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Abstract. We show that every in a certain sense non-degenerated Lagrangian
immersion in a para-Kähler manifold naturally carries a dual pair of Codazzi
structures. On the other hand, every manifold carrying a dual pair of Codazzi
structures can be represented as a non-degenerated Lagrangian submanifold of

a para-Kähler manifold. We derive this equivalence from a similar, but more
general one, relating non-degenerated half-dimensional immersions in para-
Kähler manifolds to dual pairs of what we call pre-Codazzi structures. We
specialize this equivalence in two cases. Firstly, we show that every projec-

tively flat manifold carries a natural pre-Codazzi structure, and can be, at
least locally, represented as a half-dimensional immersion in a special para-
Kähler manifold, which we call the cross-ratio manifold. Secondly, we show
that manifolds carrying pre-Codazzi structures with flat connections are rep-

resented by half-dimensional immersions in the flat para-Kähler space. Our
results have applications in affine differential geometry. Namely, centro-affine
geometry can be seen as the geometry of Lagrangian immersions in the cross-

ratio manifold, while the geometry of graph immersions is equivalent to the
geometry of Lagrangian immersions in the flat para-Kähler space. We also
obtain a natural duality relation between projectively flat connections on a
manifold, extending the duality induced by the conormal map of centro-affine

immersions to connections which are not equiaffine.

1. Introduction and overview

One of the main goals of this contribution is to uncover a close relation that exists
between Lagrangian submanifolds of para-Kähler manifolds and Codazzi manifolds,
i.e., manifolds carrying a Codazzi structure. Codazzi manifolds are sometimes also
called statistical manifolds. We will show that every Lagrangian submanifold of a
para-Kähler manifold, subject to a non-degeneracy condition, can be naturally seen
as a Codazzi manifold. On the other hand, every Codazzi manifold possesses a cor-
responding representation as a Lagrangian submanifold of a para-Kähler manifold.
Codazzi structures also naturally appear on certain affine hypersurface immersions
in affine differential geometry. Indeed, we will show that certain classes of such
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hypersurface immersions are linked via their Codazzi structures to the Lagrangian
immersions in specific para-Kähler manifolds. In order to give an overview of the
technical details in this paper, we continue with a short introduction into para-
Kähler manifolds, affine differential geometry and Codazzi structures.

Para-Kähler manifolds. A symplectic manifold is a differentiable manifold
carrying a symplectic form ω, i.e., a closed, non-degenerate, skew-symmetric 2-form.
A Fedosov manifold is a symplectic manifold with a torsion-free affine connection ∇
such that the symplectic form ω is parallel with respect to this connection, ∇ω = 0.
A para-complex manifold M is a 2n-dimensional manifold with a smooth tensor
field J of type (1, 1) such that J is an involution of the tangent space TzM at each
z ∈ M, J2 = 1, and such that the eigenspaces corresponding to the eigenvalues ±1
of J form two involutive (completely integrable) n-dimensional distributions. We
will denote these distributions by DP, DX, respectively. The field J is called the
para-complex structure of the manifold. A para-Kähler manifold is a para-complex
Fedosov manifold such that the eigenspace distributions DX, DP are isotropic with
respect to the symplectic form ω, and whose affine connection ∇ is the Levi-Civita
connection of the pseudo-Riemannian metric g defined by

(1.1) g[X,Y ] = ω[JX, Y ], ω[X,Y ] = g[JX, Y ]

for every two vector fields X,Y on M. Here and in the rest of the paper we denote
by brackets the value of covariant tensors on vectors or vector fields. It is not hard
to see that g is necessarily of neutral signature and non-degenerate. The integral
submanifolds of the distributions DX, DP locally form two Lagrangian foliations,
which is why a para-Kähler structure is sometimes called a bi-Lagrangian structure.

The simplest para-Kähler manifold is the flat para-Kähler space E2n
n , defined as

the space R2n endowed with the structures

(1.2) g =
1

2

(
0 In
In 0

)
, ω =

1

2

(
0 In

−In 0

)
, J =

(
In 0
0 −In

)
,

where In is the n× n identity matrix.
Para-Kähler manifolds differ from Kähler manifolds by the property that the

automorphism J of the tangent bundle is an anti-isometry, g[JX, JY ] = −g[X,Y ],
while in Kähler manifolds it is an isometry, and that it is an involution, J2 = 1,
while in Kähler manifolds it squares to −1. The class of para-Kähler manifolds has
been explicitly introduced by Libermann in [14]. Recent expositions of para-Kähler
manifolds can be found in [10] or [11]. A compact introduction can also be found
in [1, Section 5].

Affine differential geometry. Consider an immersion f : M → M of an
n-dimensional differentiable manifold M into an (n+ k)-dimensional differentiable
manifold M carrying a torsion-free affine connection ∇̄. Suppose further that for
every y ∈M , we are given a k-dimensional linear subspaceDy ⊂ Tf(y)M, depending
smoothly on y, such that Tf(y)M = Dy⊕f∗[TyM ], where f∗ is the differential of the
immersion f . In other words, the distribution D is required to be transversal to the
immersion. Let now X,Y be vector fields onM and let X̃, Ỹ be (locally) extensions
of their images under the differential f∗ to a neighbourhood of the immersion f in
M. On the immersion we can then decompose the covariant derivative

(1.3) ∇̄X̃ Ỹ = f∗(∇XY ) + α[X,Y ]
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into a component f∗(∇XY ) which is tangent to the immersion and a component

α[X,Y ] which lies in the distribution D. One can show that ∇̄X̃ Ỹ depends only
on the original vector fields X,Y , the preimage under the differential f∗ of the
tangential component defines a torsion-free affine connection ∇ on M , the induced
connection, while α is a D-valued symmetric bilinear form on M , the affine funda-
mental form [17, p.28]. If we imagineM to be equipped a priori with the connection
∇, we say that f is an affine immersion with transversal distribution D. In the
case when k = 1, the distribution D will amount to a transversal vector field ξ on
the immersion, and α can be written as

α[X,Y ] = h[X,Y ]ξ,

where h is now a symmetric covariant tensor field of second order on M , the affine
metric. In this case we speak of an affine hypersurface immersion.

In affine differential geometry, special attention is dedicated to affine hypersur-
face immersions into the flat space Rn+1. We will consider two special classes of
such immersions, the centro-affine immersions and the graph immersions. In the
first case, the transversal vector field is given by the negative position vector of
the immersion, ξ(y) = −f(y) [17, Example 2.2, p.37], while in the second case,
the transversal vector field equals a constant vector [17, Example 2.4, p.39]. The
affine connection induced by a centro-affine hypersurface immersion is projectively
flat (a torsion-free affine connection ∇ on a manifold M is said to be projectively
flat if there exists a flat connection ∇′ on M such that the geodesics of ∇ can be
obtained from the geodesics of ∇′ by a reparametrization [17, Def. 3.3, p.17 and
Proposition A1.1, p.236]) with symmetric Ricci tensor equal to n−1 times the affine
metric [17, Proposition 3.1, p.14 and p.38], while the affine connection induced by
graph immersions is flat [17, p.40]. The converse also holds, at least locally [17,
Proposition 2.7, p.38 and Proposition 2.8, p.40].

Let the ambient space Rn+1 of an affine hypersurface immersion f :M → Rn+1

with transversal vector field ξ be equipped with an invariant volume element θ̃.
Then we can define an induced volume element θ on M by

θ(X1, . . . , Xn) = θ̃(f∗(X1), . . . , f∗(Xn), ξ).

If θ is ∇-parallel, ∇θ = 0, then ξ is said to be equiaffine. The centro-affine im-
mersions and the graph immersions are special cases of affine hypersurface immer-
sions with equiaffine transversal vector field. For affine hypersurface immersions
f :M → Rn+1 with equiaffine transversal vector field the induced affine connection
∇ and the affine metric h on M satisfy the Codazzi equation [17, Theorem 2.1,
p.32]. The Codazzi equation for an affine connection ∇ and a symmetric covariant
second order tensor P is given by

(1.4) (∇XP )[Y, Z] = (∇ZP )[Y,X]

for every triple (X,Y, Z) of vector fields. It follows that the covariant derivative
∇h of the affine metric with respect to the induced affine connection is a totally
symmetric 3-form.

Codazzi structures. A Codazzi structure on a differentiable manifold M is a
pair (∇, g) of a torsion-free affine connection ∇ and a pseudo-Riemmannian metric
g such that the covariant derivative ∇g is totally symmetric. If ∇ is flat, then (∇, g)
is called a Hessian structure, and the manifold M a Hessian manifold. Clearly a
pair (∇, g) is a Codazzi structure if and only if it satisfies the Codazzi equation (1.4)
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[19, p.33], [17, p.21]. The totally symmetric tensor ∇g is called the cubic form of
the Codazzi structure [17, p.21]. As explained in the previous paragraph, affine
hypersurface immersions f : M → Rn+1 with equiaffine transversal vector field
carry a natural Codazzi structure (∇, h), composed of the induced affine connection
and the affine metric.

If ∇ is an affine connection and P is non-degenerate symmetric covariant second
order tensor, then there exists a unique affine connection ∇̃ such that [17, p.20]

(1.5) (XP )[Y, Z] = P [∇XY,Z] + P [Y, ∇̃XZ]

for all vector fields X,Y, Z onM . Here XP denotes the derivative of P in the direc-
tion of X. The connection ∇̃ is called the conjugate connection (or dual connection)
of ∇ relative to P . The conjugate connection has a simple interpretation. Namely,
if X(t), Ỹ (t) are vector fields along a curve γ(t) on M , such that X is ∇-parallel,

and Ỹ is ∇̃-parallel, then P [X, Ỹ ] is constant along the curve [17, Proposition 4.5,
p.21].

Let now (∇, g) be a Codazzi structure on M . Then the connection ∇ is torsion-

free. The Codazzi equation (1.4) guarantees that the conjugate connection ∇̃ of

∇ relative to g is also torsion-free [17, Cor.4.3, p.21]. Moreover, (∇̃, g) is also a

Codazzi structure, and 1
2 (∇+∇̃) is the Levi-Civita connection ∇̂ for g [17, Cor.4.4,

p.21], [19, Lemma 2.3]. The Codazzi structure (∇̃, g) is called the dual Codazzi
structure to (∇, g).

As mentioned in the exposition of affine differential geometry, Codazzi structures
arise naturally on affine hypersurface immersions with equiaffine transversal vector
field into the flat space Rn+1 and have first been considered in this context [17, p.22].
For an introduction to Codazzi structures, see [19, Section 2.5] or [17, Section I.4].
Independently, Codazzi manifolds have been used in statistics, where they are called
statistical manifolds. An overwiew over this field of application is given in [2].

The subject of this contribution are n-dimensional immersions in 2n-dimensional
para-Kähler manifolds. For each such immersion f : M → M, the pseudo-
Riemannian metric g and the symplectic form ω of the ambient para-Kähler mani-
fold M define on M a pseudo-Riemannian metric ĝ and a closed skew-symmetric
2-form ω̂, respectively. If ω̂ vanishes, then f is a Lagrangian immersion. The study
of Lagrangian immersions in para-Kähler manifolds has been initiated by Chen
in [5] and pursued in [4]. It is shown in [5, Lemma 3.2, (iii)] that a Lagrangian
immersion f :M → M in a para-Kähler manifold carries a natural completely sym-
metric 3-form σ induced by the second fundamental form IIf of M . Note that for
an isometric immersion f : M → M of pseudo-Riemannian manifolds, the second
fundamental form IIf is only well-defined if the metric ĝ on M is non-degenerate.
It was omitted in [5, Lemma 3.2] to impose this non-degeneracy condition, and this
Lemma is hence formally not correct as stated.

