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Abstract. In this paper, we introduce a new class of ligtlike submanifold
called screen semi- invariant (SSI) lightlike submanifolds of a semi Riemannian

product manifold. We give examples of such submanifolds and study the
geometry of leaves of distributions which are involved in the definition of SSI-
lightlike submanifolds. We obtain, necessary and sufficient conditions for the
SSI-lightlike submanifold to be locally product manifold. Finally, we give some

characterizations for totally umbilical SSI-lightlike and screen anti-invariant
lightlike submanifolds of semi-Riemannian product manifolds.

1. Introduction

The geometry of lightlike submanifolds of semi-Riemannian manifolds is devel-
oped by K.L. Duggal-A.Bejancu [8] and K.L. Duggal and B. Şahin [4]. The lightlike
submanifolds have been studied in various manifolds by many authors, [2], [3], [5],
[6], [7]. In [3], K.L. Duggal and B. Şahin introduced a new class of lightlike sub-
manifolds which is called Screen Cauchy Riemannian (SCR) lightlike submanifolds
of indefinite Kaehler manifolds. They have shown that, SCR-lightlike submanifolds
include invariant (complex) and screen real subcases of lighlike submanifolds. The
geometry of submanifolds of a Riemannian product manifold (Semi-Riemannian
Product manifold) have been extensively studied by many geometers, [12], [11],[10].
In case Riemannian, the invariant submanifolds and semi invariant submanifolds
are investigated by Ximin, L. and Shao, F.-M., [13]. As an analouge of CR-lightlike
submanifolds, semi-invariant lightlike submanifolds were introduced by M. Atçeken
and E. Kılıç [1]. Therefore, in [9], E.Kılıç and B. Şahin introduced radical anti-
invariant lightlike submanifolds of semi-Riemannian product manifold. In this pa-
per, we introduce a new class of lightlike submanifolds of semi-Riemannian product
manifolds which is called screen semi invariant (SSI) lightlike manifold and inves-
tigate the geometry of such submanifolds.
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In Section 2 and Section 3, we give the basic concepts on lightlike submanifolds
and product manifolds which will be used throughout this paper. In section 4,
we introduce SSI-lightlike submanifolds and give examples. We investigate the
integrability conditions of all the distributions. We also obtain that the SSI-lightlike
submanifolds and its leave of the screen distribution are locally product manifolds
under some conditions. In section 5, we study totally umbilical SSI-submanifolds
and give a condition for its Ricci tensor to be symmetric. We prove that there exist
no totally umbilical SSI-lightlike submanifolds in positively or negatively curved
(or null sectional curved) semi-Riemannian product manifolds. Finally, in section
6, we study the geometry of screen anti-invariant lightlike submanifolds of semi-
Riemannian Product manifolds.

2. Lightlike Submanifolds

In this paper, we use the same notations and terminologies as in [8].

Let (M, g) be an (m + n)-dimensional semi-Riemannian manifold with index
q > 0 and M be a submanifold of n-codimension of M . If g is degenerate on the
tangent bundle TM of M , then M is called a lightlike (degenerate) submanifold of
M . We denote by g the induced metric of g on M and suppose that g is degenerate,
then for each tangent space TxM ,

TxM
⊥ = {Ux ∈ TxM : gx(Ux, Vx) = 0, ∀Vx ∈ TxM},

is a degenerate n-dimensional subspace of TxM . Thus both TxM and TxM
⊥ are

degenerate orthonormal distributions. In this case, there exists a subspace

Rad(TxM) = TxM ∩ TxM
⊥

which is called Radical subspace. The mapping

Rad(TM) : x ∈ M −→ Rad(TxM)

defines a smooth distribution on M of rank(Rad(TM)) = r > 0, then M is called
r-lightlike submanifold and Rad(TM) is called radical distribution on M .

There are four possible cases with respect to the dimension and codimension of
M and rank of Rad(TM). We recall that
Case 1) M is called r-lightlike submanifold, if 1 ≤ r < min{m,n}.
Case 2) M is called co-isotropic submanifold, if 1 ≤ r = n < m.
Case 3) M is called isotropic submanifold, if 1 ≤ r = m < n.
Case 4) M is called totally lightlike submanifold, if 1 ≤ r = m = n.

For Case 1, there exists a non-degenerate screen distribution S(TM) which is a
complementary vector subbundle to Rad(TM) in TM . Therefore, we can write

(2.1) TM = Rad(TM) ⊥ S(TM).

As S(TM) is non-degenerate vector subbundle of TM |M , we put

(2.2) TM |M= S(TM) ⊥ S(TM)⊥,
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where S(TM)⊥ is the complementary orthogonal vector subbundle of S(TM) in
TM |M . If we use the fact that S(TM) and S(TM)⊥ are non-degenerate, we have
the following orthogonal direct decomposition

(2.3) S(TM)⊥ = S(TM⊥) ⊥ S(TM⊥)⊥.

Denote an r-lightlike submanifold by (M, g, S(TM), S(TM⊥)).

Theorem 2.1. [8] Let
(
M, g, S(TM), S(TM⊥)

)
be a r-lightlike submanifold of

a semi-Riemannian manifold
(
M, g

)
. Then there exists a complementary vector

bundle ℓtr(TM) called a lightlike transversal bundle of Rad(TM) in S(TM⊥)⊥ and
a basis of Γ (ℓtr(TM)|U ) consists of smooth sections {N1, ..., Nr} of S(TM⊥)⊥ |U
such that

g (Ni, ξj) = δij , g (Ni, Nj) = 0, i, j = 1, ...r,

where {ξ1, ..., ξr} is a basis of Γ(Rad(TM)|U ).

