Putting $X_{1}=E$ in (3.13) and using (2.23), we obtain;

$$
\begin{align*}
0= & -f_{2}\left\{g(X, \phi E) \operatorname{Ric}\left(t Y, X_{2}\right)-g(Y, \phi E) \operatorname{Ric}\left(t X, X_{2}\right)\right. \\
& \left.+2 g(X, \phi Y) \operatorname{Ric}\left(t E, X_{2}\right)\right\}-B\left(Y, X_{2}\right) \operatorname{Ric}\left(E, A_{N} X\right) \\
& +B\left(X, X_{2}\right) \operatorname{Ric}\left(E, A_{N} Y\right)-f_{1}\left\{g\left(Y, X_{2}\right) \operatorname{Ric}(E, X)\right. \\
& \left.-g\left(X, X_{2}\right) \operatorname{Ric}(E, Y)\right\}-f_{2}\left\{g\left(X, \phi X_{2}\right) \operatorname{Ric}(E, t Y)\right. \tag{3.14}\\
& \left.-g\left(Y, \phi X_{2}\right) \operatorname{Ric}(E, t X)+2 g(X, \phi Y) \operatorname{Ric}\left(E, t X_{2}\right)\right\} \\
& -f_{3}\left\{\eta(X) \eta\left(X_{2}\right) \operatorname{Ric}(E, Y)-\eta(Y) \eta\left(X_{2}\right) \operatorname{Ric}(E, X)\right. \\
+ & \left.g\left(X, X_{2}\right) \eta(Y) \operatorname{Ric}(E, \xi)-g\left(Y, X_{2}\right) \eta(X) \operatorname{Ric}(E, \xi)\right\} .
\end{align*}
$$

Putting $Y=E$ in (3.14), we get;

$$
\begin{array}{r}
0=-f_{2}\left\{3 g(X, \phi E) \operatorname{Ric}\left(t E, X_{2}\right)+g\left(X, \phi X_{2}\right) \operatorname{Ric}(E, t E)\right. \\
\left.-g\left(E, \phi X_{2}\right) \operatorname{Ric}(E, t X)+2 g(X, \phi E) \operatorname{Ric}\left(E, t X_{2}\right)\right\} \tag{3.15}\\
+B\left(X, X_{2}\right) \operatorname{Ric}\left(E, A_{N} E\right)
\end{array}
$$

If $f_{2}=0$ then from (3.15), we have

$$
B\left(X, X_{2}\right) \operatorname{Ric}\left(E, A_{N} E\right)=0
$$

So, if $B\left(X, X_{2}\right)=0$ for any $X, X_{2} \in \Gamma(T M)$, then M is totally geodesic. If M is not totally geodesic, it follows that $\operatorname{Ric}\left(E, A_{N} E\right)=0$.

Theorem 3.4. Let M be a totally geodesic lightlike hypersurface of $(2 m+1)$ dimensional indefinite generalized Sasakian space form $\bar{M}\left(f_{1}, f_{2}, f_{3}\right)$. Then, M is semi-symmetric if $f_{2}=0$.

Proof: Let M be a lightlike hypersurface of indefinite generalized Sasakian space form. Then, we have

$$
\begin{array}{r}
g((R(X, Y) \cdot R)(U, V) W, Z)=g(R(X, Y) \cdot R(U, V) W, Z) \\
-g(R(U, V) R(X, Y) W, Z)-g(R(R(U, V) X, Y) W, Z) \tag{3.16}\\
-g(R(X, R(U, V) Y) W, Z)
\end{array}
$$

$\forall X, Y, Z, U, V, W \in \Gamma(T M)$.
Using (3.4) and Definition 3.1 in (3.16), we obtain
$g((R(X, Y) \cdot R)(U, V) W, P Z)$