In Subsection 2.3 we will show that the non-degeneracy condition on ĝ is equiva-
lent to the condition that the distributions DX, DP are transversal to the La-
grangian immersion f :M → M (Lemma 2.6). For Lagrangian immersions satisfy-
ing this condition, the transversal distributions DX, DP induce affine connections
∇X,∇P onM . One of the main results in this contribution is that the pairs (∇X, ĝ)
and (∇P, ĝ) are dual Codazzi structures on M (Theorem 2.2). Thus for every non-
degenerate Lagrangian immersion f : M → M in a para-Kähler manifold, M is
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naturally a Codazzi manifold. Moreover, we will identify the totally symmetric 3-
form defined in [5, Lemma 3.2, (iii)], up to the multiplicative factor 2, as the cubic
form of the Codazzi structure (∇X, ĝ) (Theorem 2.3). Thus there is a close relation
between f , considered as an affine immersion with transversal distribution DX or
DP, and f , considered as an isometric immersion of pseudo-Riemannian manifolds.

One can then ask whether every n-dimensional Codazzi manifold M with non-
degenerate pseudo-Riemannian metric can be realized as a Lagrangian immersion
of a para-Kähler manifold. We will answer this question in the affirmative, con-
structing a para-Kähler manifold M and a Lagrangian immersion f : M → M
such that (∇X, ĝ), defined as in the previous paragraph, coincides with the given
Codazzi structure on M (Corollary 3.1).

Specific choices of the para-Kähler manifold M will lead to the Codazzi struc-
tures (∇X, ĝ) on the Lagrangian immersions in M having specific properties. We
will consider two such choices, the flat para-Kähler space E2n

n and a special para-
Kähler manifold which we call the cross-ratio manifold. The cross-ratio manifold is
isomorphic to a member of the one-parametric family of reduced paracomplex projec-
tive spaces, which were introduced and studied in [12] (Theorem 4.1). We will show
that the Codazzi structures on the Lagrangian immersions of the cross-ratio mani-
fold have a projectively flat equiaffine connection with Ricci tensor equal to (n− 1)
times the metric (Corollary 4.1), and every such Codazzi structure can be locally
obtained in this way (Corollary 4.2). The Codazzi structures on the Lagrangian
immersions of the flat para-Kähler space are actually Hessian structures (Corollary
5.1), and every Hessian structure can locally be obtained in this way (Corollary
5.2). Note that the Codazzi structures having these properties are exactly the Co-
dazzi structures generated by centro-affine hypersurface immersions and by graph
immersions into Rn+1, respectively. This suggests an intimate relation between the
geometry of Lagrangian immersions in the flat para-Kähler space E2n

n and that of
graph immersions into Rn+1, and between the geometry of Lagrangian immersions
in the cross-ratio manifold and centro-affine geometry. Indeed, the links between
these concepts go far beyond the scope of this contribution, and will be the subject
of a companion paper.

Links between affine differential geometry and Lagrangian submanifolds of para-
Kähler manifolds have been found, albeit in a very different framework, in [9], [7].
Connections between affine differential geometry and Kähler manifolds have also
appeared in the literature [15]. Let σ be a symmetric 3-form and ĝ a metric on some
manifold M . Conditions on σ, ĝ have been given in [4, Section 3] such that σ, ĝ can
be realized as the corresponding structures on a Lagrangian immersion f : M →
E2n
n . A proof can be found in [6]. Similar conditions are given if E2n

n is replaced
by another para-Kähler space form (a para-Kähler space form is a homogeneous
para-Kähler manifold with constant para-sectional curvature, see, e.g., [1]). Note
that the cross-ratio manifold, being isomorphic to a reduced paracomplex projective
space, is also a para-Kähler space form.

Our results described above will actually be obtained as special cases of more
general analogs. The generalization consists in dropping the condition that the
considered n-dimensional immersions f : M → M in 2n-dimensional para-Kähler
manifolds be Lagrangian. We will show that for such general half-dimensional im-
mersions the pair (∇X, Q̂), where Q̂ = ĝ + ω̂, still satisfies the Codazzi equation

(1.4) (Theorem 2.1). However, the pair (∇X, Q̂) is no more a Codazzi structure,
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because Q̂ is no more symmetric. We will call such a pair a pre-Codazzi structure
(one may call it also asymmetric Codazzi structure), and a manifold M carrying a
pre-Codazzi structure a pre-Codazzi manifold (Definition 2.1). Similarly, we may
call a pre-Codazzi structure with flat connection a pre-Hessian structure (Definition
5.1). Dual pre-Codazzi structures can be defined by an analog of equation (1.5).
The relation between non-degenerate half-dimensional immersions in para-Kähler
manifolds and pre-Codazzi manifolds will turn out to be similar to the relation
described above between Lagrangian immersions in para-Kähler manifolds and Co-
dazzi manifolds (Theorem 2.1, Theorem 3.1).

This generalization extends also to the results concerning the specific para-Kähler
manifolds E2n

n and the cross-ratio manifold. Namely, every non-degenerate half-

dimensional immersion in E2n
n carries a natural pre-Hessian structure (∇X, Q̂) de-

fined as in the previous paragraph (Proposition 5.1), and every pre-Hessian struc-
ture can locally be represented in this way (Proposition 5.2). From the duality of
the pre-Codazzi structures induced by the distributionsDX, DP it then follows that
the dual of a pre-Hessian structure must also be a pre-Hessian structure (Theorem
5.1). This defines a duality relation on pre-Hessian structures (Definition 5.2).

On every non-degenerate half-dimensional immersion in the cross-ratio mani-
fold, the pre-Codazzi structure (∇X, Q̂) is such that the affine connection ∇X is

projectively flat with Ricci tensor equal to Rij = nQ̂ij − Q̂ji (Theorem 4.2), and
every projectively flat manifold can be locally obtained in this way (Theorem 4.3).
This relation defines a natural pre-Codazzi structure on projectively flat manifolds
(Definition 4.3). The duality relation between pre-Codazzi structures on a mani-
fold then induces a duality relation between projectively flat connections on this
manifold (Theorem 4.4, Definition 4.4).

Note that there is a conceptual difference between the cases described in the
previous two paragraphs. A projectively flat connection determines the second
member of its natural pre-Codazzi structure by its Ricci tensor, and thus contains
all the information itself. A flat connection, on the contrary, only determines the
local isomorphism of the manifold with the flat affine space, and the information
content is in the second member of the pre-Hessian structure.

Throughout the paper, the structures we consider are supposed to be smooth.
This assumption is introduced to facilitate the exposition and can be appropriately
relaxed.

1.1. Notation. In Sections 2 and 3 M will denote a general 2n-dimensional para-
Kähler manifold with pseudo-Riemannian metric g, symplectic form ω and para-
complex structure J . The eigendistributions of J with eigenvalues +1,−1 will be
denoted by DP, DX, respectively. We study immersions f : M → M of an n-
dimensional manifold M into M. The immersion f induces a pseudo-Riemannian
metric ĝ and a closed skew-symmetric 2-form ω̂ on M . We also introduce the
second order covariant tensor fields Q = g + ω and Q̂ = ĝ + ω̂ on M and on M ,
respectively. If one or both of the distributions DX, DP are transversal to the
immersion f , then f can be viewed as an affine immersion with the corresponding
transversal distribution. We denote the corresponding induced affine connections by
∇X,∇P, respectively, and the corresponding affine fundamental forms by αP, αX.
In Sections 4 and 5 we specialize M to the cross-ratio manifold and the flat para-
Kähler space, respectively.
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2. Immersions in para-Kähler manifolds

In this section we study half-dimensional immersions f : M → M into para-
Kähler manifolds. In Subsection 2.1 we introduce coordinate charts and the concept
of the para-Kähler potential on M. In Subsection 2.2 we define and consider pre-
Codazzi structures. In Subsection 2.3 we show that if a certain non-degeneracy
condition is satisfied, then f defines a pre-Codazzi structure on M . This is the
main result of this section. Finally, in Subsection 2.4 we specialize the results of
Subsection 2.3 to the case of Lagrangian immersions.

2.1. The para-Kähler potential. We will need an explicit description of the
para-Kähler structure on M. The para-complex structure J equips M with a local
product structure. Namely, for every ẑ ∈ M, there exists a neighbourhood U ⊂ M
of ẑ and a diffeomorphism φ : U → UX ×UP onto the product of simply connected
open sets UX, UP ⊂ Rn, with the following property. Let φX : U → UX, φP : U →
UP be the components of φ, then the distributions DX, DP are the kernels of the
differentials φX

∗ , φ
P
∗ , respectively. Introducing coordinates x1, . . . , xn on UX and

pn+1, . . . , p2n on UP, we obtain a coordinate chart on the set U . The coordinates
of z = φ−1(x, p) ∈ U are then given by (z1, . . . , z2n) = (x1, . . . , xn, pn+1, . . . , p2n).
We will call such charts adapted to the para-complex structure. In any such chart,
the matrix of the para-complex structure J is given by

(2.1) J =

(
In 0
0 −In

)
.

The metric g and the symplectic form ω of M can be recovered from their sum
Q = g+ω as the symmetric and skew-symmetric part of Q, respectively. Note that
the covariant second order tensor Q encodes the para-complex structure J as well,
since the distributions DP, DX are the right and left kernel of Q, respectively, as
will be shown in the following lemma.

Lemma 2.1. Let M be a para-Kähler manifold with metric g, symplectic form ω,
and para-complex structure J . Put further Q = g+ω. Then for every triple of vector
fields X,Y, Z on M such that JX = −X and JY = Y we have Q[X,Z] = Q[Z, Y ] =
0. On the other hand, if for some vector fields X,Y we have Q[X,Z] = Q[Z, Y ] = 0
for all vector fields Z, then JX = −X, JY = Y .

Proof. Assume the notations of the lemma. For every X,Y, Z we have by (1.1) that

Q[X,Z] = g[X,Z] + ω[X,Z] = g[X,Z] + g[JX,Z] = g[X + JX,Z],

Q[Z, Y ] = g[Y, Z]− ω[Y, Z] = g[Y,Z]− g[JY, Z] = g[Y − JY, Z].

If now JX = −X and JY = Y , then X + JX = Y − JY = 0 and by the above
we obtain Q[X,Z] = Q[Z, Y ] = 0. On the other hand, let X,Y be such that
Q[X,Z] = Q[Z, Y ] = 0 for all Z. Then g[X + JX,Z] = g[Y − JY, Z] = 0 for all Z,
and hence X + JX = Y − JY = 0, because g is non-degenerate. �

In an adapted coordinate chart, the matrices of the tensors Q, g, ω can hence be
written as

(2.2) Q =

(
0 Q
0 0

)
, g =

1

2

(
0 Q
QT 0

)
, ω =

1

2

(
0 Q

−QT 0

)
,

where Q is an invertible n× n matrix. The condition ∇ω = 0 leads to restrictions
on the matrix Q as a function of (x, p) ∈ UX × UP. We have the following result.



