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ABSTRACT. In this paper, we introduce a new class of ligtlike submanifold
called screen semi- invariant (SSI) lightlike submanifolds of a semi Riemannian
product manifold. We give examples of such submanifolds and study the
geometry of leaves of distributions which are involved in the definition of SSI-
lightlike submanifolds. We obtain, necessary and sufficient conditions for the
SSI-lightlike submanifold to be locally product manifold. Finally, we give some
characterizations for totally umbilical SSI-lightlike and screen anti-invariant
lightlike submanifolds of semi-Riemannian product manifolds.

1. INTRODUCTION

The geometry of lightlike submanifolds of semi-Riemannian manifolds is devel-
oped by K.L. Duggal-A.Bejancu [8] and K.L. Duggal and B. Sahin [4]. The lightlike
submanifolds have been studied in various manifolds by many authors, [2], [3], [5],
[6], [7]. In [3], K.L. Duggal and B. Sahin introduced a new class of lightlike sub-
manifolds which is called Screen Cauchy Riemannian (SCR) lightlike submanifolds
of indefinite Kaehler manifolds. They have shown that, SCR-lightlike submanifolds
include invariant (complex) and screen real subcases of lighlike submanifolds. The
geometry of submanifolds of a Riemannian product manifold (Semi-Riemannian
Product manifold) have been extensively studied by many geometers, [12], [11],[10].
In case Riemannian, the invariant submanifolds and semi invariant submanifolds
are investigated by Ximin, L. and Shao, F.-M., [13]. As an analouge of CR-lightlike
submanifolds, semi-invariant lightlike submanifolds were introduced by M. Atceken
and E. Kili¢ [1]. Therefore, in [9], E.Kilig¢ and B. Sahin introduced radical anti-
invariant lightlike submanifolds of semi-Riemannian product manifold. In this pa-
per, we introduce a new class of lightlike submanifolds of semi-Riemannian product
manifolds which is called screen semi invariant (SSI) lightlike manifold and inves-
tigate the geometry of such submanifolds.
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In Section 2 and Section 3, we give the basic concepts on lightlike submanifolds
and product manifolds which will be used throughout this paper. In section 4,
we introduce SSI-lightlike submanifolds and give examples. We investigate the
integrability conditions of all the distributions. We also obtain that the SSI-lightlike
submanifolds and its leave of the screen distribution are locally product manifolds
under some conditions. In section 5, we study totally umbilical SSI-submanifolds
and give a condition for its Ricci tensor to be symmetric. We prove that there exist
no totally umbilical SSI-lightlike submanifolds in positively or negatively curved
(or null sectional curved) semi-Riemannian product manifolds. Finally, in section
6, we study the geometry of screen anti-invariant lightlike submanifolds of semi-
Riemannian Product manifolds.

2. LIGHTLIKE SUBMANIFOLDS
In this paper, we use the same notations and terminologies as in [8].
Let (M,g) be an (m + n)-dimensional semi-Riemannian manifold with index
q > 0 and M be a submanifold of n-codimension of M. If g is degenerate on the
tangent bundle TM of M, then M is called a lightlike (degenerate) submanifold of

M. We denote by ¢ the induced metric of g on M and suppose that g is degenerate,
then for each tangent space T, M,

T,M*+ ={U, € T,M : g,(U,, V) =0, VYV, € T,M},

is a degenerate n-dimensional subspace of T, M. Thus both T,M and T,M~+ are
degenerate orthonormal distributions. In this case, there exists a subspace

Rad(T,M) =T, M NT,M=*
which is called Radical subspace. The mapping
Rad(TM) : x € M — Rad(T, M)

defines a smooth distribution on M of rank(Rad(T'M)) = r > 0, then M is called
r-lightlike submanifold and Rad(TM) is called radical distribution on M.

There are four possible cases with respect to the dimension and codimension of
M and rank of Rad(TM). We recall that

Case 1) M is called r-lightlike submanifold, if 1 < r < min{m,n}.
Case 2) M is called co-isotropic submanifold, if 1 <r =n < m.
Case 3) M is called isotropic submanifold, if 1 <r =m < n.

)

Case 4) M is called totally lightlike submanifold, if 1 <r =m = n.

For Case 1, there exists a non-degenerate screen distribution S(7'M) which is a
complementary vector subbundle to Rad(TM) in TM. Therefore, we can write

(2.1) TM = Rad(TM) L S(TM).