Theorem 2.2. [8] Let M be an r-lightlike submanifold of a semi-Riemannian man-
ifold M . Then the induced connection ∇ is a metric connection if and only if
Rad(TM) is a parallel distribution w.r.t. ∇.

We consider the vector bundle

(2.4) tr(TM) = ℓtr(TM) ⊥ S(TM⊥).

Thus we have

(2.5) TM = TM ⊕ tr(TM) = S(TM) ⊥ S(TM⊥) ⊥ (Rad(TM)⊕ ℓtr(TM).

Now, let ∇ be the Levi-Civita connection on M and ∇ be induced connection
on M . Then the Gauss and Weingarten formulas are respectively given by

(2.6) ∇XY = ∇XY + h(X,Y ) , ∀X,Y ∈ Γ (TM)

and

(2.7) ∇XV=-AV X +∇⊥
XV , ∀X ∈ Γ (TM)

for any V ∈ Γ (tr(TM)), where {∇XY,AV X} and {h(X,Y ),∇⊥
XV } belong to

Γ(TM) and Γ(tr(TM)), respectively. It follows that ∇⊥ is linear connections on
tr(TM). Using the projections L : tr(TM) −→ ℓtr(TM) and S : tr(TM) −→
S(TM⊥), then we have

(2.8) ∇XY = ∇XY + hℓ(X,Y ) + hs(X,Y )

(2.9) ∇XN = −ANX +∇ℓ
XN +Ds(X,N)

and

(2.10) ∇XW = −AWX +∇s
XW +Dℓ(X,W ),

for anyX,Y ∈ Γ (TM) , N ∈ Γ (ltr(TM)) andW ∈ Γ
(
S(TM⊥)

)
, where hl(X,Y ) =

Lh(X,Y ), hs(X,Y ) = Sh(X,Y ) , ∇XY,ANX,AWX ∈ Γ (TM), ∇ℓ
XN , Dℓ(X,W )

∈ Γ (ℓtr(TM)) and ∇s
XW,Ds(X,N) ∈ Γ

(
S(TM⊥)

)
.

By using (2.8), (2.9) and (2.10) we obtain

(2.11) g (hs(X,Y ),W ) + g
(
Y,Dℓ(X,W )

)
= g(AWX,Y ).



SCREEN SEMI INVARIANT LIGHTLIKE SUBMANIFOLDS 123

We denote the projection morphism of TM to the screen distribution S(TM) by
P . According to (2.1) we have

(2.12) ∇XPY = ∇∗
XPY + h∗(X,PY )

(2.13) ∇Xξ = −A∗
ξX +∇∗t

X ξ

for anyX,Y ∈ Γ (TM) and ξ ∈ Γ (Rad(TM)), where {∇∗
XPY,A∗

ξX} and {h∗(X,PY ),

∇∗t

X ξ} belong to Γ(S(TM)) and Γ(Rad(TM)), respectively. It follows that ∇∗ and

∇∗t

are linear connections on S(TM) and Rad(TM), respectively. Then we have
the following equations

(2.14) g
(
hl(X,PY ), ξ

)
= g

(
A∗

ξX,PY
)
, g (h∗(X,PY ), N) = g (ANX,PY )

(2.15) g
(
A∗

ξPX,PY
)
= g

(
PX,A∗

ξPY
)
, A∗

ξξ = 0

for any X,Y ∈ Γ (TM) , ξ ∈ Γ (Rad(TM)) and N ∈ Γ (ℓtr(TM)).

In general, the induced connection on lightlike submanifold M is not metric
connection. Since ∇ is metric connection, ∇g is obtained from (2.6) and (2.8) as

(2.16) (∇Xg) (Y, Z) = g(hℓ(X,Y ), Z) + g(hℓ(X,Z), Y )

for any X,Y, Z ∈ Γ (TM).
If M is a real space form with constant sectional curvature c, then the Riemannian
curvature tensor R of M is given by

R(X,Y )Z = c{g(Y,Z)X − g(X,Z)Y },(2.17)

for any X,Y, Z ∈ Γ(TM).

Now, we recall that the equation of Gauss for the lightlike immersion of M in
M is given by

R(X,Y )Z = R(X,Y )Z +Ahℓ(X,Z)Y −Ahℓ(Y,Z)X + (∇Xhℓ)(Y,Z)

− (∇Y h
ℓ)(X,Z) +Ahs(X,Z)Y +Dℓ(X,hs(Y, Z))

− Ahs(Y,Z)X −Dℓ(Y, hs(X,Z)) + (∇Xhs)(Y,Z)(2.18)

− (∇Y h
s(X,Z) +Ds(X,hℓ(Y, Z))−Ds(Y, hℓ(X,Z))

for any X,Y, Z ∈ Γ (TM).
We refer to [8] for the dependence of all the induced geometric objects of M on

{S(TM), S(TM⊥)}.