92 ROLAND HILDEBRAND

Proposition 2.1. [8, Section 2.2, Theorem 2 and its proof] Let M be a para-
Kähler manifold and let φ : U → UX × UP be an adapted chart on M, such that
UX, UP ⊂ Rn are simply connected, with coordinates x, p, respectively, the para-
complex structure on U is given by (2.1), and the para-Kähler structure on U is
given by (2.2). Then there exists a real-valued function q on U such that

(2.3) Q(z) =
∂2q

∂x∂p
.

The function q is unique up to transformations of the form

(2.4) q(z) 7→ q(z) + h(x) + h′(p)

for arbitrary smooth functions h, h′ on UX and UP, respectively.
Conversely, let M be a 2n-dimensional manifold equipped with a covariant second

order tensor field Q that can locally be expressed by (2.3), (2.2) for some smooth
scalar function q such that the matrix Q is everywhere invertible. Then (2.2), (2.1)
define a para-Kähler structure on M.

The scalar field q is called the para-Kähler potential [8, Section 2.2].
We introduce the following index notation. Indices running from 1 to n will be

denoted by lowercase Latin letters, indices running from n+ 1 to 2n by uppercase
Latin letters, and indices running from 1 to 2n will be denoted by lower-case Greek
letters. The use of the letters will be consistent, e.g., the indices denoted by α
will consist of two groups of indices, denoted by a and A, respectively. A vector

field X can then be written in an adapted coordinate chart as Xα =

(
Xa

XA

)
.

Likewise, we have zα =

(
za

zA

)
=

(
xa

pA

)
for the coordinates on M. The Einstein

summation convention will be applied to all three kinds of indices. For instance,
the contraction of a 1-form w with a vector field X on M is given by w[X] =
wαX

α = waX
a + wAX

A. The expression waX
A is to be understood as the sum∑n

k=1 wkX
k+n. For convenience, we will index the rows of the matrix Q from 1

to n and the columns from n + 1 to 2n, such that QaB = QaB = ∂2q
∂xa∂pB . Let

QAb denote the coefficients of the inverse matrix Q−1, such that QaBQ
Bc = δca and

QAbQbC = δAC , δ denoting the Kronecker symbol.
The Christoffel symbols of the Levi-Civita connection ∇ of g are given by [1, eq.

(6)]
(2.5)

Γc
ab = QDc ∂QaD

∂zb
= QDc ∂3q

∂xa∂xb∂pD
, ΓC

AB = QCd ∂QdA

∂zB
= QCd ∂3q

∂pA∂pB∂xd
,

while the other components of the Christoffel symbol vanish [1, Lemma 5.3].

2.2. Pre-Codazzi structures. In this subsection we define pre-Codazzi structures
and investigate some of their basic properties.

Definition 2.1. A pre-Codazzi structure on a manifold M is a pair (∇, P ) of a
torsion-free affine connection ∇ and a covariant second order tensor field P such
that for every three vector fields X,Y, Z on M the Codazzi equation (1.4) holds.
A manifold M equipped with a pre-Codazzi structure will be called a pre-Codazzi
manifold.
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It is a well-known fact in the theory of Fedosov manifolds that a skew-symmetric
2-form ω which is parallel with respect to some torsion-free affine connection ∇
must be closed [14, §19]. The following lemma can be viewed as a generalization of
this result.

Lemma 2.2. Let M be a pre-Codazzi manifold with pre-Codazzi structure (∇, P ).
Then the skew-symmetric part ω of P is closed, dω = 0.

Proof. Let the Christoffel symbols of ∇ be given by Γk
ij in some coordinate chart

on M with coordinates xi. We then have

∇kPij =
∂Pij

∂xk
− PljΓ

l
ik − PilΓ

l
jk.

By the Codazzi equation ∇kPij = ∇jPik and the symmetry of the Christoffel
symbols in the lower indices we then get

(2.6)
∂Pij

∂xk
− ∂Pik

∂xj
= PljΓ

l
ik − PlkΓ

l
ij .

Taking the cyclic sum on both sides and noting that ωij = 1
2 (Pij − Pji), we get

again by the symmetry of the Christoffel symbols

2

(
∂ωij

∂xk
+
∂ωjk

∂xi
+
∂ωki

∂xj

)
= PljΓ

l
ik−PlkΓ

l
ij+PliΓ

l
kj−PliΓ

l
jk+PlkΓ

l
ji−PljΓ

l
ki = 0.

But this is exactly the condition of closedness of the form ω. �

The inverse assertion, namely that for every closed skew-symmetric 2-form ω
there exists a torsion-free affine connection ∇ such that ∇ω = 0 [14, §19], has the
following weaker pendant.

Proposition 2.2. Let P be a non-degenerate covariant second order tensor field
on a manifold M , such that the skew-symmetric part of P is closed. Then there
exists a torsion-free affine connection ∇ on M such that (∇, P ) is a pre-Codazzi
structure.

Proof. Assume the conditions of the proposition. Denote the skew-symmetric part
of P by ω. Let U ⊂ M be an open subset carrying a coordinate chart with
coordinates xi. In this chart, denote the left-hand side of (2.6) by Lijk. By definition
the object Lijk is skew-symmetric in the indices j, k. Further, we have

Lijk + Ljki + Lkij = 2

(
∂ωij

∂xk
+
∂ωjk

∂xi
+
∂ωki

∂xj

)
= 0

for the cyclic sum of Lijk, because ω is closed.
Let T be the linear space of covariant 3rd order tensors Tijk over Rn. Let L ⊂ T

be the linear subspace of tensors which are skew-symmetric in the last two indices
and whose cyclic sum is zero. Let S ⊂ T be the subspace of tensors which are
symmetric in the first two indices, and consider the endomorphism A : Tijk 7→
T ′
ijk = −Tijk + Tikj of T . It is not hard to check that the image of S under A

is exactly the subspace L, while the intersection of kerA with S consists of the
subspace of totally symmetric tensors.

In view of the above, there exists an object Tijk in S such that Lijk = −Tijk +
Tikj , and this object is determined by Lijk up to a totally symmetric additive term.
Since Lijk is a smooth function of x, we can choose Tijk to be a smooth function
of x as well. Now since P is non-degenerate, there exists a unique Γk

ij such that
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Tijk = PlkΓ
l
ij , and this Γk

ij also smoothly varies with x and is symmetric in the
lower indices.

Then Γk
ij satisfies (2.6) and can be considered as the Christoffel symbol of a

torsion-free affine connection ∇U on U satisfying the Codazzi equation ∇U
k Pij =

∇U
j Pik. As in [13, Remark 1.4], the proof is completed by gluing the local connec-

tions ∇U together to a global connection ∇ using a partition of unity. �

The condition that P is non-degenerate is essential. If, for instance, at some
point x ∈ U we have P = 0, but Lijk ̸= 0, then we are not able to find a torsion-
free connection ∇U satisfying the Codazzi equation at this point.

Definition 2.2. Let ∇ be an affine connection and P a non-degenerate covariant
second order tensor field on M . We call the unique affine connection ∇̃ on M
such that equation (1.5) is satisfied for all vector fields X,Y, Z on M the conjugate
connection of ∇ relative to P .

This definition simply extends the notion of conjugate connection to non-symmet-
ric reference tensors P . Let us show that the conjugate connection is indeed well-
defined. In index notation equation (1.5) can be written as

(2.7)
∂Pjk

∂xi
= PlkΓ

l
ij + PjlΓ̃

l
ik,

where Γk
ij , Γ̃

k
ij are the Christoffel symbols of ∇, ∇̃, respectively. Since P is non-

degenerate, this equation can be resolved for Γ̃l
ik, which proves that the connection

∇̃ exists and is unique.

Proposition 2.3. Let ∇ be a torsion-free affine connection and P a non-degenerate
second order tensor field on M , and let ∇̃ be the conjugate connection of ∇ relative
to P . Then ∇̃ is torsion-free if and only if (∇, P ) is a pre-Codazzi structure. In this

case (∇̃, PT ) is also a pre-Codazzi structure, where PT is defined by PT [X,Y ] =
P [Y,X].

Proof. Equation (2.7) can equivalently be written as ∇iPjk = Pjl(Γ̃
l
ik − Γl

ik). Al-
ternating i, k yields

∇iPjk −∇kPji = Pjl(Γ̃
l
ik − Γ̃l

ki).

Since P is non-degenerate, ∇̃ is torsion-free if and only if the right-hand side of this
relation vanishes. The left-hand side vanishes, however, if and only if (∇, P ) is a
pre-Codazzi structure, which proves the first part of the proposition.

In terms of PT equation (2.7) can be rewritten as

∂PT
kj

∂xi
= PT

lj Γ̃
l
ik + PT

klΓ
l
ij .

Comparing this with (2.7) shows that ∇ is the conjugate connection of ∇̃ relative
to PT . Applying the first part of the proposition, we obtain the second part. �

Definition 2.3. Let (∇, P ) be a pre-Codazzi structure on M , such that P is non-

degenerate. Denote by ∇̃ the conjugate connection of∇ relative to P , and define the
tensor field PT by PT [X,Y ] = P [Y,X]. We then call (∇̃, PT ) the dual pre-Codazzi
structure of (∇, P ).
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2.3. Half-dimensional immersions. In this subsection we construct a pre-Codazzi
structure on non-degenerate n-dimensional immersions in 2n-dimensional para-
Kähler manifolds. Assume the notations of Subsection 1.1.

Lemma 2.3. The tensor field Q̂ is non-degenerate if and only if the distributions
DX, DP are transversal to the immersion f .

Proof. Pass to an adapted chart on M and let y1, . . . , yn be coordinates on M .
Then the tensor Q̂ is given by

(2.8) Q̂ab = Qγδ
∂zγ

∂ya
∂zδ

∂yb
=
∂xc

∂ya
QcD

∂pD

∂yb
.

The second equality holds in view of (2.2). Hence Q̂ is non-degenerate if and only

if both derivatives ∂x
∂y ,

∂p
∂y are non-degenerate. But ∂x

∂y is non-degenerate if and only

if DX is transversal to f , and ∂p
∂y is non-degenerate if and only if DP is transversal

to f . This completes the proof. �

Suppose now that the distribution DX is transversal to the immersion f . Con-
sider an adapted coordinate chart φ : U → UX × UP on M, with components
φX : U → UX, φP : U → UP. Let UM ⊂ M be an open subset such that
f [UM ] ⊂ U . Then the composition φX ◦ f : UM → UX is a local diffeomorphism.
By possibly shrinking UM , we can assume without restriction of generality that
φX ◦f is injective, thereby introducing the coordinates x1, . . . , xn on UM . We shall
call such a chart on M an adapted chart. The adapted charts form an atlas on M .
In a similar manner, we can introduce the coordinates pn+1, . . . , p2n on M if the
distribution DP is transversal to the immersion f .

The immersion f , considered as an affine immersion with transversal distribution
DX, induces an affine connection ∇X on M . Let us compute this connection
explicitly.

