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ON NULL 2-TYPE SUBMANIFOLDS OF EUCLIDEAN SPACES

UǦUR DURSUN

(Communicated by Pascual LUCAS )

Abstract. Let Mn be an n-dimensional submanifold of the Euclidean space
En+2 with non-parallel mean curvature vector and flat normal connection. We
prove that if M is of null 2-type and flat with constant mean curvature, then
the dimension of the first normal space N1(M) of M is one. Then we show
that M is an open portion of an n-dimensional helical cylinder of En+2 if and
only if M is flat and of null 2-type with constant mean curvature.

1. Introduction

In [2], B.Y. Chen gave a classification of null 2-type surfaces in the Euclidean
space E3 and he proved that they are circular cylinders. Later, in [3], he proved
that a surface M in the Euclidean space E4 is of null 2-type with parallel normalized
mean curvature vector if and only if M is an open portion of a circular cylinder in
a hyperplane of E4, and the only null 2-type surfaces of the Euclidean space E4

with constant mean curvature are open portion of helical cylinders which are the
product surfaces of a straight line and a helix.

In [8], S.J. Li showed that a surface M in Em with parallel normalized mean
curvature vector is of null 2-type if and only if M is an open portion of a circular
cylinder. Also, in [9], S.J. Li proved that for a non-pseudo-umbilical Chen surface
M in Em with constant mean curvature, if M is of null 2-type, then M is flat and
lies fully in E3, E4, E5 or E6 of Em (for the definition of Chen surfaces please see
[1, 7]).

In [6], A. Ferrandez and P. Lucas proved that Euclidean hypersurfaces of null
2-type and having at most two distinct principal curvatures are locally isometric to
a generalized cylinder.

In [4, 5], the author studied 3-dimensional null 2-type submanifolds of the Eu-
clidean space E5. In [4], he proved that a 3-dimensional submanifold M of the Eu-
clidean space E5 having two distinct principal curvatures in the parallel mean cur-
vature direction and having a second fundamental form of a constant square length
is of null 2-type if and only if M is locally isometric to one of E × S2 ⊂ E4 ⊂ E5,
E2×S1 ⊂ E4 ⊂ E5 or E×S1(a)×S1(a). In [5], he showed that for a 3-dimensional
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submanifold M of the Euclidean space E5 such that M is not of 1-type, if M is of
null 2-type and flat with constant mean curvature and non-parallel mean curvature
vector, then the normal bundle of M is flat. And also, he proves that M is an open
portion of a 3-dimensional helical cylinder of E5 if and only if M is of null 2-type
and flat with constant mean curvature and non-parallel mean curvature vector.

Considering the result on the normally flatness of M3 in E5, we want to gener-
alize the main result given on the classification of null 2-type submanifolds ([5]) to
an n-dimensional submanifold Mn of the Euclidean space En+2 by assuming the
normally flatness as one of the hypotheses. We prove that for an n-dimensional
normally flat submanifold M of the Euclidean space En+2 with non-parallel mean
curvature vector, if M is of null 2-type and flat with constant mean curvature, then
dim(N1(M)) = 1 and then we show that M is an open portion of an n-dimensional
helical cylinder of En+2 if and only if M is flat and of null 2-type with constant
mean curvature and non-parallel mean curvature vector. This work generalizes the
results given in [3], [5] and [9] about helical cylinders and null 2-type submanifolds
with non-parallel mean curvature vector.

2. Preliminaries

Let M be an n-dimensional submanifold of an m-dimensional Euclidean space
Em. Denote by ∆ the Laplacian of M associated with the induced metric. A
submanifold M of Em is said to be of finite type if the position vector x of M in
Em can be decomposed in the following form:

(2.1) x = x0 + x1 + · · ·+ xk,

where x0 is a constant vector and x1, . . . , xk are non-constant maps satisfying
∆xi = λixi, i = 1, . . . k. If all eigenvalues λ1, . . . , λk are mutually different, then
the submanifold M is said to be of k-type and if, in particular, one of λ1, . . . , λk is
zero, the submanifold M is said to be of null k-type.