3. Semi-Riemannian Product Manifolds

Let (M1, g1) and (M2, g2) be two m1 and m2−dimensional semi-Riemannian
manifolds with constant indexes q1 > 0, q2 > 0, respectively. Let π : M1 ×M2 −→
M1 and σ : M1 × M2 −→ M2 be the projections which are given by π(x, y) = x
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and σ(x, y) = y for any (x, y) ∈ M1 × M2. We denote the product manifold by
M = (M1 ×M2, g), where

g(X,Y ) = g1(π∗X,π∗Y ) + g2(σ∗X,σ∗Y )

for any X,Y ∈ Γ(TM) and ∗ means tangent mapping. Then we have π2
∗ = π∗,

σ2
∗ = σ∗, π∗σ∗ = σ∗π∗ = 0 and π∗ + σ∗ = I, where I is identity transformation.

Thus (M, g) is a (m1 +m2)-dimensional semi-Riemannian manifold with constant
index (q1 + q2). The semi-Riemannian product manifold M = M1 ×M2 is charac-
terized by M1 and M2 which are totally geodesic submanifolds of M .

Now, if we put F = π∗ − σ∗, then we can easily see that F 2 = I and

g(FX, Y ) = g(X,FY ),

for any X,Y ∈ Γ(TM). Then it can be seen that

(∇XF )Y = 0,(3.1)

for any X,Y ∈ Γ(TM), that is, F is parallel with respect to ∇ [12].

The Riemannian curvature tensor field of M1 ×M2 satisfied

R(X,Y )FZ = FR(X,Y )Z,

for any X,Y, Z ∈ Γ(TM1 × TM2).

Now, suppose thatM1 andM2 are real space forms with constant sectional c1 and
c2, respectively. Then the Riemannian curvature tensor R̄ of M̄ = M1(c1)×M2(c2)
is given by

R̄(X,Y )Z =
1

16
(c1 + c2){ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(FY,Z)FX − ḡ(FX,Z)FY }

+
1

16
(c1 − c2){ḡ(FY,Z)X − ḡ(FX,Z)Y + ḡ(Y, Z)FX − ḡ(X,Z)FY },(3.2)

for any X,Y, Z ∈ Γ(TM̄)) [14].
LetM be a submanifold of a Riemannian (or semi-Riemannian) product manifold

M = M1 × M2. If F (TM) = TM , then M is called invariant submanifold, if
F (TM) ⊂ TM⊥, then M is called anti-invariant submanifold.

4. screen semi invariant lightlike submanifolds of a product
manifold

In this section, we introduce Screen Semi-Invariant (SSI) submanifolds of
semi-Riemannian product manifolds, give examples and investigate the geometry
of leaves of distributions.

Definition 4.1. Let (M, g) be a semi-Riemannian product manifold and M be a
lightlike submanifold of M . We say that M is SSI-lightlike submanifold of M if the
following statements are satisfied:
1) There exists a non-null distribution D ⊆ S(TM) such that

S(TM) = D⊥D⊥, FD = D, FD⊥ ⊆ S(TM⊥), D ∩D⊥ = {0},(4.1)

where D⊥ is orthogonal complementary to D in S(TM).
2) Rad TM is invariant with respect to F , that is FRad(TM) = Rad(TM).
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Then we have

Fℓtr(TM) = ℓtr(TM),(4.2)

TM = D′⊥D⊥, D′ = D⊥Rad(TM).(4.3)

Hence it follows that D′ is also invariant with respect to F . We denote the orthog-
onal complement to FD⊥ in S(TM⊥) by D0. Then, we have

tr(TM) = ltr(TM)⊥FD⊥⊥D0.(4.4)

If D ̸= {0} and D⊥ ̸= {0}, then we say that M is a proper SSI-lightlike submanifold
of M . Hence, for on proper M , we have dim(D) ≥ 1, dim(D⊥) ≥ 1, dim(M) ≥ 3
and dim(M) ≥ 5. Furthermore, there exists no proper SSI-lightlike hypersurface of
a semi-Riemannian product manifold.

If D = {0}, that is FS(TM) ⊆ S(TM⊥), then we say that M is screen anti-
invariant lightlike submanifold.

Example 4.1. Let M1 and M2 be R3
1 and R2, respectively. Then M = M1 ×M2

is a semi-Riemannian product manifold with metric tensor g = π∗g1 + σ∗g2, where
g1 and g2 are the standard metric tensors of R3

1 and R2 with (−,+,+) and (+,+),
π∗ and σ∗ are the projections of Γ(TM) to Γ(TM1) and Γ(TM2), respectively. Let
M be a submanifold of M given by equations

x1 =
√
2u1 + u3, x2 = u1 + u3, x3 = u1 + (

√
2− 1)u3,

x4 = u2 + (

√
2− 1√
2

)u3, x5 = u2 − (

√
2− 1√
2

)u3,

where u1, u2, u3 are real parameters. Then TM is spanned by {U1, U2, U3}, where

U1 =
√
2

∂

∂x1
+

∂

∂x2
+

∂

∂x3
, U2 =

∂

∂x4
+

∂

∂x5
,

U3 =
∂

∂x1
+

∂

∂x2
+ (

√
2− 1)

∂

∂x3
+ (

√
2− 1√
2

)
∂

∂x4
− (

√
2− 1√
2

)
∂

∂x5
.

Hence M is a 1-lightlike submanifold with Rad(TM) = Span{U1}. S(TM) and
S(TM)⊥ are spanned by {U2, U3} and {H}, respectively, where

H =
∂

∂x1
+

∂

∂x2
+ (

√
2− 1)

∂

∂x3
− (

√
2− 1√
2

)
∂

∂x4
+ (

√
2− 1√
2

)
∂

∂x5
.