Lemma 2.4. Let f :M → M be an n-dimensional immersion into a 2n-dimensional
para-Kähler manifold. Suppose that the distribution DX is transversal to the im-
mersion f . Let ∇X be the affine connection induced on M by the immersion f
with transversal distribution DX. Then in an adapted chart on M , the Christoffel
symbols Γc

ab of the connection ∇X are given by the Christoffel symbols (2.5) of the
Levi-Civita connection ∇ of g.

Proof. Assume the conditions of the lemma and denote the Christoffel symbols of
∇ by Γγ

αβ . Let X,Y be vector fields on M and X̃, Ỹ (locally) extensions of their

images f∗(X), f∗(Y ) under the differential of f . The vector field Z̃ = ∇X̃ Ỹ is given
by

Z̃α =
∂Ỹ α

∂zβ
X̃β + Ỹ δΓα

δβX̃
β .

Since the coordinate chart on M is adapted, we have Xa = X̃a and Y a = Ỹ a.
Taking into account the block-diagonal structure of the Christoffel symbols Γγ

αβ ,
we get

Z̃a =
∂Ỹ a

∂zβ
X̃β + Ỹ δΓa

δβX̃
β =

∂Y a

∂xb
Xb + Y dΓa

dbX
b.
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If we decompose Z̃ on f [M ] into a tangential component f∗(Z) and a component α

lying in the transversal distribution DX, then αa = 0 and Za = Z̃a again because
the chart on M is adapted. Hence

Za = (∇X
XY )a =

∂Y a

∂xb
Xb + Y dΓa

dbX
b,

which shows the assertion of the lemma. �

Likewise, suppose that the distribution DP is transversal to f . Then f , con-
sidered as an affine immersion with transversal distribution DP, induces an affine
connection ∇P on M . In the same way as above it then follows that in the co-
ordinates pn+1, . . . , p2n on M , the Christoffel symbols ΓC

AB of ∇P are given by
(2.5).

By (1.3) we have

(2.9) ∇X̃ Ỹ = f∗(∇X
XY ) + αX[X,Y ] = f∗(∇P

XY ) + αP[X,Y ]

for every two vector fields X,Y on M , where X̃, Ỹ are (locally) extensions of their
images f∗(X), f∗(Y ) under the differential of f . The affine fundamental forms
αX, αP are symmetric and with values in DX, DP, respectively.

We are now in a position to prove the main result of this section.

Theorem 2.1. Let f : M → M be an n-dimensional immersion into a 2n-
dimensional para-Kähler manifold with metric g and symplectic form ω. Let further
Q̂ = f∗(Q) be the pullback of the tensor Q = g + ω on M . Then the following as-
sertions hold.

i) Suppose that the distribution DX is transversal to the immersion f , and let
∇X be the affine connection induced on M by the immersion f with transversal
distribution DX. Then (∇X, Q̂) is a pre-Codazzi structure on M .

ii) Suppose that the distribution DP is transversal to the immersion f , and let ∇P

be the affine connection induced by the immersion f with transversal distribution
DP. Then (∇P, Q̂T ) is a pre-Codazzi structure on M , where Q̂T is defined by

Q̂T [X,Y ] = Q̂[Y,X].
iii) Assume that the conditions of both parts i) and ii) of the theorem are satisfied.

Then the pre-Codazzi structures (∇X, Q̂), (∇P, Q̂T ) are dual to each other.

Proof. Assume the conditions of i) and pass to an adapted chart on M . Locally
the immersion f can be expressed by a vector-valued function p = p(x), such that

z = f(x) =

(
x
p(x)

)
. By (2.8), Q̂ is given by Q̂ab = QaD

∂pD

∂xb . By Lemma 2.4 we

then get

∇X
c Q̂ab =

∂Q̂ab

∂xc
− Q̂adΓ

d
cb − Q̂dbΓ

d
ca

=

(
∂QaD

∂xc
+
∂QaD

∂pE
∂pE

∂xc

)
∂pD

∂xb
+QaD

∂2pD

∂xb∂xc

−QaE
∂pE

∂xd
QFd ∂QcF

∂xb
−QdE

∂pE

∂xb
QFd ∂QcF

∂xa

=
∂3q

∂xa∂pD∂pE
∂pD

∂xb
∂pE

∂xc
+QaD

∂2pD

∂xb∂xc
−QaE

∂pE

∂xd
QFd ∂3q

∂xb∂xc∂pF
.
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This expression is symmetric in the indices b, c, which shows that (∇X, Q̂) is a
pre-Codazzi structure. This proves the first part of the theorem.

In order to prove the second part, note that the isomorphism J 7→ −J , g 7→ g,
ω 7→ −ω defines another para-Kähler structure on M. Under this isomorphism, the
distributions DX, DP are exchanged and Q̂ is taken to Q̂T . Hence the second part
of the theorem follows from the first part, applied to the transformed para-Kähler
structure.

Now let us prove the third part. Assume that both distributions DX, DP are
transversal to the immersion f . By Lemma 2.3, Q̂ is non-degenerate and hence the
conjugate connection of ∇X relative to Q̂ is well-defined. Let us show that this is
the connection ∇P. Let X,Y, Z be vector fields on M , and let X̃, Ỹ , Z̃ be local
extensions of their images under f∗ to a neighbourhood of the immersion f in M.
Then we have

X(Q̂[Y, Z]) = X̃(Q[Ỹ , Z̃]) = ∇X̃

(
Q[Ỹ , Z̃]

)
= Q[∇X̃ Ỹ , Z̃] +Q[Ỹ ,∇X̃ Z̃]

= Q[f∗(∇X
XY ) + αX[X,Y ], f∗(Z)] +Q[f∗(Y ), f∗(∇P

XZ) + αP[X,Z]]

= Q[f∗(∇X
XY ), f∗(Z)] +Q[f∗(Y ), f∗(∇P

XZ)] = Q̂[∇X
XY, Z] + Q̂[Y,∇P

XZ].

Here the third equality holds because ∇Q = 0, for the fourth equality we used
(2.9), and the fifth equality holds because DP, DX are the right and left kernels of

Q̂, respectively. We thus indeed recover formula (1.5). This completes the proof of
the third part. �

Finally, we shall give an explicit local expression of the closed form ω̂ as the
differential of a 1-form.

Lemma 2.5. Assume the conditions of i), Theorem 2.1 and pass to an adapted
chart on M , such that the para-Kähler structure is given by a para-Kähler potential

q(x, p). Then the 1-form w on M given by wa(y) = − ∂q
∂xa

∣∣∣
(x,p)=f(y)

is a potential

of ω̂, ω̂ = dw.

Proof. Assume the conditions of the lemma. The form ω̂ is the skew-symmetric

part of the tensor Q̂ab = QaC
∂pC

∂xb , hence

ω̂ab =
1

2

(
∂2q

∂xa∂xb
+

∂2q

∂xa∂pC
∂pC

∂xb

)
− 1

2

(
∂2q

∂xb∂xa
+

∂2q

∂xb∂pC
∂pC

∂xa

)
=

1

2

(
d

dxb
∂q

∂xa
− d

dxa
∂q

∂xb

)
,

where d
dx denotes the gradient on M . The assertion of the lemma now becomes

evident. �

2.4. Lagrangian immersions. An n-dimensional immersion f : M → M into a
2n-dimensional para-Kähler manifold is Lagrangian if and only if the pullback ω̂ on
M of the symplectic form ω vanishes, or equivalently, if the tensor field Q̂ on M is
symmetric. In this case Q̂ equals the metric ĝ on M , and Lemma 2.3 and Theorem
2.1 specialize to the following results.
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Lemma 2.6. Let f : M → M be a Lagrangian immersion into a para-Kähler
manifold with metric g, and let ĝ be the induced metric on M . Then ĝ is non-
degenerate if and only if the distributions DP, DX are transversal to the immersion
f .

Theorem 2.2. Let f : M → M be a Lagrangian immersion into a para-Kähler
manifold with metric g, and let ĝ be the induced metric on M . Then the following
assertions hold.

i) Suppose that the distribution DX is transversal to the immersion f , and let
∇X be the affine connection induced on M by the immersion f with transversal
distribution DX. Then (∇X, ĝ) is a Codazzi structure on M .

ii) Suppose that the distribution DP is transversal to the immersion f , and let ∇P

be the affine connection induced by the immersion f with transversal distribution
DP. Then (∇P, ĝ) is a Codazzi structure on M .

iii) Assume that the conditions of both parts i) and ii) of the theorem are satisfied.
Then the Codazzi structures (∇X, ĝ), (∇P, ĝ) are dual to each other.

Corollary 2.1. Let f : M → M be a Lagrangian immersion into a para-Kähler
manifold with metric g. Suppose that the induced metric ĝ on M is non-degenerate.
Let ∇X,∇P be the affine connections induced by the affine immersion f with
transversal distributions DX, DP, respectively, and let ∇̂ be the Levi-Civita con-
nection of ĝ. Then ∇̂ = 1

2

(
∇X +∇P

)
.

Proof. The Corollary is an immediate consequence of iii), Theorem 2.2 and of [17,
Cor.4.4, p.21] or [19, Lemma 2.3]. �

Finally, we will establish a connection between the Codazzi structures in iii), The-
orem 2.2 and the second fundamental form IIf induced on M by a non-degenerate
Lagrangian immersion f : M → M into a para-Kähler manifold. Recall the def-
inition of the second fundamental form. For vector fields X,Y on M , let X̃, Ỹ
be (locally) extensions of the images f∗(X), f∗(Y ) to a neighbourhood of the im-

mersion in M. Then the covariant derivative ∇X̃ Ỹ decomposes on the immersion
as

(2.10) ∇X̃ Ỹ = f∗(∇̂XY ) + IIf [X,Y ].

Here f∗(∇̂XY ) is the tangent, and IIf [X,Y ] is the normal component of ∇X̃ Ỹ .
Thus if f is considered as an affine immersion with transversal distribution equal
to the normal bundle, then the Levi-Civita connection ∇̂ on M will be the in-
duced affine connection, while the second fundamental form IIf will be the affine
fundamental form. Equating the arithmetic mean of the second and third ex-
pression in (2.9) with the right-hand side of (2.10) and taking into account that

∇̂ = 1
2

(
∇X +∇P

)
, we obtain

(2.11) IIf [X,Y ] =
1

2

(
αX[X,Y ] + αP[X,Y ]

)
.

In [5, Lemma 3.2, (iii)] Chen defined the totally symmetric 3-form

(2.12) σ[X,Y, Z] = g[IIf [X,Y ], Jf∗(Z)] = −ω[IIf [X,Y ], f∗(Z)]

on M . The following result relates this 3-form to the cubic form C = ∇Xĝ of the
Codazzi structure (∇X, ĝ).
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Theorem 2.3. Let f : M → M be a Lagrangian immersion into a para-Kähler
manifold with metric g. Suppose that the induced metric ĝ on M is non-degenerate.
Then the 3-form σ defined by (2.12) and the cubic form C = ∇Xĝ of the Codazzi
structure (∇X, ĝ) from i), Theorem 2.2 are related by C = 2σ.