Let M be an n-dimensional submanifold in an m-dimensional Euclidean space
Em. We denote by h, A, H, ∇ and ∇⊥, the second fundamental form, the
Weingarten map, the mean curvature vector, the induced Riemannian connection
and the normal connection of the submanifold M in Em, respectively. We choose an
orthonormal local frame {e1, . . . , em} on M such that e1, . . . , en are tangent to M
and en+1 is the direction of H, i.e., the normalized mean curvature vector. Denote
by {ω1, . . . , ωm} the dual frame and {ωA

B}, A, B = 1, . . . ,m, the connection forms
associated to {e1, . . . , em}. We use the following convention on the range of indices:
1 ≤ A,B, C, . . . ≤ m, 1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ β, ν, γ, . . . ≤ m. Denoting by D
the Riemannian connection of Em, we put Dek

ei =
∑

ωj
i (ek)ej +

∑
hβ(ei, ek)eβ

and Dek
eν =

∑
ωj

ν(ek)ej +
∑

ωβ
ν (ek)eβ . By Cartan’s Lemma, we have

ωβ
i =

n∑

j=1

hβ
ijω

j , hβ
ij = hβ

ji,

where hβ
ij are the coefficients of the second fundamental form in the direction eβ .

The mean curvature vector H is given by

(2.2) H =
1
n

m∑

β=n+1

tr(hβ)eβ .
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Using the connection equations ∇eiej =
n∑

k=1

ωk
j (ei)ek, we obtain the equations

of Gauss and Codazzi relative to the basis {e1, . . . , en}, respectively, as

e`(ω
j
i (ek))− ek(ωj

i (e`)) =
n∑

r=1

{ ωr
i (e`)ωj

r(ek)− ωr
i (ek)ωj

r(e`)

+ ωj
i (er)[ωr

k(e`)− ωr
` (ek)]}+

m∑
ν=n+1

(hν
ikhν

j` − hν
jkhν

i`),(2.3)

1 ≤ i < j ≤ n, 1 ≤ ` < k ≤ n

and

ej(hν
ik)− ek(hν

ij) =
n∑

r=1

{ hν
ir[ω

r
k(ej)− ωr

j (ek)] + hν
rkωr

i (ej)− hν
rjω

r
i (ek)}

+
m∑

β=n+1

(hβ
ijω

ν
β(ek)− hβ

ikων
β(ej)),(2.4)

ν = n + 1, . . . , m, i = 1, . . . , n, 1 ≤ j < k ≤ n.

Also the Ricci equation is given by

(2.5) 〈R⊥(ei, ej)eβ , eγ〉 = 〈[Aeβ
, Aeγ ](ei), ej〉,

where R⊥ is the curvature tensor of the normal bundle.
The first normal space N1(M) of M at each point p ∈ M in Em is defined as the

orthogonal complement of the subspace {ξ ∈ T⊥p M |Aξ = 0} in the normal space
T⊥p M .

The product of a circular helix with nonzero torsion that lies in a 3-dimensional
linear subspace E3 of an m-dimensional Euclidean space Em and a (k − 1)-plane
of Em is called a k-dimensional helical cylinder in the Euclidean space Em.

3. Null 2-type submanifolds

If M is a null 2-type submanifold of Em, then we have the following decompo-
sition of the position vector x of M in Em:

(3.1) x = x1 + x2, ∆x1 = 0, ∆x2 = λx2,

for some non-constant vectors x1 and x2 on M where λ is a non-zero constant.
Since we have ∆x = −nH, then (3.1) implies

(3.2) ∆H = λH.

In the theory of finite type immersions we know that a submanifold M of Em is of
1-type if and only if either M is a minimal submanifold of Em or M is a minimal
submanifold of a hypersphere of Em. Also, it is known from a lemma in [3] that for
an n-dimensional submanifold M of a Euclidean space Em, if there is a constant
λ 6= 0 such that ∆H = λH, then M is either of 1-type or of null 2-type.

We need the following lemma given in [3].

Lemma 3.1. [3] Let M be an n-dimensional submanifold of the Euclidean space
Em such that M is not of 1-type. Then M is of null 2-type if and only if we have

(3.3)
n

2
∇α2 + 2trA∇⊥H = 0,
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(3.4) ∆α = λα− α‖An+1‖2 − α < ∇⊥en+1,∇⊥en+1 >,

(3.5) α tr(An+1Aβ) = 2ωβ
n+1(∇α) + α tr(∇ωβ

n+1)− α < ∇⊥en+1,∇⊥eβ >,

where β = n + 2, . . . , m, α2 =< H,H >, ‖An+1‖2 = tr(Aen+1Aen+1) and ∇α is the
gradient of α

Using Lemma 3.1 we obtain the following.

Lemma 3.2. Let M be an n-dimensional normally flat submanifold of the Eu-
clidean space En+2 with non-parallel mean curvature vector such that M is not of
1-type. If M is of null 2-type with constant mean curvature α, then the followings
hold:

(3.6) ωn+2
n+1(ei)hn+2

ii = 0, i = 1, . . . , n,

(3.7) ‖An+1‖2 +
n∑

i=1

(ωn+2
n+1(ei))2 = λ,

(3.8) tr(An+1An+2) = tr(∇ωn+2
n+1),

where ‖An+1‖2 = tr(Aen+1Aen+1).