Then the lightlike transversal vector bundle ltr(TM) is spanned by

N = − 1

2
√
2

∂

∂x1
+

1

4

∂

∂x2
+

1

4

∂

∂x3

Therefore, D = Span{U2}, D⊥ = Span{U3}, D0 = {0} and FRad(TM) =
Rad(TM), FD = D, FD⊥ = S(TM⊥), Fltr(TM) = ltr(TM). Thus, M is a
proper SSI-lightlike submanifold of M whit D′ = Span{U1, U2}.

Proposition 4.1. Let M be a SSI-lightlike submanifold of a semi-Riemannian
product manifold M = M1 ×M2. Then M is an invariant lightlike submanifold of
M if and only if D⊥ = {0}.

Proof. If M is a invariant lightlike submanifold of M , then FTM = TM and
D⊥ = {0}. Conversely, if D⊥ = {0}, then FTM = TM . �
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From this Proposition, we have the following Corollary.

Corollary 4.1. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M1×M2. If M is a co-isotropic or isotropic or totally lightlike, then
M is a invariant lightlike submanifold.

Example 4.2. Let M1 and M2 be R4
2 and R2

1 with standard metrics g1 and g2,
respectively. Consider a submanifold M in M1 ×M2 given by the equations

x3 = x1 cosα− x5 sinα, x4 = −x1 sinα− x5 cosα, x6 =
√
2 x5,

where (x1, x2, x3, x4) and (x5, x6) are standard coordinate systems of R4
2 and R2

1,
respectively. Then TM is spanned by

Z1 =
∂

∂x1
+ cosα

∂

∂x3
− sinα

∂

∂x4
,

Z2 =
∂

∂x2
,

Z3 = − sinα
∂

∂x3
− cosα

∂

∂x4
+

∂

∂x5
+
√
2

∂

∂x6
.

Thus M is a 1-lightlike submanifold with invariant Rad(TM) = Span{Z1}. The
screen distribution S(TM) = Span{Z2, Z3} andD = Span{Z2, },D⊥ = Span{Z3}.
On the other hand S(TM⊥) is spanned by W1 = sinα ∂

∂x3
+cosα ∂

∂x4
+ ∂

∂x5
+
√
2 ∂
∂x6

and W2 =
√
2 ∂
∂x5

+ ∂
∂x6

and the lightlike transversal bundle ℓtr(TM) is spanned

by N = −1
2

∂
∂x1

+ 1
2 cosα

∂
∂x3

− 1
2 sinα

∂
∂x4

. Hence, FD = D, FD⊥ ⊂ S(TM⊥) and
M is a proper SSI-lightlike submanifold of M1 ×M2.

Let M be a lightlike submanifold of a semi-Riemannian product manifold M =
M1 ×M2. Then, for each X ∈ Γ(TM) and V ∈ Γ(tr(TM)), we put

FX = fX + ωX, FV = BV + CV(4.5)

where fX, BV and ωX, CV are the tangent and the transversal parts of FX
and FV . If M is a SSI-lightlike submanifold of M , then fX ∈ Γ(D′) and ωX ∈
Γ(FD⊥), respectively.

Theorem 4.1. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M1×M2.Then the screen distribution of M is integrable if and only
if the following three conditions are satisfied

g(ANY, FX) = g(ANX,FY ), X, Y ∈ Γ(D),(4.6)

g(ANY, FX) = −g(Ds(X,N), FY ), X ∈ Γ(D), Y ∈ Γ(D⊥),(4.7)

g(Ds(X,N), FY ) = g(Ds(Y,N), FX), X, Y ∈ Γ(D⊥).(4.8)

Theorem 4.2. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M1 × M2. Then the distribution D′ is integrable if and only if
h(X,FY ) = h(FX, Y ), for all X,Y ∈ Γ(D′).

These last two theorems are similar to Theorem 3.3 and Theorem 3.4 given in
[3], respectively.

Theorem 4.3. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M1 × M2. Then the distribution D⊥ is integrable if and only if
AFZW = AFWZ, for any W,Z ∈ Γ(D⊥).
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Proof. Since F is parallel with respect to ∇, from (2.8), (2.10) and (4.5), we get

−AFWZ +Dℓ(Z,FW ) +∇s
ZFW = f∇ZW + ω∇ZW +Bh(Z,W ) + Ch(Z,W )

for all W,Z ∈ Γ(D⊥). Taking tangential part of this equation, we have

−AFWZ = f∇ZW +Bh(Z,W ).(4.9)

By replacing role of vector fields W and Z in (4.9), by a direct calculation, we
obtain

AFZW −AFWZ = f [Z,W ].

Since [Z,W ] = f [Z,W ] + ω[Z,W ], D⊥ is integrable if and only if f [Z,W ] = 0 and
we complete the proof. �

Corollary 4.2. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M1 × M2. If the distribution D⊥ is integrable, then the following
statements holds.
a) AN is self-adjoint on D⊥ with respect to g, for any N ∈ Γ(ℓtr(TM)).
b) AFZW has no components in D, for any Z,W ∈ Γ(D⊥).

Proof. Suppose that D⊥ is integrable. Then, AFZW = AFWZ, for any Z,W ∈
Γ(D⊥). Since g(FW,FN) = g(W,N) = 0 and ∇ is a metric connection, we obtain

g(AFWZ,FN) = −g(W,ANZ), g(AFZW,FN) = −g(Z,ANW ),

for any N ∈ Γ(ℓtr(TM)). From this last two equations, we have g(Z,ANW ) =
g(W,ANZ).