$$
\begin{array}{r}
=B(Y, R(U, V) W) g\left(A_{N} X, P Z\right)-B(X, R(U, V) W) g\left(A_{N} Y, P Z\right)- \\
B(V, R(X, Y) W) g\left(A_{N} U, P Z\right)+B(U, R(X, Y) W) g\left(A_{N} V, P Z\right)- \\
B(Y, W) g\left(A_{N} R(U, V) X, P Z\right)+B(R(U, V) X, W) g\left(A_{N} Y, P Z\right)- \\
B(R(U, V) Y, W) g\left(A_{N} X, P Z\right)+B(X, W) g\left(A_{N} R(U, V) Y, P Z\right)+ \\
f_{1}\{g(Y, R(U, V) W) g(X, P Z-g(X, R(U, V) W) g(Y, P Z)- \\
g(V, R(X, Y) W) g(U, P Z)+g(U, R(X, Y) W) g(V, P Z)- \\
g(Y, W) g(R(U, V) X, P Z)+g(R(U, V) X, W) g(Y, P Z) \\
-g(R(U, V) Y, W) g(X, P Z)+g(X, W) g(R(U, V) Y, P Z)\}+ \\
f_{2}\{g(X, \phi R(U, V) W) g(t Y, P Z)-g(Y, \phi R(U, V) W) g(t X, P Z)+ \\
2 g(X, \phi Y) g(t R(U, V) W, P Z)-g(U, \phi R(X, Y) W) g(t V, P Z)+ \\
g(V, \phi R(X, Y) W) g(t U, P Z)-2 g(U, \phi V) g(t R(X, Y) W, P Z)- \\
g(R(U, V) X, \phi W) g(t Y, P Z)+g(t R(U, V) X, P Z) g(Y, \phi W)- \\
2 g(R(U, V) X, \phi Y) g(t W, P Z)-g(X, \phi W) g(t R(U, V) W, P Z)+ \\
g(t X, P Z) g(R(U, V) Y, \phi W)-2 g(X, \phi R(U, V) Y) g(t W, P Z)\}+ \\
f_{3}\{\eta(X) \eta(R(U, V) W) g(Y, P Z)-\eta(Y) \eta(R(U, V) W) g(X, P Z)+ \\
g(X, R(U, V) W) \eta(Y) \eta(P Z)-g(Y, R(U, V) W) \eta(X) \eta(P Z)- \\
\eta(U) \eta(R(X, Y) W) g(V, P Z)+\eta(V) \eta(R(X, Y) W) g(U, P Z)- \\
g(U, R(X, Y) W) \eta(V) \eta(P Z)+g(V, R(X, Y) W) \eta(U) \eta(P Z)- \\
\eta(R(U, V) X) \eta(W) g(Y, Z)+\eta(Y) \eta(W) g(R(U, V) X, P Z)- \\
g(R(U, V) X, W) \eta(Y) \eta(P Z)+g(Y, W) \eta(R(U, V) X) \eta(P Z)- \\
g(R(U, V) Y, P Z) \eta(X) \eta(W)+g(X, P Z) \eta(R(U, V) Y) \eta(W)- \\
g(X, W) \eta(R(U, V) Y) \eta(P Z)+g(R(U, V) Y, W) \eta(X) \eta(P Z)\} .
\end{array}
$$