As S(TM) is non-degenerate vector subbundle of TM |5, we put

(2.2) TM |y=S(TM) L S(TM)*,



122 EROL KILIQ, BAYRAM SAHIN AND SADIK KELES

where S(T'M )t is the complementary orthogonal vector subbundle of S(T'M) in
TM]|ys. If we use the fact that S(TM) and S(TM)L are non-degenerate, we have
the following orthogonal direct decomposition

(2.3) S(TM)* = S(TM*) L S(TM*)*.
Denote an r-lightlike submanifold by (M, g, S(TM),S(TM%)).
Theorem 2.1. [8] Let (M,g,S(TM),S(TM?Y)) be a r-lightlike submanifold of

a semi-Riemannian manifold (M, §). Then there exists a complementary vector
bundle ¢tr(T M) called a lightlike transversal bundle of Rad(TM) in S(TM*L)t and
a basis of T (¢tr(TM)|) consists of smooth sections {N1, ..., N,.} of S(TM4)* ¢
such that

g(Ni, &) =65, g(NiyNj) =0, i,5=1,..r,
where {&1,...,&r} s a basis of T'(Rad(TM)|y).

Theorem 2.2. [8] Let M be an r-lightlike submanifold of a semi-Riemannian man-
ifold M. Then the induced connection V is a metric connection if and only if
Rad(TM) is a parallel distribution w.r.t. V.

We consider the vector bundle
(2.4) tr(TM) = (tr(TM) L S(TM*).
Thus we have
(25) TM =TM @ tr(TM) = S(TM) L S(TM~*) L (Rad(TM) & ¢tr(TM).

Now, let V be the Levi-Civita connection on M and V be induced connection
on M. Then the Gauss and Weingarten formulas are respectively given by

(2.6) VxY =VxY +h(X,Y),VX,Y €I (TM)
and
(2.7) VxV=-AyX +VxV ,VX €T (TM)

for any V € T (tr(TM)), where {VxY, Ay X} and {h(X,Y),V%V} belong to
[(TM) and T'(tr(TM)), respectively. It follows that V1 is linear connections on
tr(T'M). Using the projections L : ¢tr(I'M) — £tr(TM) and S : tr(TM) —
S(TM+), then we have

(2.8) VxY =VxY +h5(X,Y) + h*(X,Y)
(2.9) VxN = —-AxNX + V5N + D*(X, N)
and

(2.10) VxW = —Aw X + VW + DY (X, W),

forany X,Y € I'(TM),N €T (itr(TM))and W € T (S(TM*)), where h!(X,Y) =
Lh(X,Y), h*(X,Y) = Sh(X,Y) , VxY, AyX, Aw X € T (TM), V4N, D*(X, W)
€T (ttr(TM)) and VW, D*(X,N) € I (S(TM*)).

By using (2.8), (2.9) and (2.10) we obtain
(2.11) g (X, Y), W) +3g (Y, D'(X,W)) = g(Aw X, Y).
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We denote the projection morphism of TM to the screen distribution S(T'M) by
P. According to (2.1) we have

(2.12) VxPY = V%PY + h*(X, PY)
(2.13) V€ = —ALX + Vi€

forany X,Y € I'(T'M) and § € I (Rad(T'M)), where {V PY, A{ X'} and {h*(X, PY),
V% €} belong to I'(S(TM)) and I'(Rad(T'M)), respectively. It follows that V* and

V* are linear connections on S(T'M) and Rad(TM), respectively. Then we have
the following equations

(2.14) g (h'(X,PY),€) = g (A:X,PY) ,g(h*(X,PY),N) = g (AxX, PY)

(2.15) 9 (AiPX,PY) = g (PX,A{PY) , At =0
for any X,Y € T (TM),¢ € T (Rad(TM)) and N € T (¢tr(TM)).

In general, the induced connection on lightlike submanifold M is not metric
connection. Since V is metric connection, Vg is obtained from (2.6) and (2.8) as

(2.16) (Vx9) (Y, 2) =g(h"(X.Y), Z) +9(h(X, Z),Y)

for any X,Y,Z e ' (TM).
If M is a real space form with constant sectional curvature ¢, then the Riemannian
curvature tensor R of M is given by

(2.17) RX,Y)Z =c{g(Y,2)X —g(X,2)Y},
for any X,Y,Z € T'(TM).

~ Now, we recall that the equation of Gauss for the lightlike immersion of M in
M is given by

RX,)Y)Z = RX,Y)Z+ Apex,2)Y — Apey.y X + (Vxh')(Y, 2)
— (Vyh)(X,2) + Ape(x,2)Y + DX, h°(Y, Z))
(2.18) — ApripyX — DY, R (X, 2)) + (Vxh*)(Y, Z)
— (Vyh*(X,Z)+ D*(X,h*(Y, Z)) — D*(Y,h*(X, Z))
for any X,Y,Z € T (TM).

