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BIMINIMAL CURVES IN EUCLIDEAN SPACES

KADRI ARSLAN, YILMAZ AYDIN, GÜNAY ÖZTÜRK, AND HASSAN UGAIL
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Abstract. We study with biminimal curves, that is curves which are critical
points of the bienergy for normal variations. We give a description of the Euler-
Lagrange equation associated to biminimal curves on a Riemannian manifold.
We describe curves of AW(k) type of Euclidean n-space En. We show that every
biminimal curves of En are of AW(1)-type. We also show that λ-biminimal
curves of En are of AW(3)-type.

1. Introduction

Biharmonic functions play important roles in elasticity and hydrodynamics. In
1964, Eells and Sampson introduced the notion of biharmonic maps between Rie-
mannian manifolds, which is a generalization of harmonic maps [6].

Let (M, g) and (N, g̃) be m and n-dimensional differentiable manifolds respec-
tively. A smooth map x : (M, g) → (N, g̃) is called harmonic if it is a critical point
of the energy functional

(1.1) E : C∞(M, N) → R ; E(x) =
1
2

∫

M

|dx|2 vg

and the corresponding Euler-Lagrange equation is given by the vanishing of the
torsion field

(1.2) τ(x) = trace∇dx.

Further, the map x is called biharmonic if it is a critical point for all variations of
the bienergy functional (see [4]),

(1.3) E2(x) =
1
2

∫

m

|τ(x)|2 vg.

An isometric immersion x : (Mm, g) → (Nn, g̃) (m ≤ n) between Riemannian
manifolds or its image is called biminimal if it is the critical point of the bienergy
functional E2 variations normal to the image x(M) ⊂ N , that is dE2

dt (xt) |t=0 = 0,
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for any smooth variations of the map xt : (−ε, ε) × M → N , x0 = x, such that
v = dxt

dt |t=0 to x(M) [4].
The Euler-Lagrange operator attached to bienergy, called the bitension field and

computed by Jiang in [8], is;

(1.4) J(τ(x)) = τ2(x) = − (
∆τ(x)− traceRN (dx, τ(x)dx)

)

where J is the Jacobi operator of x and RN is the Riemannian curvature operator
of N . Further, τ2(x) vanishes if and only if the map x is biharmonic.

In a different settings, in [5], B. Y. Chen defined biharmonic submanifolds M ⊂
En of the Euclidean space as those with harmonic mean curvature vector field, that
is, ∆H = 0, where ∆ is the Laplacian operator. If we apply the definition of the
biharmonic maps to Riemannian immersions into the Euclidean space we recover
Chen’ s notation of biharmonic submanifold.

In the instance of an isometric immersion x : M → N requiring that the normal
part of τ2(x) is zero characterized the biminimal maps that is the mean curvature
vector field H of x satisfies

(1.5) τ⊥2 (x) = (∆H − traceRN (dx, H)dx)⊥ = 0, τ(x) = H.

The isometric immersion x is called minimal if it is a critical point of the volume
function

(1.6) V =
1
2

∫

m

dvg

and the corresponding Euler-Lagrange equation is H = 0.
It is obvious that biharmonic immersions are biminimal. A generalization of

biminimal immersions are λ-biminimal immersions, they are defined as the critical
points with respect to normal variations of the fixed energy, of the constrained
bienergy functional

(1.7) E2,λ(x) =
1
2

∫

m

|τ(x)|2 dv +
1
2

∫

m

|dx|2 dv.

The Euler-Lagrange equation for λ-biminimal immersion is,

(1.8) [τ2, λ]⊥ = [τ2]
⊥ − 2λ [τ ]⊥ = 0,

where [, ]⊥ denotes the normal part of [.] (see [13]).
It is obvious that biharmonic immersions are biminimal.
In [1] K. Arslan and A. West studied with the isometric immersions of AW(k)

type. Further K. Arslan and C. Ozgür considered the immersed curves in En of
type AW(k) [2]. We show that every biminimal curves of En are of AW(1)-type.
We also show that λ-biminimal curves of En are of AW(3)-type.

2. Biharmonic Curves

Let M be a m-dimensional Riemannian manifold and γ : I ⊂ R→M parametrized
by arc length, that is |γ·| = 1. Then γ is called a Frenet curve of osculating order
r, 1 ≤ r ≤ m, if there exists orthonormal vector fields V1, V2, ..., Vr along γ such
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that

V1 =
.
γ = T

∇T V1 = κ1V2

∇T V2 = −κ1V1 + κ2V2

....

∇T Vr = −κr−1Vr−1

where κ1, κ2, ..., κr−1 are positive functions on I [12].

Remark 2.1. A geodesic is a Frenet curve of osculating order 1; a circle is a Frenet
curve of osculating order 2 with κ1 =constant ; a helix of order r; r ≥ 3 is a Frenet
curve of osculating order r with κ1, κ2, ..., κr−1 constants; a helix of order 3 is called
simply helix.

