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Abstract:  
 

In this study, the unimodal optimality conditions for axially compressed shear 

deformable columns are formulated and the optimal design problems defined are 

numerically solved using an iterative procedure based on the finite element 

method. The results presented show that the optimization results are more 

reliable than the ones obtained using classical beam theory as cross-sectional  

area does not vanish at points where the bending moment is equal to zero. 

  
 

1. Introduction 
 
Starting from the differential equations given by 

Timoshenko [1], the optimality conditions related 

to the optimization problems defined are derived 

and a numerical technique is used to find the 

optimal shapes of shear deformable compressed 

columns. The results are in good agreement with 

the analytical and numerical results obtained in this 

study, and obtained from different sources. 

However, comparison can only be made for the 

limiting case when there’s no shear deformation 

which corresponds to a very long column with very 

high shear rigidity. 

 

Several researchers have tried to solve the strongest 

column problem analytically or by employing 

numerical techniques for different support and 

loading conditions [2-5]. However, the shear 

deformation, contribution of which becomes very 

important especially when the column length is 

short [2-6], has never been considered, even for the 

discrete optimization approaches. Also, this 

exclusion leads to thinner sections, which is 

important especially when optimizing statically 

indeterminate columns as the unimodal optimality 

condition leads to optimal designs where area 

vanishes at certain parts of the statically 

indeterminate columns. Also, stress has been used 

as a constraint in only a few papers [7-9], which 

becomes important when column length is short or 

material is weak. 

 

The study is limited with unimodal optimization as 

there’s enough complexity, and there’s no other 

source to compare the results. It was stated by 

Ziegler [10] that, the effect of axial shortening on 

buckling load may be comparable in magnitude to 

that of the shear deformation. However, the 

influence of axial shortening is neglected in this 

study. 

 

Finally, the numerical results obtained for some 

selected cases are presented in tabular and graphical 

form and the influence of shear deformation on the 

optimal designs is demonstrated. 

 

2. Problem Definition 
 

The governing differential equations (d.e.) are 

given below in equations (1) and (2), 
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where, kGAC  , EID   or n
nAED   with the 

boundary conditions,     00  Lww , 0  at a 

clamped support, and 0Dd dx   at a simple 

support.  
 
There are two independent variables in the d.e.; w , 

deflection , and  , rotation. Thus, the weak form 

can be obtained by multiplying equations (1) and 

(2) by w  and by   respectively and integrating 

over the length. The residuals e1 and e2, and their 

sum, et are given below, 
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021  eeet          (3) 

 

Using eq. (3), and re-arranging, the quotient giving 

the buckling load P is calculated as given in eq. (4), 
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Equation (4) can also be obtained using the 

Minimum Potential Energy Theorem as given in 

[11]. 

 

2.1. Optimal design problems 

 
The minimum area and maximum stress constraints 

are to be studied in separate problems which are 

named as Problem I and Problem II. The statements 

of these optimal design problems are given next. 

 

Problem I. Find the cross-sectional area A(x) of the 

optimal column for given values of n and A0 such 

that the buckling load P is the maximum subject to 

the volume,  
L

VdXA
0

, and minimum area, 

0AA , constraints. 

 

Problem II. Find the cross-sectional area A(x) of 

the optimal column for given values of n and ys 

such that the buckling load P is the maximum 

subject to the volume  
L

VdXA
0

, and the 

maximum stress ys
A

P
  constraints. 

2.2 The unimodal optimality conditions 

 

The Lagrangian related to Problem I is given 

below, 
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Setting the variation of L11 yields the following 

result; 
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Setting the variation of  xh  equal to zero reveals 

the fact that,   02 x  when minimum area 

constraint is not violated, and   02 x  when 

violated. Thus, the optimality condition for problem 

I becomes, 
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where xa, M, denote the set of points where the 

constraint is not active, and bending moment 

respectively. The constant C can be calculated by 

using the volume constraint. 
 

The Lagrangian related to Problem II is given 

below, 
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The optimality condition for problem II is the same 

as the one given in eq.(5) except that A0.is replaced 

with 
ys

P


. 

 

3. Finite Element Stability Analysis 

 

A first order shear deformable beam element is 

used to calculate the buckling load. The detailed 

derivation of the stiffness matrix is given in [12], 

but the geometric stiffness is formulated in this 

section. 

 

3.1. Energy formulation 

 

The total potential energy, , of the beam is given 

below in eq. (6) when the axial strain is neglected.  
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where L is the length of the beam EI is the flexural 

stiffness, S is the shear stiffness, M(x) is the 

bending moment, V(x) is the shear force, q is the 

uniformly distributed force, w(x) is the deflection, P 

is the point load,  is the total rotation of the 

midsurface, and  is the rotation due to shear. 