Proof. As M is normally flat in En+2, we can choose an orthonormal tangent
basis {e1, . . . , en} such that An+1 and An+2 are diagonal, that is, Aβ(ei) = hβ

iiei,
β = n + 1, n + 2. Since M is assumed not to be of 1-type, then α 6= 0 and we can
locally choose an orthonormal normal basis {en+1, en+2} on M such that en+1 = H

α

which is non-parallel in the normal bundle. Thus ∇⊥ei
en+1 = ωn+2

n+1(ei)en+2 6= 0,
that is, ωn+2

n+1(ei) 6= 0 at least for one i ∈ {1, . . . , n}. Also, ∇⊥ei
en+2 = ωn+1

n+2(ei)en+1.
Hence < ∇⊥ei

en+1,∇⊥ei
en+2 >= 0 and < ∇⊥ei

en+1,∇⊥ei
en+1 >=

∑n
i=1(ω

n+2
n+1(ei))2.

Considering α is a constant, the proof of (3.6), (3.7), and (3.8) follow immediately
from (3.3), (3.4) and (3.5), respectively. ¤

Theorem 3.1. Let M be an n-dimensional normally flat submanifold of the Eu-
clidean space En+2 with non-parallel mean curvature vector such that M is not
of 1-type. If M is of null 2-type and flat with constant mean curvature, then
dim N1(M) = 1.

Proof. Considering the hypotheses of the theorem and Lemma 3.2, we can choose
an orthonormal tangent and normal basis on M as in the proof of Lemma 3.2. We
then have nα = hn+1

11 + · · · + hn+1
nn , hn+2

11 + · · · + hn+2
nn = 0, ωn+2

n+1 6= 0 and the
Weingarten maps An+1 and An+2 are diagonal.

Because of the flatness of M , the equations of Gauss (2.3) become

(3.9) hn+1
ii hn+1

jj + hn+2
ii hn+2

jj = 0, 1 ≤ i < j ≤ n

and the equations of Codazzi (2.4) become

(3.10) ek(hn+1
ii ) = −hn+2

ii ωn+1
n+2(ek),

(3.11) ek(hn+2
ii ) = −hn+1

ii ωn+2
n+1(ek),

where i 6= k.
Since the mean curvature direction is non-parallel, then ∇⊥ei

en+1 6= 0, that is,
ωn+2

n+1(ei) 6= 0 at least for one i ∈ {1, . . . , n}. Without lose of generality, suppose
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that ωn+2
n+1(e1) 6= 0. As we have the hypotheses of Lemma 3.2, then the equation

(3.6) for i = 1 implies that hn+2
11 = 0. Hence we get hn+2

22 + · · ·+ hn+2
nn = 0.

We now show that hn+1
11 6= 0 according to the chosen ωn+2

n+1(e1) 6= 0. For k = 1,
when we take the sum of the equations of Codazzi (3.11) on i from 2 to n we obtain

e1(hn+2
22 + · · ·+ hn+2

nn ) = −(hn+1
22 + · · ·+ hn+1

nn )ωn+2
n+1(e1).

As hn+2
22 + · · ·+ hn+2

nn = 0 and ωn+2
n+1(e1) 6= 0 we get

(3.12) hn+1
22 + · · ·+ hn+1

nn = 0

and thus hn+1
11 = nα which is different from zero as M is not of 1-type. Using

hn+2
11 = 0, from the equations of Gauss (3.9) for i = 1 we get hn+1

11 hn+1
jj = 0 which

gives hn+1
jj = 0 for j = 2, . . . , n. Hence An+1 = diag(nα, 0, . . . , 0).

Since all hn+1
ii ’s are constant, then the equations of Codazzi (3.10) for k = 1

and i = 2, . . . , n give us hn+2
ii ωn+1

n+2(e1) = 0, i.e., hn+2
ii = 0 for i = 2, . . . , n, as

ωn+1
n+2(e1) 6= 0. Therefore An+2 = 0.
As a result, we have An+1 6= 0 and An+2 = 0 which means that dimN1(M) = 1.

¤

Theorem 3.2. Let M be an n-dimensional normally flat submanifold of the Eu-
clidean space En+2 with non-parallel mean curvature vector such that M is not of
1-type. Then, M is an open portion of an n-helical cylinder of En+2 if and only if
M is of null 2-type and flat with constant mean curvature.