Since D⊥ is integrable, g([Z,W ], FX) = 0, for any Z,W ∈ Γ(D⊥), X ∈ Γ(D).
From (2.11), we have

g(hs(Z,X), FW ) = g(AFWZ,X).(4.10)

Using (2.8) and (2.10), we obtain

g(hs(X,Z), FW ) = −g(AFZX,W ).(4.11)

From (4.10) and (4.11), we have

g(AFWZ,X) = −g(AFZX,W ).(4.12)

Since ∇ is a metric connection and g(Z,FX) = 0 and using to symmetric of hs, we
obtain

g(AFZW,X) = g(AFZX,W ).(4.13)

From (4.12) and (4.13), we have

g(AFWZ,X) = −g(AFZW,X).(4.14)

On the other hand, we get

g([Z,W ], FX) = g(AFZW,X)− g(AFWZ,X)

= 2g(AFZW,X) = 0.

Thus we have (b). �
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Theorem 4.4. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M1 × M2. Then the distribution D is integrable if and only if the
following statements holds:
a) AN is self adjoint on D, for any N ∈ Γ(ℓtr(TM)).
b) g(FY,AUX) = g(FX,AUY ), X,Y ∈ Γ(D) and U ∈ Γ(FD⊥).

Proof. Suppose that D is integrable. Then, [X,Y ] ∈ Γ(D), that is g([X,Y ], N) = 0
and g([X,Y ], FU) = 0, X,Y ∈ Γ(D), N ∈ Γ(ℓtr(TM)) and U ∈ Γ(FD⊥). Thus
we have

g([X,Y ], N) = g(Y,ANX)− g(X,ANY ),(4.15)

g([X,Y ], FU) = g(FY,AUX)− g(FX,AUY ).(4.16)

Hence, from (4.15) and (4.16), we obtain (a) and (b), respectively.
Conversely, (a) and (b) are satisfied. From (4.15) and (4.16), we have [X,Y ] ∈ Γ(D),
for any X,Y ∈ Γ(D). �

Theorem 4.5. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M1 ×M2. Then the following assertions are equivalent:
a) S(TM) is parallel.
b) AFZ is S(TM)-valued for Z ∈ Γ(D⊥).
c) Ds(X,FN) is D0-valued, for X ∈ Γ(TM), N ∈ Γ(ℓtr(TM)).

Proof. S(TM) is parallel if and only if g(∇XZ,N) = 0, for any X,Z ∈ Γ(S(TM))
and N ∈ Γ(ℓtr(TM)). Since g(∇XZ,N) = g(∇XZ,N) and F is parallel with
respect to ∇, we obtain

g(∇XZ,N) = g(∇XFZ,FN).(4.17)

If Z ∈ Γ(D⊥), then g(AFZX,N) = 0, that implies (b). Since ∇ is a Levi-Civita
connection, from (4.17), we get g(FZ,Ds(X,FN)) = 0. Thus we have (c). �

Theorem 4.6. Suppose that the secreen ditribution of M be a SSI-lightlike sub-
manifold of a semi-Riemannian product manifold M = M1×M2 is integrable. Then
the following statements are equivalent.
1) The distribution D defines a totally geodesic folation in S(TM).
2) Bhs(X,Y ) = 0, for any X ∈ Γ(TM) and Y ∈ Γ(D).
3) AFZX has no components in D, for any X ∈ Γ(TM) and Z ∈ Γ(D⊥).

Proof. We assume that D is totally geodesic in S(TM). Then ∇∗
XY ∈ Γ(D) for any

X ∈ Γ(TM) and Y ∈ Γ(D). Thus we have g(∇∗
XFY,Z) = 0, for any Z ∈ Γ(D⊥).

From (2.6) and (2.12), we get

g(∇∗
XFY,Z) = g(∇XY, FZ) = 0.

From (2.8), we have

g(hs(X,Y ), FZ) = 0.

Hence we obtain (2). Since ∇ is a Levi-Civita connection, we get

g(∇XY, FZ) = g(AFZX,Y ) = 0.

Thus we have (3). �

It is easy cheak that, D is totally geodesic in S(TM) if and only if D⊥ is totally
geodesic in S(TM). So we have following corollary.
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Corollary 4.3. Suppose that the secreen ditribution of M be a SSI-lightlike sub-
manifold of a semi-Riemannian product manifold M = M1×M2 is integrable. Then
S(TM) is a locally product manifold if and only if AFZX has no components in D,
for any X ∈ Γ(TM) and Z ∈ Γ(D⊥).

Theorem 4.7. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M1×M2. Then M is a locally product manifold if and only if ∇f = 0

Proof. Let M be alocally product manifold. Then the leaves of distributions D′

and D⊥ are both totally geodesic in M . Since ∇F = 0 and from (2.6) and (2.7) we
get

∇XfY + h(X, fY ) = f∇XY + ω∇XY +Bh(X,Y ) + Ch(X,Y ),(4.18)

for any X ∈ Γ(TM) and Y ∈ Γ(D′). Since D′ is totally geodesic in M , ∇XY ∈
Γ(D). Then, for any U ∈ Γ(FD⊥), we have

g(∇XFY,U) = g(∇XY, FU) = g(∇XY, FU) = 0.

Hence we get Bh(X,Y ) = 0. Comparing the tangential and transversal parts with
respect to D of equation (4.18), ∇XfY = f∇XY , that is (∇Xf)Y = 0.