 

3.2. Finite element formulation 

 

The element has 3 nodes and the unknowns at the 

nodes, i.e. the nodal dof, are the transverse 

deflection wi, and rotation  where i=1,2,3. The 

element displacement vector eδ  contains the 

transverse deflections and rotations at the nodes of 

the element. 
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The shape (interpolation) functions are given 

below, 
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where   is the local coordinate of the sampling 

point. 

 

The Jacobian: It is assumed that node 2 is in the 

middle of the element. Then the Jacobian, J=L
e
/2 

where L
e
 is the length of the element. 

 

Strain-Displacement relations: Strains can be 

defined in terms of deflections and derivatives of 

interpolation function. The derivatives needed are 

calculated using the chain rule of differentiation 

and the Jacobian. 
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Stress-strain relations: For a beam made up of 

homogeneous, isotropic material, the stress strain 

relations are given below in eq.(10). 
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Calculation of the element stiffness and 

geometric stiffness matrices 

 

The linearized stability analysis can be performed 

using the element stiffness and geometric stiffness 

matrices defined below for the special case when 

the mid-side node is in the middle. 
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where, the sub-matrices B and G are given below 
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 000 321 NNN G      (14) 

 

4. Optimization Procedure 

 
An iterative optimization procedure is used to solve 

the optimization problems defined. The moments 

and shear forces at the element nodes are calculated 

using the D and B matrices evaluated at the nodal 

points. dxdw  at the nodes 1, 2, 3 of the element 

can be obtained using the following equation,  
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which is valid for the case when node 2 is at the 

middle of the element. The averages of the 

derivatives shall be taken for adjacent element 

nodes. 

 

The iterative scheme is defined as follows: 

 

i) Assume a uniform area distribution. i=0. 

ii) Compute P and dw/dx, , and M at the 

nodes 

iii) Assume a value for C. 

iv) Calculate Ai, xa according to the optimality 

condition depending on the problem. 

v) Calculate C using the volume constraint. 

vi) Go to Step iv until C value converges. 

vii) Calculate Ai using the iteratively calculated 

C value. 

viii) Modify Ai according to Eq. (15) below. Set 

i = i + 1. 

ix) Go to Step ii until P value converges. 

 

To increase the stability of the solution, the last 

calculated A is modified in step viii as the weighted 

average of area obtained in the current iteration step 

and the one computed in the preceding iteration as  
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where  1,0 , and its value is taken as 0.98 which 

was found to be an optimal value. Failure to 

implement Eq. (15) in the iterative process leads to 

an unstable iterative scheme. 
 

5. Numerical Results 
 

A column of length L and height h is discretized 

using 51 finite elements and the material properties 

are taken as E=2×10
6
, =0.3. Here only Problem I 

is solved with A0=0. The efficiencies of a simply 

supported column under compression are given 

below in Table 1 in comparison with the optimal 

Euler columns, where, 
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and Popt, and P0 are the optimal buckling load, and 

the buckling load of the uniform column 

respectively.  
 

It can be observed from Table 1 that, the 

efficiencies are lower for lower  values because 

the influence of shear deformation on buckling is 

higher for shorter columns. Also, the decrease in 

efficiency percentage increases with increasing n. 

However, the efficiencies do not considerably differ 

for the cases where 25 . 

 
Table 1. Optimization results for the simply supported 

column 

n  

  

(Euler, 

=∞) 

  

(=100) 

  

(=50) 

  

(=25) 

  

(=10) 

1 21.6 21.30 21.01 20.08 16.12 

2 33.3 32.67 32.49 31.79 27.71 

3 41 39.56 39.44 38.87 35.23 

 
The optimal distributions of area for n=1, 2, 3 and 

the same input variables, i.e. 10  0.00 A  and 

ys , are plotted below in Figures 1(a), 1(b), 

and 1(c) respectively. 
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Figure 1. Optimal columns under compression 

(a) 1n  , (b) 2n  , (c) 3n  . 

 

6. Conclusions 

 

The unimodal optimality conditions for axially 

compressed shear deformable columns are 

formulated and the problems defined are 

numerically solved using an iterative procedure 

based on finite elements. 

 

It is shown that when the shear deformation is taken 

into account during optimization, the area does not 

vanish at points where the bending moment is zero. 

Also, the iterative scheme used in solving the 

classical column optimization problem is used here 

efficiently for a similar problem. However, the 

optimal buckling loads calculated here are found 

out to be very close to the optimal buckling loads 

calculated according to the Euler theory for most of 

the cases. 

 

For shear deformable columns, only unimodal 

optimality conditions are formulated, but extension 

to the bimodal case is possible. 
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