Proof. Assume above notations. Denote the type (1,2) difference tensor ∇X − ∇̂
by ∆. For vector fields X,Y , ∆[X,Y ] will then be another vector field on M . For
vector fields X,Y, Z on M , we have

σ[X,Y, Z] = −g[JIIf [X,Y ], f∗(Z)] = −1

2
g[JαX[X,Y ] + JαP[X,Y ], f∗(Z)]

= −1

2
g[−αX[X,Y ] + αP[X,Y ], f∗(Z)] = −1

2
g[f∗(∇X

XY )− f∗(∇P
XY ), f∗(Z)]

= −1

2
ĝ[∇X

XY −∇P
XY,Z] = −ĝ[∇X

XY − ∇̂XY,Z] = −ĝ[∆[X,Y ], Z].

Here in the second equality we used (2.11), in the third equality we used that
αX, αP have values in DX, DP, respectively, in the fourth equality we used the
second equality in (2.9), and in the sixth equality we used Corollary 2.1. Since σ is
totally symmetric, we also have ĝ[∆[X,Y ], Z] = ĝ[∆[X,Z], Y ].

On the other hand, we have C = ∇Xĝ = (∇X − ∇̂)ĝ, and hence

C[X,Y, Z] = (∇X
X ĝ − ∇̂X ĝ)[Y, Z] = −ĝ[∆[X,Y ], Z]− ĝ[∆[X,Z], Y ].

The assertion of the theorem now easily follows. �

3. Representation of pre-Codazzi structures

In this section we show that every pre-Codazzi structure (∇̄, P ) on a manifoldM
with non-degenerated tensor P can be generated by a half-dimensional embedding
of M into some para-Kähler manifold M. We shall construct M as a subset of
the product M ×M , such that the embedding f : M → M is the diagonal map.
We suppose that the manifold M is second-countable, which is often a standard
assumption.

Denote the symmetric and skew-symmetric part of P by ρ and ψ, respectively.
For every subset U ⊂ M , denote the set {(y, y) | y ∈ U} ⊂ M ×M by ∆U , the
product U × U by U2, and the diagonal map y 7→ (y, y) on U by δU . Then
δU : U → U2 is an embedding which maps U diffeomorphically to ∆U . Let U ⊂M
be an open set carrying a coordinate chart with coordinates ya. Then U2 carries
a chart on M ×M . We denote the coordinates on the first copy of U by xa, and
the coordinates on the second copy by pA. Let us further introduce coordinates

ua = xa+pA

2 , va = xa−pA

2 on U2. Then ∆U is given by the relation v = 0 and is
parameterized by the coordinates u, and δU is given by the relation u = δU (y) = y.

Let U be an open cover of M , such that for every finite subset Σ ⊂ U, the
intersection

∩
U∈Σ U is either empty or simply connected, and every U ∈ U carries

a coordinate chart. Such a cover exists by virtue of Lemma A.2. By Lemma 2.2, we
have dψ = 0 on M . Since every U ∈ U is simply connected, the restriction on U of
the 2-form ψ is exact and we find a smooth 1-form wU on U such that dwU = ψ|U ,
or in index notation

(3.1) ψab =
1

2

(
∂wU

b

∂ua
− ∂wU

a

∂ub

)
.



100 ROLAND HILDEBRAND

For every U,U ′ ∈ U such that U ∩ U ′ ̸= ∅, we have dwU |U∩U ′ = dwU ′ |U∩U ′ =

ψ|U∩U ′ , which implies that the difference wU − wU ′
is closed on U ∩ U ′. Since

U ∩ U ′ is simply connected, wU − wU ′
is exact, and there exists a scalar function

hU,U ′
: U ∩ U ′ → R such that wU ′ − wU = dhU

′,U on U ∩ U ′. Note that for
every U,U ′, U ′′ ∈ U we have dhU

′,U − dhU
′′,U = dhU

′,U ′′
on the simply connected

intersection U ∩ U ′ ∩ U ′′, and hence

(3.2) hU
′,U − hU

′′,U = hU
′,U ′′

+ cU,U ′,U ′′ ,

where cU,U ′,U ′′ is a constant.
Let us now construct a local para-Kähler potential qU on a subset of U2 for every

U ∈ U. Fix a set U ∈ U. By virtue of the diffeomorphism δU : U → ∆U , the
quantities P,wU , ρ and the Christoffel symbols Γ̄c

ab of the connection ∇̄ on U can
be considered as objects defined on ∆U and given by functions of u. Using these
functions, define on U2 the scalar

(3.3) q′U (u, v) = −2wU
a v

a − 2ρabv
avb +

2

3

(
∂ρac
∂ub

− 2PdbΓ̄
d
ac −

1

2

∂2wU
b

∂ua∂uc

)
vavbvc.

Lemma 3.1. Assume above conditions and notations. Let a para-complex structure
J on U2 be given by the natural product structure, such that

(3.4) J

(
∂

∂x
,
∂

∂p

)
=

(
∂

∂x
,− ∂

∂p

)
.

Then the para-Kähler potential qU (x, p) = q′U
(
x+p
2 , x−p

2

)
, where q′U is given by

(3.3), defines a para-Kähler structure with para-complex structure J on a neigh-

bourhood WU of ∆U in U2, and the pre-Codazzi structure (∇X, Q̂) generated on U
by the embedding δU as in i), Theorem 2.1 coincides with the pre-Codazzi structure
(∇̄, P ).

Proof. Clearly the embedding δU is non-degenerate, both eigendistributionsDP, DX

of J being transversal to ∆U . Let us compute the matrix Q = ∂2qU
∂x∂p . We have

Q =

(
∂(u, v)

∂x

)T
∂2q′U
∂(u, v)2

∂(u, v)

∂p
=

1

4

(
∂2q′U
∂u2

+
∂2q′U
∂v∂u

− ∂2q′U
∂u∂v

− ∂2q′U
∂v2

)
.

Inserting the value (3.3) for the function q′U (u, v) and keeping only terms up to first
order in v, we get

QeF = −1

2

∂wU
e

∂uf
+

1

2

∂wU
f

∂ue
+ ρef +

1

3

(
−4

∂ρae
∂uf

− ∂ρef
∂ua

+ 2
∂ρaf
∂ue

+ 2PdeΓ̄
d
af+

+ 2PdaΓ̄
d
ef + 2Pdf Γ̄

d
ae +

1

2

∂2wU
e

∂ua∂uf
+

1

2

∂2wU
f

∂ua∂ue
− ∂2wU

a

∂ue∂uf

)
va +O(||v||2).(3.5)

But by (3.1) we have − 1
2
∂wU

e

∂uf + 1
2

∂wU
f

∂ue + ρef = Pef . By virtue of (2.8) and the

fact that ∂x
∂y = ∂p

∂y = In we then get Q̂ = Q = P on ∆U . In particular, Q is

non-degenerate in a neighbourhood WU of the diagonal submanifold, because P
is non-degenerate. On WU the potential qU then indeed defines a para-Kähler
structure.
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Let us now compute the derivative

∂QeF

∂xa
=

1

2

(
∂QeF

∂ua
+
∂QeF

∂va

)
=

1

3

(
∂ρef
∂ua

− 2
∂ρae
∂uf

+
∂ρaf
∂ue

+ PdeΓ̄
d
af + PdaΓ̄

d
ef + Pdf Γ̄

d
ae −

1

2

∂2wU
e

∂ua∂uf
+

+
∂2wU

f

∂ua∂ue
− 1

2

∂2wU
a

∂ue∂uf

)
+O(||v||)(3.6)

=
1

3

(
∂Pef

∂ua
− ∂Pae

∂uf
− ∂Pea

∂uf
+
∂Paf

∂ue
+ PdeΓ̄

d
af + PdaΓ̄

d
ef + Pdf Γ̄

d
ae

)
+O(||v||)

= Pdf Γ̄
d
ae +O(||v||).

Here the last relation is due to the Codazzi equation ∇̄kPij = ∇̄jPik (compare
(2.6) for the index notation). By virtue of Q = P it follows that on ∆U we have

Γ̄d
ae = QFd ∂QeF

∂xa . By Lemma 2.4 the Christoffel symbols of ∇̄ hence coincide with

those of the connection ∇X on U , which completes the proof. �

Note also that by virtue of (3.3) on ∆U we have qU = 0 and

(3.7)
∂qU
∂x

=
∂q′U
∂(u, v)

∂(u, v)

∂x
=

1

2

(
∂q′U
∂u

+
∂q′U
∂v

)
= −wU .

By virtue of (3.5),(3.6) we also have for all y ∈ U that

(3.8)
∂2qU
∂x∂p

∣∣∣∣
(x,p)=(y,y)

= P (y),
∂3qU

∂xa∂xb∂pC

∣∣∣∣
(x,p)=(y,y)

= Pdc(y)Γ̄
d
ab(y).

It rests to glue the different local para-Kähler structures together. As in the
proof of Proposition 2.2, we will use a partition of unity to combine the local
para-Kähler potentials. There is, however, a technical difficulty to overcome. The
function (3.3) depends on the potential wU of the exact 2-form ψ, and there is a
freedom of choice of this 1-form wU . If there is a mismatch in the choice of wU

for functions (3.3) in overlapping sets U,U ′ ∈ U, then the procedure of combining
the local para-Kähler potentials will not preserve the derivatives of (3.3) on ∆M ,
and the resulting para-Kähler structure will not reproduce the given pre-Codazzi
structure (∇̄, P ). However, there might not exist a potential of ψ that is defined
globally on M . This problem requires a somewhat more complicated construction.

Let V be an open strong star refinement of U. Such a refinement exists by
Corollary A.1. For every V ∈ V, choose UV ∈ U such that

∪
W∈V:W∩V ̸=∅W ⊂ UV .

For every U ∈ U and V ∈ V such that V ⊂ U , define a function qVU on (UV ∩ U)2

by

(3.9) qVU (x, p) = qUV (x, p)− hU,UV (x) + hU,UV (p).

We then have for all y ∈ UV ∩ U that qVU (y, y) = qUV
(y, y) = 0 and by virtue of

(3.7)
(3.10)
∂qVU
∂x

∣∣∣∣
(x,p)=(y,y)

=
∂qUV

∂x

∣∣∣∣
(x,p)=(y,y)

−∂h
U,UV

∂y
= −wUV (y)−(wU (y)−wUV (y)) = −wU (y).
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By definition of qVU , the mixed derivatives of qVU and qUV
coincide on (UV ∩ U)2,

and from (3.8) we obtain

(3.11)
∂2qVU
∂x∂p

∣∣∣∣
(x,p)=(y,y)

= P (y),
∂3qVU

∂xa∂xb∂pC

∣∣∣∣
(x,p)=(y,y)

= Pdc(y)Γ̄
d
ab(y)

for all y ∈ UV ∩ U .
We now construct a global para-Kähler structure in a neighbourhoodM of ∆M ⊂

M ×M . Set M′ =
∪

V ∈V V 2. Then M′ is a neighbourhood of ∆M in M ×M .
Consider a smooth partition of unity {µV : M′ → [0, 1] |V ∈ V}, subordinate to
the cover {V 2 |V ∈ V} of M′.

Fix a set W ∈ V and define a scalar function qW on W 2 by

(3.12) qW =
∑
V ∈V

µV q
V
UW

.