Similarly,

−AFZX +∇⊥
XFZ = f∇XZ + ω∇XZ +Bh(X,Z) + Ch(X,Z)(4.19)

for any X ∈ Γ(TM) and Z ∈ Γ(D⊥). From (4.19), we have

−AFZX = f∇XZ +Bh(X,Z).

For any Y ∈ Γ(D′), we get

g(f∇XZ, Y ) = −g(AFZX,Y ) = −g(∇XfY, Z) = 0,

that is f∇XZ = 0, which implies that (∇Xf)Z = 0.

Conversely, we suppose that ∇f = 0. Then we have ∇XfY = f∇XY , for any
X ∈ Γ(TM) and Y ∈ Γ(D′). Thus ∇XfY ∈ Γ(D) and the distribution D′ is totally
geodesic in M . Similarly, ∇XfZ = f∇XZ = 0, for any X ∈ Γ(TM) , Z ∈ Γ(D⊥)
and D⊥ is totally geodesic in M . �

5. Totally Umbilical SSI-Lightlike Submanifolds

In this section, we study totally umbilical SSI-Ligthlike submanifolds of a semi-
Riemannian product manifold.

Definition 5.1. [7] A lightlike submanifold (M, g) of a semi-Riemannian manifold
(M, g) is called totally umbilical in M , if there is a smooth transversal vector field
H ∈ Γ(tr(TM)) on M , called the transversal curvature vector field of M , such that,
for all X,Y ∈ Γ(TM),

h(X,Y ) = g(X,Y )H.(5.1)

It is known that M is totally umbilical if and only if on each coordinate neighbor-
hood U , there exist smooth vector fields Hℓ ∈ Γ(ℓtr(TM)) and Hs ∈ Γ(S(TM⊥))
such that

hℓ(X,Y ) = g(X,Y )Hℓ, hs(X,Y ) = g(X,Y )Hs,(5.2)

for any X,Y ∈ Γ(TM).
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Corollary 5.1. Let M be a totally umbilical SSI-lightlike submanifold of a semi-
Riemannian product manifold M = M1 ×M2. Then the distribution D⊥ is totally
geodesic in M .

Proof. Let X,Y ∈ Γ(D⊥). Then we have

∇XY = ∇̃XY + h̃(X,Y ),

where ∇̃XY ∈ Γ(D⊥) and h̃(X,Y ) ∈ Γ(D′). Since D′ is a invariant distribution, for
any Z ∈ Γ(D′), we have FZ = fZ ∈ Γ(D′). Since ∇ is a Levi-Civita connection,
it can be easily calculated

g(h̃(X,Y ), FZ) = g(∇XY, FZ)

= g(∇XY, FZ)

= −g(FY, hs(X,Z)).

Since X ∈ Γ(D⊥) and Z ∈ Γ(D′), from (5.2), we have

hs(X,Z) = 0,

and we have assertion of corollary. �

Theorem 5.1. Let M be a totally umbilical SSI-lightlike submanifold of a semi-
Riemannian product manifold M = M1 × M2. Then the following assertions are
equivalent:
1) The distribution D′ is totally geodesic in M .
2) AFZ is D⊥-valued, for any Z ∈ Γ(D⊥).
3) Hs ∈ Γ(D0).

Proof. Let X,Y ∈ Γ(D′). Then we have

∇XY = ∇′
XY + h′(X,Y ),

where ∇′
XY ∈ Γ(D′) and h′(X,Y ) ∈ Γ(D⊥). Since ∇ is a Levi-Civita connection,

it can be easily calculated

g(h′(X,FY ), Z) = g(hs(X,Y ), Z)

= g(FY,AFZX),

for any Z ∈ Γ(D⊥). Thus we have (1)-(3). �

From Corollary 5.1 and Theorem 5.1, we have the following theorem.

Theorem 5.2. Let M be a totally umbilical SSI-lightlike submanifold of a semi-
Riemannian product manifold M = M1×M2. Then M is a locally product manifold
if and only if Hs ∈ Γ(D0).

Theorem 5.3. Let M be a totally umbilical SSI-lightlike submanifold of a semi-
Riemannian product manifold M = M1(c1)×M2(c2). Then, the Ricci tensor on M
is symmetric if and only if AHℓ is self adjoint on M .

Proof. The Ricci tensor of a lightlike submanifold is given by

Ric(X,Y ) =
m∑
i=1

εig(R(ei, X)Y, ei) +
r∑

j=1

g(R(ξj , X)Y,Nj),

for any X,Y ∈ Γ(TM), where {e1, ..., em} is a orthonormal basis of Γ(S(TM)),
{ξ1, ..., ξr} and {N1, ..., Nr} are lightlike basis of Γ(Rad TM) and Γ(ℓtr(TM)),
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respectively and g(Ni, ξj) = δij , for any i, j ∈ {1, ..., r}. From (3.2) and (18), we
obtain

Ric(X,Y )−Ric(Y,X) = −g(AHℓX,Y ) + g(AHℓY,X)

− g(AHsX,Y ) + g(AHsY,X).

Suppose that Ricci tensor is symmetric on M . If X,Y ∈ Γ(Rad TM), then we have

g(AHℓX,Y ) = g(AHℓY,X) = g(AHsX,Y ) = g(AHsY,X) = 0.

If X ∈ Γ(Rad TM) and Y ∈ Γ(S(TM)), from (2.11) we have

g(AHsX,Y ) = g(AHsY,X) = 0.