Or，

```
g((R(X,Y).R)(U,V)W,PZ)
= g(ANX,PZ)[B(Y, ANN)B(V,W)-B(Y,\mp@subsup{A}{N}{}V)B(U,W)+\mp@subsup{f}{1}{}{g(V,W)B(Y,U)-
    g(U,W)B(Y,V)}+ f2 {\eta(U)\eta(W)B(Y,V)-g(V,\phiW)B(Y,tU)+
    2g(U,\phiV)B(Y,tW)}+ f3{\eta(U)\eta(W)B(Y,V)-\eta(V)\eta(W)B(U,Y)+
g(U,W)\eta(V)B(Y,\xi)-g(V,W)\eta(U)B(Y,\xi)}]-g(\mp@subsup{A}{N}{}Y,PZ)[B(X,A, 位U)B(V,W) -
            B(X, A N V B(U,W)+f
    f}\mp@code{2}{\eta(U)\eta(W)B(X,V)-g(V,\phiW)B(X,tU)+2g(U,\phiV)B(X,tW)}
    f}\mp@subsup{f}{3}{}{\eta(U)\eta(W)B(X,V)-\eta(V)\eta(W)B(U,X)+g(U,W)\eta(V)B(X,\xi)
            g(V,W)\eta(U)B(X,\xi)}]-g(AN}U,PZ)[B(V,\mp@subsup{A}{N}{}X)B(Y,W)
            B(V,A,
        f}\mp@subsup{f}{2}{}{g(X,\phiW)B(V,tY)-g(Y,\phiW)B(V,tX)+2g(X,\phiY)B(V,tZ)}
        f}{\mp@code{{\eta(X)\eta(W)B(V,Y)-\eta(Y)\eta(W)B(V,X)+g(X,W)\eta(Y)B(V,\xi)-
g(Y,W)\eta(X)B(V,\xi)}]+g(\mp@subsup{A}{N}{}V,PZ)[B(U,\mp@subsup{A}{N}{}X)B(Y,W)-B(U,\mp@subsup{A}{N}{}Y)B(X,W)+
            f
            g(Y,\phiW)B(U,tX)+2g(X,\phiY)B(U,tZ)}+\mp@subsup{f}{3}{}{\eta(X)\eta(W)B(U,Y)-
            \eta(Y)\eta(W)B(U,X)+g(X,W)\eta(Y)B(U,\xi)-g(Y,W)\eta(X)B(U,\xi)}]-
                B(Y,W)[g(A ANB(V,X)AN}\mp@subsup{A}{N}{}U,PZ)-g(\mp@subsup{A}{N}{}B(U,X)\mp@subsup{A}{N}{}V,PZ)
    g(AN 看{g(V,X)U-g(U,X)V},PZ)+g(AN却的g(U,\phiX)tV - g(V,\phiX)tU+
    2g(U,\phiV)tX},PZ)+g(A AN f3}{\eta(U)\eta(X)V-\eta(V)\eta(X)U+g(U,X)\eta(V)\xi
g(V,X)\eta(U)\xi},PZ)]+g(\mp@subsup{A}{N}{}Y,PZ)[B(V,X)B(AN}U,W)-B(U,X)B(\mp@subsup{A}{N}{}V,W)
                    f}\mp@code{{}{g(V,X)B(U,W)-g(U,X)B(U,W)}+\mp@subsup{f}{2}{}{g(U,\phiX)B(tV,W)
            g(V,\phiX)B(tU,W)+2g(U,\phiV)B(tX,W)}+\mp@subsup{f}{3}{}{\eta(X)\eta(U)B(V,W)-
            \eta(X)\eta(V)B(U,W)+g(X,U)\eta(V)B(\xi,W)-g(X,V)\eta(U)B(\xi,W)}]-
g(ANX,PZ)[B(U,Y)B(ANN,W)-B(U,Y)B(ANV,W)+\mp@subsup{f}{1}{}{g(V,Y)B(U,W)-
```

```
            g(U,Y)B(V,W)}+ f2 {g(U,\phiY)B(tV,W) - g(V,\phiY)B(tU,W)+
            2g(U,\phiV)B(tY,W)}+\mp@subsup{f}{3}{}{\eta(U)\eta(V)B(V,W)-\eta(V)\eta(Y)B(U,W)+
g(U,Y)\eta(V)B(\xi,W)-g(V,Y)\eta(U)B(\xi,W)}]+B(X,W)[g(\mp@subsup{A}{N}{}B(V,Y)\mp@subsup{A}{N}{}U,PZ)-
                    g(\mp@subsup{A}{N}{}B(U,Y)A}\mp@subsup{A}{N}{}V,PZ)+g(\mp@subsup{A}{N}{}\mp@subsup{f}{1}{}{g(V,Y)U-g(U,Y)V},PZ)
g(A AN f2{g(U,\phiY)tV - g(V,\phiY)tU + 2g(U,\phiV)tY},PZ)+g(A}\mp@subsup{A}{N}{}\mp@subsup{f}{3}{}{\eta(U)\eta(Y)V -
\eta(V)\eta(Y)U +g(U,Y)\eta(V)\xi-g(V,Y)\eta(U)\xi},PZ)+\mp@subsup{f}{1}{}{g(Y,R(U,V)W)g(X,PZ)-
                    g(X,R(U,V)W)g(Y,PZ)-g(V,R(X,Y)W)g(U,PZ)+
g(U,R(X,Y)W)g(V,PZ)+g(R(U,V)X,W)g(Y,PZ)-g(R(U,V)X,PZ)g(Y,W)-
                    g(PZ,R(U,V)Y)g(X,W) - g(W,R(U,V)Y)g(X,PZ)}+
                    f2{g(X,\phiR(U,V)W)g(tY,PZ)-g(Y,\phiR(U,V)W)g(tX,PZ)+
                        2g(X,\phiY)g(PZ,tR(U,V)W)+g(V,\phiR(X,Y)W)g(tU,PZ)-
                        g(U,\phiR(X,Y)W)g(tV,PZ) - 2g(U,\phiV)g(PZ,tR(X,Y)W) -
                                g(R(U,V)X,\phiW)g(tY,PZ)+g(Y,\phiW)g(tR(U,V)X,PZ)-
    2g(R(U,V)X,\phiY)g(tW,PZ) - g(X,\phiW)g(tR(U,V)W,PZ) -
    g(R(U,V)Y,\phiW)g(tX,PZ)-2g(X,\phiR(U,V)Y)g(tW,PZ)}+
f}\mp@code{3}{\eta(X)\eta(R(U,V)W)g(Y,PZ)-\eta(Y)\eta(R(U,V)W)g(X,PZ)
    \eta(Y)\eta(PZ)g(R(U,V)W,X) - \eta(X)\eta(PZ)g(R(U,V)W,Y) -
    g(V,PZ)\eta(U)\eta(R(X,Y)W)+g(U,PZ)\eta(V)\eta(R(X,Y)W) -
    g(U,R(X,Y)W)\eta(V)\eta(PZ)+g(V,R(X,Y)W)\eta(U)\eta(PZ) -
    \eta(R(U,V)X)\eta(W)g(Y,PZ)+\eta(Y)\eta(W)g((R(U,V)X,PZ) -
        g(R(U,V)X,W)\eta(Y)\eta(PZ)+g(Y,W)\eta(R(U,V)X)\eta(PZ)-
        g(R(U,V)Y,PZ)\eta(X)\eta(W)+g(X,PZ)\eta(R(U,V)Y)\eta(W)-
        g(X,W)\eta(R(U,V)Y)\eta(PZ)+g(R(U,V)Y,W)\eta(X)\eta(PZ)}.
```