Let us first show that qW is well-defined. Let V ∈ V be such that µV (z) > 0 for
some z ∈W 2. Then z ∈ V 2, hence V ∩W ̸= ∅ and therefore V ⊂ UW , W ⊂ UV . It
follows that the function qVUW

is defined on (UV ∩UW )2, and hence also on W 2. On

the other hand, if V ∈ V is such that µV ≡ 0 on W 2, then we set the contribution
of the product µV q

V
UW

in the sum (3.12) equal to zero. Hence qW is well-defined.

We shall now investigate how qW at a given point z ∈ M′ depends on W . Let
W,W ′ ∈ V. On (W ∩W ′)2 we then have for z = (x, p)

qW (z)− qW
′
(z) =

∑
V ∈V

µV (z)
(
qVUW

(z)− qVUW ′ (z)
)

=
∑
V ∈V

µV (z)
(
−hUW ,UV (x) + hUW ,UV (p) + hUW ′ ,UV (x)− hUW ′ ,UV (p)

)
=

∑
V ∈V

µV (z)
(
−hUW ,UW ′ (x)− cUV ,UW ,UW ′ + hUW ,UW ′ (p) + cUV ,UW ,UW ′

)
= −hUW ,UW ′ (x) + hUW ,UW ′ (p).

Here for the third relation we used (3.2), and the sums are efficiently running
over those V ∈ V which satisfy µV ̸≡ 0 on (W ∩ W ′)2. For these V we have
V ∩W ∩W ′ ̸= ∅ and hence W,W ′ ⊂ UV ∩ UW ∩ UW ′ . It follows that the scalar
functions qW are related by a transformation of type (2.4) for different W , and
hence by virtue of (2.3),(2.2) define a global tensor field Q on M′.

We now show that this tensor field defines the sought para-Kähler structure on
a neighbourhood M ⊂ M′ of ∆M in M ×M . Let us again consider the sum (3.12).
For every V ∈ V such that µV ̸≡ 0 onW 2, we have qVUW

= 0 on ∆UV ∩UW
, and hence

on ∆W . Moreover, by virtue of (3.10) for every such V we have
∂qVUW

∂x

∣∣∣∣
z=(y,y)

=

−wUW (y) for all y ∈ W . By (3.11) the derivatives
∂2qVUW

∂x∂p and
∂3qVUW

∂x2∂p are also

independent of V on ∆W .

Lemma 3.2. Let W ⊂ Rn be an open set with coordinates ya. Denote the co-
ordinates on the first copy of W in the product W ×W by xa, and those in the
second copy by pA. Let {qi}i∈I be a family of smooth functions on W ×W , such

that for all i ∈ I and all y ∈ W we have qi(y, y) = 0, ∂qi

∂x

∣∣∣
(x,p)=(y,y)

= −w(y),
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∂2qi

∂x∂p

∣∣∣
(x,p)=(y,y)

= P (y), ∂3qi

∂x2∂p

∣∣∣
(x,p)=(y,y)

= T (y) for some objects w,P, T on W of

according dimensions.
Let {λi :W 2 → R | i ∈ I} be a partition of unity on W 2, and set q =

∑
i∈I λ

iqi.

Then for all y ∈W we have q(y, y) = 0, ∂q
∂x

∣∣∣
(x,p)=(y,y)

= −w(y), ∂2q
∂x∂p

∣∣∣
(x,p)=(y,y)

=

P (y), ∂3q
∂x2∂p

∣∣∣
(x,p)=(y,y)

= T (y).

Proof. Introduce coordinates u = x+p
2 , v = x−p

2 on W ×W . Then on ∆W we have
∂qi

∂u = ∂qi

∂x + ∂qi

∂p = 0, because qi ≡ 0 on ∆W . Hence ∂qi

∂v = ∂qi

∂x − ∂qi

∂p = 2∂qi

∂x equals

−2w for all i ∈ I.
Further, we have on ∆W

∂2qi

∂u2
=

∂2qi

∂x2
+

∂2qi

∂x∂p
+

∂2qi

∂p∂x
+
∂2qi

∂p2
= 0,

∂2qi

∂v2
=

∂2qi

∂x2
− ∂2qi

∂x∂p
− ∂2qi

∂p∂x
+
∂2qi

∂p2
= −2

∂2qi

∂x∂p
− 2

∂2qi

∂p∂x
= −2(P + PT ).

Hence also the second derivative ∂2qi

∂v2 coincides on ∆W for all i ∈ I.
Moreover,

(3.13)
∂3qi

∂x∂xa∂p
+

∂3qi

∂x∂pA∂p
=

∂

∂ua
∂2qi

∂x∂p
=
∂P

∂ya

does not depend on i. Since ∂3qi

∂x2∂p = T does not depend on i, the second summand

on the left-hand side of (3.13) and hence the derivative ∂3qi

∂x∂p2 cannot depend on i

neither.
We have

∂3qi

∂u2∂v
=

∂3qi

∂x3
− ∂3qi

∂x2∂p
+

∂3qi

∂x∂p∂x
− ∂3qi

∂x∂p2
+

∂3qi

∂p∂x2
− ∂3qi

∂p∂x∂p
+

∂3qi

∂p2∂x
− ∂3qi

∂p3
,

∂3qi

∂v3
=

∂3qi

∂x3
− ∂3qi

∂x2∂p
− ∂3qi

∂x∂p∂x
+

∂3qi

∂x∂p2
− ∂3qi

∂p∂x2
+

∂3qi

∂p∂x∂p
+

∂3qi

∂p2∂x
− ∂3qi

∂p3

=
∂3qi

∂u2∂v
+ 2

(
− ∂3qi

∂x∂p∂x
+

∂3qi

∂x∂p2
− ∂3qi

∂p∂x2
+

∂3qi

∂p∂x∂p

)
.

Hence ∂3qi

∂v3 can be expressed as the sum of ∂3qi

∂u2∂v , which on ∆W is independent of i

by virtue of the independence of ∂qi

∂v , and a linear combination of the mixed deriva-

tives ∂3qi

∂x2∂p ,
∂3qi

∂x∂p2 , which by the assumption of the lemma and by the preceding

paragraph are also independent of i.
Hence the partial derivatives of qi up to third order with respect to v are in-

dependent of i on ∆W . Since this holds identically on ∆W , the mixed derivatives
of qi up to third order are also independent of i on ∆W . Thus at any given point
z ∈ ∆W , all functions qi belong to the same 3-jet. By Lemma B.1 (see Appendix),
q has then to belong to the same 3-jet too. The assertion of the lemma now readily
follows. �

By the preceding lemma, the values of Q = ∂qW

∂x∂p and ∂Q
∂x = ∂3qW

∂x2∂p on ∆W are the

same as those of the corresponding derivatives of the local para-Kähler potentials qU
defined in Lemma 3.1. Thus on ∆M we have Q = P , and we find a neighbourhood
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M ⊂ M′ of ∆M such that Q is non-degenerate onM. ThenQ defines a para-Kähler
structure on M. By Lemma 2.4 and (2.5), this para-Kähler structure then defines
on M the same pre-Codazzi structure as the local para-Kähler structures defined
by the para-Kähler potentials qU , namely the pre-Codazzi structure (∇̄, P ).

We have proven the following theorem.

Theorem 3.1. Let M be an n-dimensional manifold with pre-Codazzi structure
(∇̄, P ), such that P is non-degenerate everywhere on M . Then there exists a 2n-
dimensional para-Kähler manifold M with metric g and symplectic form ω and an
embedding f :M → M such that the distributions DP, DX are transversal to f , and
the pre-Codazzi structure (∇X, Q̂) from i), Theorem 2.1 coincides with (∇̄, P ).

Corollary 3.1. Let M be a manifold with Codazzi structure (∇̄, h), such that h
is non-degenerate everywhere on M . Then there exists a para-Kähler manifold M
with metric g and symplectic form ω and a Lagrangian embedding f : M → M
such that the distributions DP, DX are transversal to f , and the Codazzi structure
(∇X, ĝ) from i), Theorem 2.2 coincides with (∇̄, h).

4. Projectively flat manifolds and the cross-ratio manifold

In Subsection 4.1 we introduce a special homogeneous para-Kähler manifold, the
cross-ratio manifold. The term comes from the fact that the para-Kähler structure
on this manifold is the infinitesimal limit of a finite structure defined by the pro-
jective cross-ratio. We will provide this construction in a companion paper, here
we just give the definition of the para-Kähler structure. In Subsection 4.2 we in-
troduce projectively flat manifolds and show that they carry a natural pre-Codazzi
structure. In Subsection 4.3 we show that the affine connections ∇X,∇P induced
on half-dimensional immersions in the cross-ratio manifold are projectively flat,
and the pre-Codazzi structures (∇X, Q̂), (∇P, Q̂T ) induced by these immersions
coincide with the natural pre-Codazzi structures defined by the projectively flat
connections ∇X,∇P, respectively. In Subsection 4.4 we show that the natural pre-
Codazzi structure of an arbitrary projectively flat manifold M can, at least locally,
be realized by a half-dimensional immersion of M in the cross-ratio manifold. This
will lead to a natural duality relation between projectively flat connections on M .

4.1. The cross-ratio manifold. Let X = RPn be the n-dimensional real pro-
jective space, and let P = RPn be its dual space. The space X is the set of
1-dimensional subspaces of the real vector space Rn+1, while P is the set of 1-
dimensional subspaces of the dual vector space Rn+1. For x ∈ X, p ∈ P, we will
call points x̃ ∈ Rn+1 \ {0}, p̃ ∈ Rn+1 \ {0} representatives of x, p, respectively,
if x̃ ∈ x, p̃ ∈ p. We say that x is orthogonal to p, x ⊥ p, if ⟨x̃, p̃⟩ = 0 for any
representatives x̃, p̃ of x, p, respectively.

Define the set

(4.1) M = {z = (x, p) ∈ X×P |x ̸⊥ p}.
Then M is an open dense subset of X×P, and hence a 2n-dimensional manifold.
This manifold carries a natural para-complex structure given by (3.4). Let a basis
e0, . . . , en of Rn+1 and a corresponding dual basis e0, . . . , en of Rn+1 be given. These
bases define coordinates x̃0, . . . , x̃n and p̃0, . . . , p̃n on Rn+1 and Rn+1, respectively.
These coordinates, in turn, define affine charts on the projective spaces X,P by
xa = x̃a

x̃0 , pA = p̃a

p̃0
, respectively. We then say that the coordinates zα = (xa, pA)
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form an affine chart on M. A point z = (x, p) belongs to this chart if and only if
1 + pTx ̸= 0, because 1 + pTx = 0 if and only if x ⊥ p.

Different bases of Rn+1 define different affine charts on M. Clearly the affine
charts form an atlas on M. A linear coordinate change with transformation matrix

A =

(
a ah
av A

)
in Rn+1 induces a linear coordinate change with transformation

matrix A−T = B =

(
b bh
bv B

)
in Rn+1, where a, b are scalars, av, bv are column

vectors, ah, bh are row vectors, and A,B are n× n matrices. These in turn induce
the projective transformations

(4.2) x 7→ x′ =
Ax+ av
ahx+ a

, p 7→ p′ =
Bp+ bv
bhp+ b

in X and P, respectively.
Let us now pass to the definition of the para-Kähler structure. Given an affine

chart, we determine the para-Kähler structure on this chart by the para-Kähler
potential q(z) = log |1 + pTx|, leading to the matrix

(4.3) Q(z) =
(1 + pTx)In − pxT

(1 + pTx)2
.