If X,Y ∈ Γ(S(TM)), then from (2.11), we get

g(AHsX,Y ) = g(X,Y )g(Hs,Hs),

that is −g(AHℓX,Y ) + g(AHℓY,X) = 0. Thus we have our assertion. �
Theorem 5.4. There exist no totally umbilical proper SSI-lightlike submanifold
with dim(D) ≥ 2 in any negatively or positively curved (and also null sectional
curved) semi-Riemannian product manifold.

Proof. Suppose thatM is totally umbilical proper SSI-lightlike submanifold in semi-
Riemannian product manifold M(c) with c ̸= 0. From (2.19), for X ∈ Γ(D) and
Y ∈ Γ(D⊥), we have

g(R(X,Y )X,Y ) = g(R(X,Y )FX,FY )

= g((∇Xhs)(Y, FX), FY )− g((∇Y h
s)(X,FX), FY ).

From (5.2), we get

(∇Xhs)(Y, FX) = −(g(∇XY, FX) + g(Y,∇XFX))Hs.

Since X ∈ Γ(D) and Y ∈ Γ(D⊥), we have g(FX, Y ) = 0. Since g is parallel with
respect to ∇, we get

0 = Xg(Y, FX) = g(∇XY, FX) + g(Y,∇XFX).

Since dim(D) ≥ 2, we chose X ∈ Γ(D) such that g(X,FX) = 0. From (5.2), we
obtain

(∇Y h
s)(X,FX) = −2g(∇Y X,FX)Hs.

Therefore,

0 = Y g(X,FX) = 2g(∇Y X,FX).

Hence, g(R(X,Y )X,Y ) = 0 which is a contradiction. Similarly, it can be proved
for the null sectional curved case. �

6. Screen Anti-Invariant Lightlike Submanifolds

In this section, we will investigate the screen anti-invariant lightlike submanifolds
of semi-Riemannian product manifolds.

Let M be a screen anti-invariant lightlike submanifold of a semi-Riemannian
product manifold (M, g). Then we have

S(TM⊥) = FS(TM)⊥D0.

We say thatM is a proper screen anti-invariant lightlike submanifold, if S(TM) ̸=
{0} and D0 ̸= {0}. Thus we have the following proposition.
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Proposition 6.1. There exist no proper screen anti-invariant co-isotropic, isotropic
or totally lightlike submanifold of a semi-Riemannian product manifold M .

Example 6.1. Consider in R3
1 × R4

1 the submanifold M given by

x1 = u1 + u2, x
2 = u1 + u2, x

3 = u3, y1 = u1 − u2, y2 = u1 − u2, y
3 = u3, y

4 = 0,

where (x1, x2, x3) and (y1, y2, y3, y4) are standard coordinate systems of R3
1, respec-

tively, and R4
1 and u1, u2, u3 are real parameters. Then we have

TM = Span{U1 =
∂

∂x1
+

∂

∂x2
+

∂

∂y1
+

∂

∂y2
, U2 =

∂

∂x1
+

∂

∂x2
− ∂

∂y1
− ∂

∂y2
,

U3 =
∂

∂x3
+

∂

∂y3
}.

The radical distribution Rad(TM) is spanned by {U1, U2} and the screen distribu-
tion S(TM) is spanned by U3. Hence M is a 2-lightlike submanifold of R3

1 × R4
1.

Take

S(TM⊥) = {V1 =
∂

∂x3
− ∂

∂y3
, V2 =

∂

∂y4
},

and by the direct calculations we get

ℓtr(TM) = Span{N1 = −1

2
{2 ∂

∂x1
+

∂

∂x2
+ 2

∂

∂y1
+

∂

∂y2
},

N2 = −1

2
{2 ∂

∂x1
+

∂

∂x2
− 2

∂

∂y1
− ∂

∂y2
}}.

We easily check that, Rad(TM) and ℓtr(TM) are invariant distributions with re-
spect to F and FS(TM) ⊂ S(TM⊥), where D0 = Span{V1}. Thus M is a screen
anti-invariant lightlike submanifold.

Let M be a screen anti-invariant lightlike submanifold of a semi-Riemannian
product manifold M .Then, for any X ∈ Γ(TM), we can write

FX = fX + ωX,(6.1)

where fX ∈ Γ(Rad(TM)) and ωX ∈ Γ(FS(TM)). Similarly, for any V ∈ Γ(tr(TM)),
we can write

FV = BV + CV,(6.2)

where BV ∈ Γ(S(TM)) and CV ∈ Γ(tr(TM)).

Theorem 6.1. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M . Then the induced connection ∇ is a metric
connection if and only if hs(X, ξ′) ∈ Γ(D0), for any ξ′ ∈ Γ(Rad TM), X ∈ Γ(TM).

Proof. If ξ ∈ Γ(Rad(TM)), then there exists a ξ′ ∈ Γ(Rad TM) such that ξ = Fξ′.
From (3.1) and Gauss formula, we get

∇Xξ + h(X, ξ) = f∇Xξ′ + ω∇Xξ′ℓ(X, ξ′) +Bhs(X, ξ′) + Chs(X, ξ′),

for any X ∈ Γ(TM). If we take tangential component of this equation, we have

∇Xξ = f∇Xξ′ +Bhs(X, ξ′).