Putting $Y=U=E \in \Gamma\left(T M^{\perp}\right)$ in above equation and a straight forward calculations, we have
$g((R(X, E) \cdot R)(E, V) W, P Z)=$

$$
\begin{array}{r}
-g\left(A_{N} E, P Z\right)\left[B(V, W) B\left(X, A_{N} E\right)-f_{2}\{g(V, \phi W) B(X, t E)-\right. \\
2 g(E, \phi V) B(X, t W)\}-B\left(V, A_{N} E\right) B(X, W)+f_{2}\{g(X, \phi W) B(V, t E)- \\
g(E, \phi W) B(V, t X)+2 g(X, \phi E) B(V, t Z)\}-B(V, X) B\left(A_{N} E, W\right)- \\
\left.f_{2}\{g(E, \phi X) B(t V, W)-g(V, \phi X) B(t E, W) 2 g(E, \phi V) B(t X, W)\}\right]+ \\
g\left(A_{N} X, P Z\right)\left[f_{2}\{g(V, \phi E) B(t E, W)-2 g(E, \phi V) B(t E, W)\}\right]+ \\
B(X, W)\left[g\left(A_{N} f_{2}\{-g(V, \phi E) B(t E, W)+2 g(E, \phi V) t E\}, P Z\right)\right]+ \\
f_{1}[g(E, R(E, V) W) g(X, P Z)+g(E, R(X, E) W) g(V, P Z)+ \\
g(X, W) g(R(E, V) E, P Z)-g(R(E, V) E, W) g(X, P Z)\}+ \\
f_{2}\{g(X, \phi R(E, V) W) g(t E, P Z)-g(E, \phi R(E, V) W) g(t X, P Z)+ \\
2 g(X, \phi E) g(P Z, t R(E, V) W)+g(V, \phi R(X, E) W) g(t E, P Z)- \\
g(E, \phi R(X, E) W) g(t V, P Z)-2 g(E, \phi V) g(P Z, t R(X, E) W)- \\
g(R(E, V) X, \phi W) g(t E, P Z)+g(E, \phi W) g(t R(E, V) X, P Z)- \\
2 g(R(E, V) X, \phi E) g(t W, P Z)-g(X, \phi W) g(t R(E, V) W, P Z)- \\
g(R(E, V) E, \phi W) g(t X, P Z)-2 g(X, \phi R(E, V) E) g(t W, P Z)\}+ \\
f_{3}\{\eta(X) \eta(R(E, V) W) g(E, P Z)-\eta(X) \eta(P Z) g(R(E, V) W, E)- \\
g(E, R(X, E) W) \eta(V) \eta(P Z)-g(R(E, V) E, P Z) \eta(X) \eta(W)+ \\
g(X, P Z) \eta(R(E, V) E) \eta(W)-g(X, W) \eta(R(E, V) E) \eta(P Z)+ \\
g(R(E, V) E, W) \eta(X) \eta(P Z)\} .
\end{array}
$$