We then have detQ = (1 + pTx)−(n+1), and Q is non-degenerated everywhere on
this chart. Let us show that the para-Kähler structure is well-defined, i.e., it does
not depend on the choice of the chart.

Lemma 4.1. Let z = (x, p) and z′ = (x′, p′) be linked by a transformation of type
(4.2). Then the functions q(z) and q′(z) = q(z′(z)) are linked by a transformation
of type (2.4).

Proof. We have

q′(z) = log |1 + p′
T
x′| = log

∣∣∣∣1 + (Bp+ bv)
T (Ax+ av)

(bhp+ b)(ahx+ a)

∣∣∣∣
= log

∣∣(bhp+ b)(ahx+ a) + (Bp+ bv)
T (Ax+ av)

∣∣− log |bhp+ b| − log |ahx+ a|

= log

∣∣∣∣(1 pT
)
BTA

(
1
x

)∣∣∣∣− log |bhp+ b| − log |ahx+ a|

= log |1 + pTx| − log |bhp+ b| − log |ahx+ a| = q(z) + h(x) + h′(p)

with h(y) = − log |ahy + a|, h′(y) = − log |bhy + b|. �

Thus (4.3) indeed defines an invariant para-Kähler structure on M.

Definition 4.1. We call the manifold M defined by (4.1) and endowed with the
para-Kähler structure defined by (4.3),(2.1),(2.2) the cross-ratio manifold.

In [12] Gadea and Montesinos Amilibia introduced a one-parametric family of
para-Kähler manifolds Pn(B)/Z2, the reduced para-complex projective spaces, and
an isomorphic family of spaces P (Rn+1 ⊕ Rn+1)/Z2. A comparison of (4.3) with
[12, eq. (1.3)] and of (2.1) with [12, eq. (1.4)] yields the following result.

Theorem 4.1. The cross-ratio manifold M is canonically isomorphic to the space
P (Rn+1⊕Rn+1)/Z2 with parameter value c = 4, which in turn is isomorphic to the
reduced para-complex projective space Pn(B)/Z2 with parameter value c = 4.
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Inserting (4.3) into (2.5), we obtain

(4.4) Γc
ab = −pBδ

c
a + pAδ

c
b

1 + pDxd
, ΓC

AB = −x
bδCA + xaδCB
1 + pDxd

,

the other components of Γγ
αβ being zero.

4.2. Projectively flat manifolds.

Definition 4.2. [18, p.386] A torsion-free affine connection ∇ on a manifold M is
called projectively flat1 if there exists a flat affine connection ∇′ onM such that the
pregeodesics (i.e., the geodesics as curves without a distinguished parametrization)
of ∇ and ∇′ coincide.

By [20, eq. (3p), p.100] an affine connection is projectively flat if and only if its
Christoffel symbols can locally be written as

(4.5) Γk
ij = ρiδ

k
j + ρjδ

k
i

for some 1-form ρ in some coordinate system. In this coordinate system, the Ricci
tensor of a projectively flat connection ∇ with Christoffel symbols (4.5) is given by
[20, p.100], [18, p.485]

Rab = nPab − Pba

with

(4.6) Pab = −∇bρa − ρaρb = −∂ρa
∂xb

+ ρaρb

and n the dimension of the manifold. In terms of the Ricci tensor, the tensor P is
given by [20, p.100], [18, p.486]

(4.7) Pab = (n2 − 1)−1(nRab +Rba),

which provides a description which is independent of the particular coordinate
system.

Note that the Ricci tensor is symmetric if and only if the tensor P is symmetric.
Then (4.7) simplifies to Pab = (n − 1)−1Rab and P is just the normalized Ricci
tensor [17, p.17]. Equivalently, there exists a nonzero parallel volume element on
M [17, Proposition 3.1, p.14], in which case the manifold M is called equiaffine.

The projectively flat connection ∇ and the tensor P satisfy the Codazzi equation
(1.4) [20, eq. (IIIp), p.104], [18, eq. (109.17), p.487]2. Thus (∇, P ) is a pre-Codazzi
structure onM . It is a Codazzi structure if and only if the manifoldM is equiaffine.
Every projectively flat manifold is hence in a natural way a pre-Codazzi manifold.

Definition 4.3. For a manifold M with projectively flat connection ∇, define a
tensor field P by (4.7), where Rab is the Ricci tensor of ∇. We call (∇, P ) the
canonical pre-Codazzi structure of the projectively flat manifold M .

1In this reference, the term projectively Euclidean is used.
2Note that both P and the Ricci tensor are defined in a different manner in this reference. The

relation is given by Pab 7→ Pba, Rab 7→ −Rba.
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4.3. Half-dimensional immersions. In this subsection we consider immersions
f :M → M of an n-dimensional manifold M in the cross-ratio manifold, such that
the distribution DX is transversal to f .

Lemma 4.2. Let f : M → M be an immersion of an n-dimensional manifold
M into the cross-ratio manifold (4.1). If the distribution DX is transversal to f ,
then the affine connection ∇X induced on M by f , viewed as affine immersion with
transversal distribution DX, is projectively flat. If the distribution DP is transversal
to f , then the affine connection ∇P induced on M by f , viewed as affine immersion
with transversal distribution DP, is projectively flat.

Proof. Pass to an affine chart on M and a corresponding adapted chart on M with
coordinates xa. By Lemma 2.4 and (4.4) the Christoffel symbols of ∇X have the
form (4.5) with

(4.8) ρa = − pA
1 + pBxb

,

and ∇X is projectively flat. The second part of the lemma is proven in a similar
manner. �

We will now establish a relation between the curvature of the connection ∇X

and the tensor field Q̂ of the pre-Codazzi structure from i), Theorem 2.1.

Lemma 4.3. Let f : M → M be an immersion of an n-dimensional manifold M
into the cross-ratio manifold (4.1), such that the distribution DX is transversal to

f . Then the tensor Q̂ coincides with the tensor P defined by (4.7), where Rab is
the Ricci tensor of the connection ∇X.

Proof. Assume the conditions of the lemma. Let zα = (xa, pA) be the coordinates
of an affine chart on the cross-ratio manifold M, and let xa be the corresponding
coordinates of an adapted chart on M . Inserting (4.8), in vector form ρ = − p

1+pT x
,

into (4.6), in matrix form P = − ∂ρ
∂x + ρρT , we obtain for the matrix of P

P =
d

dx

p

1 + pTx
+

ppT

(1 + pTx)2
=

(1 + pTx) ∂p∂x − p
(
xT ∂p

∂x + pT
)

(1 + pTx)2
+

ppT

(1 + pTx)2

=
(1 + pTx)In − pxT

(1 + pTx)2
∂p

∂x
= Q

∂p

∂x
= Q̂.

Here by d
dx we denote the derivative on M , and the last two relations are due to

(4.3) and (2.8), respectively. �

Thus we get the following result.

Theorem 4.2. Let f : M → M be an immersion of an n-dimensional manifold
M into the cross-ratio manifold (4.1). If the distribution DX is transversal to f ,

then the pre-Codazzi structure (∇X, Q̂) from i), Theorem 2.1 coincides with the
canonical pre-Codazzi structure on M , viewed as a projectively flat manifold with
connection ∇X. If the distribution DP is transversal to f , then the pre-Codazzi
structure (∇P, Q̂T ) from ii), Theorem 2.1 coincides with the canonical pre-Codazzi
structure on M , viewed as a projectively flat manifold with connection ∇P.
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Corollary 4.1. Let f : M → M be a Lagrangian immersion of an n-dimensional
manifold in the cross-ratio manifold. If the distribution DX is transversal to f ,
then the Codazzi structure (∇X, ĝ) from i), Theorem 2.2 has a projectively flat
equiaffine connection ∇X with Ricci tensor equal to (n − 1)ĝ. If the distribution
DP is transversal to f , then the Codazzi structure (∇P, ĝ) from ii), Theorem 2.2
has a projectively flat equiaffine connection ∇P with Ricci tensor equal to (n−1)ĝ.

4.4. Representation of projectively flat manifolds. In this subsection we
show that the canonical pre-Codazzi structure of every projectively flat manifold
can be represented, at least locally, as in Theorem 4.2.

Theorem 4.3. Let M be an n-dimensional projectively flat manifold with connec-
tion ∇̄. For every y ∈ M , there exists a neighbourhood U of y and an immersion
f : U → M in the cross-ratio manifold (4.1) such that the distribution DX is
transversal to f , and the affine connection ∇X induced on U by f , viewed as affine
immersion with transversal distribution DX, coincides with the connection ∇̄. In
particular, the pre-Codazzi structure (∇X, Q̂) defined on U as in i), Theorem 2.1
coincides with the canonical pre-Codazzi structure defined by ∇̄ on U .

Proof. Assume the conditions of the theorem. Since ∇̄ is projectively flat, there
exists a chart on a neighbourhood of y such that the Christoffel symbols of ∇̄ are
given by (4.5) for some 1-form ρ. Denote the coordinates of the chart by x1, . . . , xn

and assume without restriction of generality that the point y is given by the origin
of the chart, x = 0. Let a vector-valued function p(x) be given by

pA(x) = − ρa
1 + ρbxb

.

Then 1 + pTx ̸= 0 in a neighbourhood U ⊂ M of x = 0. Define the immersion
f : U → M by f : x 7→ (x, p(x)). Clearly the distribution DX is transversal to
f . Moreover, (4.8) holds and thus by Lemma 2.4 and (4.5) the connections ∇X, ∇̄
coincide. By Theorem 4.2, (∇X, Q̂) is then the canonical pre-Codazzi structure on
M generated by ∇̄. �

Corollary 4.2. Let M be an n-dimensional projectively flat equiaffine manifold
with connection ∇̄. For every y ∈ M , there exists a neighbourhood U of y and a
Lagrangian immersion f : U → M in the cross-ratio manifold (4.1) such that the
distribution DX is transversal to f , and the Codazzi structure (∇X, ĝ) induced on
U by f as in i), Theorem 2.2 is composed of ∇̄ and the normalized Ricci tensor
Rab

n−1 of ∇̄.
Finally, let us deduce a duality relation between projectively flat connections on

a manifold M .

Theorem 4.4. Let M be a projectively flat manifold with connection ∇, and
let (∇, P ) be the canonical pre-Codazzi structure on M . Suppose that P is non-

degenerate and let (∇̃, PT ) be the dual pre-Codazzi structure. Then ∇̃ is also pro-

jectively flat, and (∇̃, PT ) is the corresponding canonical pre-Codazzi structure.

Proof. Assume the conditions of the theorem. By Theorem 4.3, M can locally be
immersed into the cross-ratio manifold M such that DX is transversal to the im-
mersion, ∇ coincides with the induced affine connection ∇X, and Q̂ = P . Since P
is non-degenerate, the distribution DP is by Lemma 2.3 also transversal to f . In



HALF-DIMENSIONAL IMMERSIONS IN PARA-KÄHLER MANIFOLDS 109

particular, the immersion induces a connection ∇P on M with transversal distri-
bution DP. By iii), Theorem 2.1 ∇P is conjugate to ∇X relative to Q̂, and hence

coincides with the connection ∇̃.
But ∇P is projectively flat by Lemma 4.2, and by Theorem 4.2 the pre-Codazzi

structure (∇P, Q̂T ) is the canonical pre-Codazzi structure corresponding to ∇P.
This completes the proof. �

Thus the duality between pre-Codazzi structures induces a duality relation be-
tween projectively flat connections.