Thus, the radical distribution Rad(TM) is a parallel distribution if and only if
hs(X, ξ′) ∈ Γ(D0). From Theorem 2.2 we have the assertion of the theorem. �
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Theorem 6.2. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M . Then the following assertion equivalent:
1) S(TM) is integrable.
2) For any X,Y ∈ Γ(S(TM)), N ∈ Γ(ℓtr(TM)), g(AFY X,N) = g(AFXY,N).
3) g(FY,Ds(X,N)) = g(FX,Ds(Y,N)).

Proof. Suppose that S(TM) is integrable. Then we have g([X,Y ], FN) = 0,
for any X,Y ∈ Γ(S(TM)), N ∈ Γ(ℓtr(TM)). From (2.6) and (3.1) we have
g(AFY X,N) = g(AFXY,N). Since∇ is a metric connection, we get g(AFY X,N) =
g(FY,Ds(X,N)) and (3) is satisfied. Since g([X,Y ], FN) = g(FY,Ds(X,N)) −
g(FX,Ds(Y,N)), (3)⇒(1). �

Theorem 6.3. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M . Then the radical distribution integrable if
and only if

hs(ξ, Fξ′) = hs(Fξ, ξ′),

for any ξ, ξ′ ∈ Γ(Rad(TM)).

Proof. For any ξ, ξ′ ∈ Γ(Rad(TM)) and U ∈ Γ(FS(TM)), from (2.8) and (3.1), we
get

g([ξ, ξ′], FU) = g(hs(ξ, Fξ′)− hs(Fξ, ξ′), U).

This the assertion of the theorem. �

Theorem 6.4. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M . Then the following assertion equivalent:
1) The screen distribution S(TM) defines a totally geodesic foliation in M .
2) AFY is valued S(TM), for all Y ∈ Γ(S(TM)).
3) For any X ∈ Γ(TM) and N ∈ Γ(ℓtr(TM)), Ds(X,N) ∈ Γ(D0).

Proof. Suppose that S(TM) is totally geodesic. Then, for any X ∈ Γ(TM) and
Y ∈ Γ(S(TM)), ∇XY ∈ Γ(S(TM)). Thus we have g(∇XY, FN) = g(∇XFY,N) =
0 and (2) is satisfied. Since ∇ is a metric connection, we get g(∇XFY,N) =
−g(FY,Ds(X,N)) = 0 and Ds(X,N) ∈ Γ(D0). This is complete of proof. �

Theorem 6.5. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M . Then the screen distribution is a parallel
distribution in M if and only if AωY is S(TM) valued.

Proof. S(TM) is parallel if and only if g(∇XY, FN) = 0, for any X,Y ∈ Γ(S(TM))
andN ∈ Γ(ℓtr(TM)). Since g(∇XY, FN) = g(∇XFY,N), we obtain g(∇XY, FN) =
−g(AωY X,N). Thus we have the assertion of the theorem. �

Theorem 6.6. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M . Then M is a locally product manifold if
and only if f is parallel with respect to induced connection ∇, that is, ∇f = 0.

Proof. We suppose that M is a locally product manifold. Then the leaves of the
distributions of Rad(TM) and S(TM) are totally geodesic in M . Thus ∇Zfξ ∈
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Γ(Rad(TM)), for any Z ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)). Since Fξ = fξ, from
(3.1) we get

0 = ∇ZFξ − F (∇Zξ)

= ∇Zfξ − f(∇Zξ) + h(Z, fξ)− Fh(Z, ξ).

If we take tangential component of this equation, we get (∇Zf)ξ = 0. For any
X ∈ Γ(S(TM)), ∇ZfX = 0 and f(∇ZX) = 0. Thus we have f(∇ZX) = 0 and f
is parallel.

Now suppose that f is parallel with respect to ∇. Then

∇ZfX = f(∇ZX)

for any X,Z ∈ Γ(TM). If X ∈ Γ(Rad TM), then we have ∇ZfX ∈ Γ(Rad(TM))
and Γ(Rad(TM)) is totally geodesic inM . IfX ∈ Γ(S(TM)), then we have fX = 0
and f(∇ZX) = 0, that is ∇ZX ∈ Γ(S(TM)). �

Now, letM be totally umbilical proper screen anti-invariant lightlike submanifold
of a semi-Riemannian product manifold M . Then, from (2.6) and (5.1) we have

∇Xξ = ∇Xξ,

for anyX ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)). SinceRad(TM) is invariant distribution
w.r.t. F , there exists a ξ′ ∈ Γ(Rad(TM)) such that ξ = Fξ′. From above equation
and (3.1), we get

∇Xξ = f∇Xξ′.(6.3)

Since f∇Xξ′ ∈ Γ(Rad(TM)), then ∇Xξ ∈ Γ(Rad(TM)), i.e. the radical distribu-
tion is a parallel distribution in M . From Theorem 2.2, we have following corollary.

Corollary 6.1. Let M be totally umbilical screen proper anti-invariant lightlike
submanifold of a semi-Riemannian product manifold M . Then the induced connec-
tion ∇ is a metric connection.

Corollary 6.2. Let M be totally umbilical proper screen anti-invariant lightlike
submanifold of a semi-Riemannian product manifold M . Then the radical distribu-
tion defines a totally geodesic foliation in M .

Proof. The radical distribution defines a totally geodesic foliation if and only if
∇ξ1ξ ∈ Γ(Rad(TM)), for any ξ1, ξ ∈ Γ(Rad(TM)). If we take ξ1 for X in equation
(6.3), then we have ∇ξ1ξ ∈ Γ(Rad(TM)). �
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