We now restrict our attention to isometric immersion γ : I ⊂ R → (M, g) from
an interval I to a Riemannian manifold. The image C = γ(I) is the trace of a curve
in M and γ is a parametrization of C by arc-length. In this case the tension field
becomes τ(γ) = ∇T T and the biharmonic equation reduces to

(2.1) τ2(γ) = −∇2
T τ(T )−R(T, τ(γ))T = 0

Note that γ is a part of a geodesic of M if and only if γ is harmonic [4].
The tension field τ(γ) of γ becomes;

(2.2) τ(γ) = k1V2 = H

where H is the mean curvature vector of γ.
The bitension field of γ becomes;

(2.3) −τ2(γ) = ∆H + traceR(T, H)T.

By the use of Frenet equations (2.3) we get
(2.4)
−τ2(γ) = (k

′′
1 − k3

1 − k1k
2
2)V2 − 3k1k

′
1T + (k

′
1k2 + k1k

′
2)V3 + k2k3V4 + k1R(T, V2)T.

From the biharmonic equation if f is harmonic then it is biharmonic, thus
geodesics are a subclass of biharmonic curves.

The converse in not true and this makes the class of biharmonic curves richer
than that of geodesics.

It is then natural to ask what geometric properties characterize biharmonic
curves.

Moreover, λ−biminimal curves in a Riemannian manifold M are characterized
by Monteldo in [4].

Proposition 2.1. [4] Let γ : I ⊂ R → (Mm, g) (m ≥ 2) be an isometric curve
from an open interval of R into a Riemannian manifold (Mm, g). Then γ is a
λ−biminimal curve if and only if there exists a real number λ such that

(k
′′
1 − k3

1 − k1k
2
2) + k1g(V1, V2)T, V2)− λk1 = 0

(k2
1k2)

′
+ k2

1g(R(T, V2)T, V3) = 0
k1k3 + k1g(R(T, V2)T, V4) = 0(2.5)

k1g(R(T, V2)T, Vj) = 0

where, j = 5, ..., m and R is the curvature vector of (Mm, g).
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Remark 2.2. Asking for λ−biminimal curve γ to be biharmonic requires the supple-
mentary condition τ2(x)> = 0, equivalent to k1k

′
1 = 0, that is; either k1 is constant

or γ is a geodesic (k1 = 0) of M , where ( )> denotes the tangential part.

Corollary 2.1. [4] An isometric curve γ on a surface M of Gaussian curvature G
is biminimal if and only if its signed curvature k1 satisfies the ordinary differential
equation:

(2.6) k
′′
1 − k3

1 + k1G− λk1 = 0

for some λ ∈ R.

Corollary 2.2. [4] An isometric curve γ on a Riemannian three manifold of con-
stant sectional curvature c is λ−biminimal if and only if its curvatures k1 and k2

fulfill the system:

(2.7) k
′′
1 − k3

1 − k1k
2
2 + k1c− λk1 = 0, λ ∈ R,

k2
1k2 = constant

where c = g(R(T, V2)T, V2) and g(R(T, V2)T, V3) = 0.

From now on we consider the isometric immersion γ : I ⊂ R → En given with
arclength parameter. The tension field τ(γ) and bitension field τ2(γ) of γ become

τ(γ) = k1V2 = H,

−τ2(γ) = ∆H

= ∆DH − ÃH + (∆H)>(2.8)

= (∆H)⊥ + (∆H)>

respectively, where Ã is the Simon’s operator defined by

ÃH =< ÃH T, T > H =< H, H > H = k3
1V2,

and

∆DH = (k
′′
1 − k1k

2
2)V2 + (k

′
1k2 + k1k

′
2)V3 + k1k3V4

(2.9) (∆H)> = −3k1k
′
1T.

We consider the following cases;
a): Curves satisfying ∆DH = 0
In [15] Ü. Lümiste classified the curves in En satisfying the condition ∇γ′∇γ′h =

0,where h is the second fundamental form of the immersed curve. Further in [3] M.
Barros and O. J. Garay proved the same result.

Theorem 2.1. ( [15],[3]) A curve γ(I) with ∇2

γ′h = 0 (or ∆DH = 0) in En is
either

i) E1, S1(r) in E2,
ii) cornu spiral (clothoid) C1(a) (i.e. a plane curve whose curvature k1 is pro-

portional to the arclength: k1 = as) in E2, or

iii) spherical cornu spiral C1
s(b, c) in S2(

√
b
c ) with the Frenet curvatures

k1(s) =

√
b(s− a)2 +

c2

b
, k2(s) =

bc

b2(s− a)2 + c2
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such that
1

(k1)2
+

(k·1)
2

k2
1k

4
2

=
b

c
.

b): Curves satisfying ∆DH + λH = 0
In [10] B. Kılıç classified the immersed curves in En satisfying the condition

∆DH + λH = 0, λ ∈ R. isometric immersions satisfying this condition is called
harmonic 1-type.