Definition 4.4. Let M be a projectively flat manifold with connection ∇, and let
(∇, P ) be the canonical pre-Codazzi structure onM . We call the connection∇ non-
degenerate if the tensor field P is everywhere non-degenerate. For non-degenerate
∇, let ∇̃ be the conjugate connection of ∇ relative to P . We call the connection ∇̃
the dual connection of ∇.

For equiaffine projectively flat connections with non-degenerate Ricci tensor, this
duality relation reduces to the duality relation induced by the conormal map on
the local representation of the connection as centro-affine hypersurface immersion.

5. Hessian manifolds and the flat para-Kähler space

In this section we show that the affine connections ∇X,∇P induced on half-
dimensional immersions in the flat para-Kähler space E2n

n are flat, and the pre-

Codazzi structures (∇X, Q̂), (∇P, Q̂T ) induced by these immersions are hence pre-
Hessian structures. Moreover, we show that an arbitrary pre-Hessian structure on
a manifoldM can, at least locally, be realized by the pre-Hessian structure (∇X, Q̂)
of a half-dimensional immersion f : M → E2n

n . As an application, we show that
the dual of a pre-Hessian structure is also a pre-Hessian structure.

We work in the canonical coordinate system on E2n
n , such that the para-Kähler

structure is given by (1.2). The coordinates will be denoted by zα = (x1, . . . , xn, pn+1, . . . , p2n).
In these coordinates we have Q = In and Γγ

αβ = 0 for the Christoffel symbols of

the Levi-Civita connection of g on E2n
n .

Definition 5.1. A pre-Hessian structure on an n-dimensional manifoldM is a pair
(∇, P ) of a torsion-free flat affine connection ∇ and a covariant second order tensor
field P such that for every three vector fields X,Y, Z on M the Codazzi equation
(1.4) holds. A manifold M equipped with a pre-Hessian structure will be called a
pre-Hessian manifold.

Proposition 5.1. Let f :M → M be an immersion of an n-dimensional manifold
M into the flat para-Kähler space E2n

n . If the distribution DX is transversal to

f , then the pre-Codazzi structure (∇X, Q̂) induced on M by f as in i), Theorem
2.1 is a pre-Hessian structure. If the distribution DP is transversal to f , then the
pre-Codazzi structure (∇P, Q̂T ) induced on M by f as in ii), Theorem 2.1 is a
pre-Hessian structure.

Proof. Pass to an adapted chart on M with coordinates xa. By Lemma 2.4 the
Christoffel symbols of ∇X vanish, and hence ∇X is flat. Thus (∇X, Q̂) is a pre-
Hessian structure. The second part of the proposition is proven in a similar manner.

�
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Corollary 5.1. Let f :M → M be a Lagrangian immersion in the flat para-Kähler
space E2n

n . If the distribution DX is transversal to f , then the Codazzi structure
(∇X, ĝ) induced on M by f as in i), Theorem 2.2 is a Hessian structure. If the
distribution DP is transversal to f , then the Codazzi structure (∇P, ĝ) induced on
M by f as in ii), Theorem 2.2 is a Hessian structure.

Proposition 5.2. Let M be an n-dimensional manifold with pre-Hessian structure
(∇̄, P ). For every y ∈ M , there exists a neighbourhood U of y and an immersion
f : U → E2n

n such that the distribution DX is transversal to f , and the pre-Hessian

structure (∇X, Q̂) induced on U by f as in Proposition 5.1 coincides with the pre-
Hessian structure (∇̄, P ).

Proof. Assume the conditions of the proposition. Since ∇̄ is flat, there exists a chart
with coordinates x1, . . . , xn on a simply connected neighbourhood U of y such that
the Christoffel symbols of ∇̄ vanish. Then the Codazzi equation (2.6) simplifies to

the relation ∂Pab

∂xc = ∂Pac

∂xb on U . It follows that Pab = ∂pA

∂xb for some vector-valued

function p(x) on U . Define the immersion f : U → E2n
n by f : x 7→ (x, p(x)).

Clearly the distribution DX is transversal to f . Moreover, Q̂ = Q ∂p
∂x = ∂p

∂x = P
by (2.8) and the definition of p. The Christoffel symbols of the induced connection
∇X on M vanish by virtue of Lemma 2.4 and thus equal those of the connection
∇̄. The assertion of the proposition now follows. �

Corollary 5.2. LetM be an n-dimensional manifold with Hessian structure (∇̄, P ).
For every y ∈M , there exists a neighbourhood U of y and a Lagrangian immersion
f : U → E2n

n such that the distribution DX is transversal to f , and the Hessian
structure (∇X, ĝ) induced on U by f as in Corollary 5.1 coincides with the Hessian
structure (∇̄, P ).

Finally, we establish a duality relation between pre-Hessian structures on a man-
ifold M .

Theorem 5.1. Let M be a manifold with a pre-Hessian structure (∇, P ). Suppose

that P is non-degenerate and let (∇̃, PT ) be the dual pre-Codazzi structure. Then

∇̃ is also flat, and (∇̃, PT ) is a pre-Hessian structure.

Proof. Assume the conditions of the theorem. By Proposition 5.2, M can locally
be immersed in E2n

n such that DX is transversal to the immersion, ∇ coincides

with the induced affine connection ∇X, and Q̂ = P . Since P is non-degenerate,
the distribution DP is by Lemma 2.3 also transversal to f . In particular, this
distribution induces the connection∇P onM . By iii), Theorem 2.1∇P is conjugate

to ∇X relative to Q̂, and hence coincides with the connection ∇̃. But ∇P is flat by
Proposition 5.1, and hence ∇̃ is flat. �

Thus the duality between pre-Codazzi structures introduces a duality relation
between pre-Hessian structures.

Definition 5.2. Let M be a manifold with pre-Hessian structure (∇, P ), and

suppose the tensor P is non-degenerate. Let ∇̃ be the conjugate connection of ∇
relative to P . Then we call (∇̃, PT ) the dual pre-Hessian structure of (∇, P ).

For Hessian structures, this duality relation reduces to the well-known duality
relation given in [19, Def. 2.6, p.25].
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Appendix A. Topological lemmas

The purpose of this section is to provide two auxiliary topological results, namely
Lemma A.2 and Corollary A.1.

Definition A.1. [3, pp.5–6] Let M be a topological space and let U be a cover
of M . A cover V of M is called a refinement of U if for every V ∈ V there exists
U ∈ U such that V ⊂ U . It is called a star refinement of U if for every x ∈ M ,
there exists U ∈ U such that

∪
V ∈V:x∈V V ⊂ U . It is called a strong star refinement

of U if for every W ∈ V, there exists U ∈ U such that
∪

V ∈V:W∩V ̸=∅ V ⊂ U .

Proposition A.1. [3, Proposition 4, p.6] Let U be a cover of a topological space
M , let V be a star refinement of U, and let W be a star refinement of V. Then
W is a strong star refinement of U.

Definition A.2. [3, p.16] A topological spaceM is star-normal if every open cover
U of M has an open star refinement.

Proposition A.2. [3, Theorem 26, p.16] Every paracompact Hausdorff space is
star-normal.

From now on, we assume that a differentiable manifold is by definition second-
countable, and hence also paracompact [16, p.4].

Corollary A.1. Let M be a differentiable manifold and let U be an open cover of
M . Then there exists an open strong star refinement V of U.

Proposition A.3. [16, Theorem 10.6] A smooth differentiable manifold M pos-
sesses a smooth triangulation.

From the proof of this result (see [16, Lemma 2.7 and p.103]) we can actually
deduce a slightly stronger version.

Theorem A.1. Let M be a manifold and let U be an open cover of M . Then there
exists a smooth triangulation K of M which is subordinated to U, i.e., such that
for every simplex σ ∈ K, there exists U ∈ U such that σ ⊂ U .

Definition A.3. [16, p.70] LetM be a smooth differentiable manifold with a given
triangulation K. For x ∈ M , we call

∪
σ∈K:x∈σ σ

o the star St(x,K) of x. Here σo

denotes the interior of the simplex σ.
The star St(x,K) is a neighbourhood of x in M [16, p.70]. Clearly it is con-

tractible onto x and hence simply connected.

Lemma A.1. Let M be a smooth differentiable manifold with a given triangulation
K. For every x, y ∈M , either St(x,K) ∩ St(y,K) = ∅ or there exists z ∈M such
that St(x,K) ∩ St(y,K) = St(z,K).

Proof. We have St(x,K) =
∪

σ∈K:x∈σ σ
o, St(y,K) =

∪
σ∈K:y∈σ σ

o, hence

St(x,K) ∩ St(y,K) =
∪

σ∈K:x∈σ,y∈σ

σo.

Since the intersection of two simplices in K is either empty or again a simplex in
K, we have that either St(x,K) ∩ St(y,K) = ∅ or there exists a minimal simplex
σ∗ containing both x and y. In the latter case we thus obtain

St(x,K) ∩ St(y,K) =
∪

σ∈K:σ∗⊂σ

σo.

In this case we can choose z to be any interior point of σ∗. �
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Lemma A.2. Let M be a smooth differentiable manifold and let U be an open
cover of M . Then there exists an open refinement V of U such that for every finite
subset Σ ⊂ V the intersection

∩
V ∈Σ V is either empty or simply connected.

Proof. Let W be an open star refinement of U. By Theorem A.1, there ex-
ists a triangulation K of M that is subordinated to W. We now define V =
{St(x,K) |x ∈M}. Then V is an open cover of M . By the preceding lemma, for
every V, V ′ ∈ V we have either V ∩ V ′ = ∅ or V ∩ V ′ ∈ V. Thus

∩
V ∈Σ V is either

empty or again an element of V for every finite Σ ⊂ V. But the elements of V are
simply connected.

It rests to prove that V is a refinement of U. For every x ∈M we have

St(x,K) =
∪

σ∈K:x∈σ

σo ⊂
∪

σ∈K:x∈σ

σ ⊂
∪

W∈W:x∈W

W.

The last inclusion comes from the fact that K is subordinated to W. The assertion
now follows from the supposition that W is a star refinement of U. �

Appendix B. Lemma B.1

Lemma B.1. Let p ∈ Rn be a point and let {qi}i∈I be a finite family of smooth
real-valued functions defined in a neighbourhood U of p. Suppose that all qi belong
to the same k-jet at p. Let further {λi}i∈I be a family of smooth functions defined
in U such that

∑
i∈I λ

i ≡ 1 on U . Then q =
∑

i∈I λ
iqi belongs to the same k-jet

at p as the functions qi.

Proof. Let P be the k-th order Taylor polynomial of qi at p. Then the derivatives of
the functions q̃i = qi−P at p vanish up to order k, and q =

∑
i∈I λ

i(q̃i+P ) = P+ q̃

with q̃ =
∑

i∈I λ
iq̃i. Computing the derivatives of the product λiq̃i at p explicitly

using the product rule, it is easily seen that they also vanish up to order k. Hence
the derivatives of q̃ at p vanish up to order k, and q belongs to the same k-jet as
P , and thus as the functions qi. �
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