Taking $f_{2}=0$ and using the fact that M is totally geodesic in (3.17), we find

$$
g((R(X, Y) \cdot R)(U, V) W, P Z)=0
$$

which proves the theorem.

References

[1] Abdalla, B. E., Dillen, F.: A Ricci semi-symmetric hypersurface of Euclidean space which is not semi-symmetric. Proc. Amer. Math. Soc. 130, 6, 1805-1808, (2002).
[2] Alegre P., D. E. Blair and A. Carriazo: Generalized Sasakian space forms, Israel Journal of Mathematics 141(2004), 157-183.
[3] Bejancu, A.: Null hypersurfaces of semi-Euclidean spaces, Saitama Math J. 14, 25-40, (1996).
[4] Defever, F.: Ricci-semisymmetric hypersurfaces, Balkan J. of Geometry and its appl. 5, 1, 81-91, (2000).
[5] Deprez, J.: Semi-parallel surfaces in Euclidean space, J. of Geometry, 25, 192-200, (1985).
[6] Duggal, Krishan L. and Bejancu, A.: Lightlike Submanifolds of Semi-Riemannian Manifolds and Applications, Kluwer Academic Publishers, Dordrecht, 1996.
[7] Ludden, G. D.: Submanifolds of cosympletic manifolds, Journal of Differential Geometry 4 (1970), 237-244.
[8] Kupeli, D.N.: Singular Semi-Riemannian Geometry, Kluwer Acad. Publishers, Dordrecht, 1996.
[9] Matsuyama, Y.: Complete hypersurfaces with $R . S=0$ in E^{n+1}, Proc. Amer. Math. Soc. 88, 119-123, (1983).
[10] Nomizu, K.: On hypersurfaces satisfying a certain condition on the curvature tensor, Tohoku Math. J. 20, 46-59, (1986).
[11] Ryan, P. J.: A class of complex hypersurfaces, Colloquium Math. 26, 175-182, (1972).
[12] Sahin, B.: Lightlike hypersurfaces of semi-Euclidean spaces satisfying curvature conditions of semi-symmetry type, Turk. J. Math. 31, 139-162, (2007).
[13] Szabo, Z.: Structure theorems on Riemannian spaces satisfying $R(X, Y) \cdot R=0$, the local version, J. Differential Geometry, 17, 531-582, (1982).
[14] Tanno, S.: Hypersurfaces satisfying a certain condition on the Ricci tensor, Tohoku Math. J. 21, 297-303, (1969).
${ }^{1}$ University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka Sec-16C, New Delhi-110075, India.

E-mail address: abhi.basti.ipu@gmail.com, ramshankar.gupta@gmail.com
${ }^{2}$ Department of Mathematics, Faculty of Natural Sciences, Jamia Millia Islamia (Central University), New Delhi-110025, India.

E-mail address: sharfuddin_ahmad12@yahoo.com

[^0]: Date: Nov 30, 2010 and Accepted: Nov 17, 2011.
 2000 Mathematics Subject Classification. 53C15, 53C40, 53C50, 53D15.
 Key words and phrases. Degenerate metric, lightlike hypersurfaces, indefinite generalized Sasakian space form.

 This research is partly supported by the UNIVERSITY GRANTS COMMISSION (UGC), India under a Major Research Project No. SR. 36-321/2008. The second author would like to thank the UGC for providing the financial support to pursue this research work.