Theorem 2.2. [10] Let γ : I ⊂ R→ En be an immersed curve given with arclength
parameter; then γ is harmonic 1-type if and only if either;

i) γ is a straight line, or
ii)γ is a plane curve with k1(s) = b1 cos(

√
cs)+ b2 sin(

√
cs) (or k1(s) = b1e

√
cs +

b2e
−√cs)
iii) γ is a space curve with

k1(s) = ±
√

c

(4c1)
1
4

√
e4s−2c2 + 1

e2s−c2
, k2(s) = 2

√
e2s−c2

e4s−2c2 + 1
.

c): Curves satisfying (∆H)⊥ = 0
In [1] K. Arslan and A. West studied with the isometric immersions of AW(k)

type. Further K. Arslan and C. Ozgür considered the immersed curves in En of
type AW(k) [2].

Definition 2.1. Frenet curves γ are
i) of type AW(1) if they satisfy γıv(s)⊥ = 0
ii) of type AW(2) if γıv(s)⊥ and γ

′′′
(s)⊥ are linearly dependent,

iii) of type AW(3) if γıv(s)⊥ and γ
′′
(s)⊥ are linearly dependent, where γıv(s)⊥,

γ
′′′

(s)⊥ and γ
′′
(s)⊥ the normal parts of fourth, third, and second derivatives of γ.

The Laplacian ∆ of an immersed unit speed curve becomes

∆ = − d2

ds2
.

So we get

∆H = −∆2γ = −d4γ

ds4
.

Therefore the condition γıv(s)⊥ = 0 is equivalent to the biminimality condition
(∆H)⊥ = 0.

Theorem 2.3. ([2],[14]) Let γ : I ⊂ R → En be an immersed curve given with
arclength parameter; then γ is of AW(1) type if and only if either;

i) γ is a straight line, or
ii)γ is a logarithmic spiral with k1(s) =

√
2

s , or
iii) γ is a space curve with

k··1 (s) = k3
1(s) +

1
k3
1(s)

, k2(s) =
c

k1(s)
.

Remark 2.3. The parametric representation of a planar curve can be obtained from
the theorem of Gray (see [7], p 111):

(2.10) γ(s) =
(∫

cos θ(s)ds + c,

∫
sin θ(s)ds + d

)
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where θ(s) =
∫

k1(s)ds+θ0, c, d, θ0 are constants of integrations. So, the parametric
representation of logarithmic spiral given in the previous theorem becomes;
(2.11)

γ(s) =
s

3

(
cos(

√
2 log s) +

√
2 sin(

√
2 log s),−

√
2 cos(

√
2 log s) + sin(

√
2 log s)

)

(see [14]).

d) Curves satisfying (∆H)⊥= λH
By Definition 2.1 the immersed curves of AW(3) type satisfies γıv(s)⊥ = λγ

′′
(s)⊥.

Therefore, by the use of (2.4)and (2.2) we can say that every immersed curves in
En of AW(3) type are λ−biminimal. For more details of curves AW(3) type see [9],
[2] and [16].

e) Curves satisfying (∆H)>= 0
In [17] H. Pottman and M. Hofer characterized the counterpart on surfaces, C2

cubic splines.
They give an example; whereas the minimizers of the L2 norm of the second

derivative have cubic segments (vanishing fourth derivative), the corresponding
splines on surfaces have segments with vanishing tangential component of the fourth
derivative. The authors call such segment ”tangentially cubic”. In the same paper it
has been shown that tangentially cubic curves are important for the interpolating
cubic spline curves on surfaces. In view of the importance of tangentially cubic
curves some explicit representations of such curves on special surfaces, namely
certain cylinder surfaces.

Definition 2.2. Let γ be a regular curve in En. If the fourth derivative γ′v(s) of
γ is orthogonal to γ′(s), then γ is called a tangentially cubic curve (T.C-curve) of
En.

Hence the condition for a tangentially cubic parametrization becomes

(2.12) 0 =< γ′v(s), γ′(s) >= −3k1(s)k′1(s).

So, by (2.12) we can say that the arclength parametrization of a curve γ in En

is tangentially cubic if and only if the curve possesses constant curvature k1 [17].
In the plane we get only circles and straight lines. However, in En this family is
relatively rich, since the torsion τ = k2 can be arbitrary. Parametric representations
of special space curves with constant curvature k1 have been given by E. Salkowski
[18], whose formulae for a 6= ± 1

2 , b ∈ R\ {0} :

x(s) =
−1√
1 + b2

(
1− a

4(1 + 2a)
sin(1 + 2a)s +

1 + a

4(1− 2a)
sin(1− 2a)s +

1
2

sin s

)
,

y(s) =
1√

1 + b2

(
1− a

4(1 + 2a)
cos(1 + 2a)s +

1 + a

4(1− 2a)
cos(1− 2a)s +

1
2

cos s

)
,

z(s) =
1

4b
√

1 + b2
cos 2as.

For more details on T.C-curves see also [11].

Remark 2.4. In [8] Jiang constructed an ad-hoc (0, 2) tensor S2 such that divS2 =
< τ2(γ), γ′(s) > . So T.C-curves are the characterization of curves with vanishing
divS2.
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