Proof. Let M be a n-dimensional helical cylinder in En+2. Then, by a suitable
choice of the Euclidean coordinates M takes the following form

x(u1, . . . , un) = (a cos u1, a sin u1, bu1, u2, . . . , un)

for some constant a > 0 and b 6= 0. By a straight forward calculation it is seen that
the Laplacian ∆ of M is given by

(3.13) ∆ = − 1
c2

∂2

∂u2
1

−
n∑

i=2

∂2

∂u2
i

, c =
√

a2 + b2.

Let us put

x1 = (0, 0, bu1, u2, . . . , un) and x2 = (a cosu1, a sin u1, 0, . . . , 0).

Then it is easily seen that

(3.14) ∆x1 = 0, ∆x2 =
1
c2

x2.

This shows that M is of null 2-type.
Let us put

e1 =
1
c
(−a sin u1, a cos u1, b, 0, 0), ei = (0, . . . , 0, 1, 0, . . . , 0), i = 2, . . . , n,

en+1 = (− cos u1,− sin u1, 0, 0, . . . , 0), en+2 =
1
c
(−b sin u1, b cos u1,−a, 0, . . . , 0),
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where ”1” in the vector ei is in the (i + 2)th place. Then, by a straight forward
calculation we obtain

(3.15)

ω1 = c du1, ωi = dui, i = 2 . . . , n,

ωi
j = 0, i, j = 1, . . . , n,

ωn+1
1 =

a

c2
ω1, ωn+2

1 = 0, ωn+1
j = ωn+2

j = 0, j = 2, . . . , n,

ωn+2
n+1 = − b

c2 ω1.

All these show that M is flat, the mean curvature α = |H| = a
3c2 is constant and

en+1 = H
α is non-parallel. It is also observed that An+2 = 0 and hence M is

normally flat because of the equation of Ricci (2.5).
Conversely, let M be a flat and null 2-type submanifold of En+2 with constant

mean curvature and non-parallel mean curvature vector. By Theorem 3.1 we have
dim (N1(M)) = 1. As it is shown in the proof of Theorem 3.1 we can have An+1 =
diag(nα, 0, . . . , 0), An+2 = 0 and µ0 = ωn+2

n+1(e1) 6= 0. Thus, by the equations of
Codazzi (3.11) for i = 1, we obtain ωn+2

n+1(ek) = 0, k = 2, . . . , n. Since we have the
hypotheses of Lemma 3.2, then the equation(3.7) implies that µ0 = ωn+2

n+1(e1) is a
constant. Therefore we have

(3.16) ωn+1
1 = nαω1, ωn+2

1 = 0, ωn+1
j = ωn+2

j = 0, j = 2, . . . , n, ωn+2
n+1 = µ0ω

1.

By considering the flatness of M and (3.16), the connection forms ωA
B of M coincide

with the connection forms of the helical cylinder which are given in (3.15). Thus,
as a result of the fundamental theorem of submanifolds, M is locally isometric to
an n-dimensional helical cylinder of En+2. ¤

This work generalizes the results given in [3], [5] and [9] about helical cylinders
and null 2-type submanifolds with non-parallel mean curvature vector.

Theorem 3.3. Let M be an n-dimensional submanifold of the Euclidean space
En+2 such that M is not of 1-type. Then, M is an open portion of an n-helical
cylinder of En+2 if and only if M is of null 2-type and flat with dim N1(M) = 1
and non-parallel mean curvature vector.

Proof. Suppose that M is a null 2-type and flat submanifold of En+2 with
dim (N1(M)) = 1 and non-parallel mean curvature vector. Then we have ωi

j = 0
and An+2 = 0. By a direct computation and with the help of An+2 = 0, the equation
(3.3) becomes

(3.17) An+1(∇α) = −n

2
α∇α,

that is, ∇α is an eigenvector of An+1 with the eigenvalue −n
2 α on U = {p ∈ M :

∇α 6= 0 at p}. If we choose e1 parallel to ∇α, then hn+1
11 = −nα

2
, hn+1

22 + · · · +
hn+1

nn =
3nα

2
, and ei(α) = 0, i = 2, . . . , n.

By the equations of Codazzi (2.4) for j = 1, i = k and ν = n + 1, we have
e1(hn+1

ii ) = 0, i = 2, . . . , n. Hence we obtain 3n
2 e1(α) = e1(hn+1

22 + · · ·+ hn+1
nn ) = 0.

Therefore, ∇α = 0 on U , i.e., U = ∅, and α is a constant. Also, as dim N1(M) = 1
it follows from the equation of Ricci (2.5) that normal space is flat. As a result, we
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have all the assumptions of Theorem 3.2 from which M is an open portion of an
n-helical cylinder. The converse is given in the proof of Theorem 3.2. ¤
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