We refer to [8] for the dependence of all the induced geometric objects of M on
(S(TM), S(TM™)).

3. SEMI-RIEMANNIAN PRODUCT MANIFOLDS

Let (M1,g1) and (Mas,g2) be two my and mo—dimensional semi-Riemannian
manifolds with constant indexes ¢; > 0, g2 > 0, respectively. Let m: M; x My —
M; and o : My x My — M> be the projections which are given by 7(z,y) = «
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and o(z,y) = y for any (x,y) € M; x Ms. We denote the product manifold by
M = (M; x Ms,g), where

3 X,Y) = 1 (m X, m.Y) + g2(0. X, 0,Y)

for any X,Y € I'(TM) and * means tangent mapping. Then we have 72 = m,,
02 = 0., 0y = 0,7, = 0 and 7, + 0, = I, where [ is identity transformation.

*

Thus (M,g) is a (my + ms)-dimensional semi-Riemannian manifold with constant
index (q; + ¢2). The semi-Riemannian product manifold M = M; X Mj is charac-
terized by M; and M, which are totally geodesic submanifolds of M.

Now, if we put F' = 7, — 0,, then we can easily see that F? = I and

G(FX,Y) = 5(X, FY),

for any X,Y € I['(TM). Then it can be seen that
(3.1) (VxF)Y =0,
for any X,Y € I['(T'M), that is, F is parallel with respect to V [12].

The Riemannian curvature tensor field of M; x My satisfied
R(X,Y)FZ =FR(X,Y)Z,
for any X,Y,Z € T(TM; x TMy).
Now, suppose that M; and M, are real space forms with constant sectional ¢; and

¢, respectively. Then the Riemannian curvature tensor R of M = M (c1) x Mo(co)
is given by

R(X,Y)Z = %(c1 +e){g(V, 2)X — (X, 2)Y + §(FY, Z)FX — g(FX, Z)FY}
32  + %@1 — e){g(FY, 2)X — §(FX, Z)Y + (Y, Z)FX — §(X, Z)FY},

for any X,Y,Z € T(TM)) [14].

Let M be a submanifold of a Riemannian (or semi-Riemannian) product manifold
M = My x My. If F(TM) = TM, then M is called invariant submanifold, if
F(TM) C TM*, then M is called anti-invariant submanifold.

4. SCREEN SEMI INVARIANT LIGHTLIKE SUBMANIFOLDS OF A PRODUCT
MANIFOLD

In this section, we introduce Screen Semi-Invariant (SSI) submanifolds of
semi-Riemannian product manifolds, give examples and investigate the geometry
of leaves of distributions.

Definition 4.1. Let (M,g) be a semi-Riemannian product manifold and M be a
lightlike submanifold of M. We say that M is SSI-lightlike submanifold of M if the
following statements are satisfied:

1) There exists a non-null distribution D C S(T'M) such that

(4.1) S(TM) = D1D*, FD=D, FD*CS(TM*'), DnD*+={0},

where D+ is orthogonal complementary to D in S(TM).
2) Rad T'M is invariant with respect to F, that is FRad(TM) = Rad(TM).
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Then we have
(4.2) Fotr(TM) = btr(TM),
(4.3) TM =D'1D*, D' = D1Rad(TM).
Hence it follows that D’ is also invariant with respect to F'. We denote the orthog-
onal complement to FD+ in S(TM~1) by Dy. Then, we have
(4.4) tr(TM) = ltr(TM) LF D+ 1.D,.

If D # {0} and D+ # {0}, then we say that M is a proper SSI-lightlike submanifold
of M. Hence, for on proper M, we have dim(D) > 1, dim(D+) > 1, dim(M) > 3

and dim(M) > 5. Furthermore, there exists no proper SSI-lightlike hypersurface of
a semi-Riemannian product manifold.

If D = {0}, that is FS(TM) C S(TM>), then we say that M is screen anti-
invariant lightlike submanifold.

Example 4.1. Let M; and M, be R} and R?, respectively. Then M = M; x M,
is a semi-Riemannian product manifold with metric tensor g = 7*¢1 + 0* g2, where
g1 and go are the standard metric tensors of R and R? with (—, +,+) and (+, +),
7. and o, are the projections of I'(T'M) to I'(T'M;) and I'(T' M), respectively. Let
M Dbe a submanifold of M given by equations

' = V2uy + us, 2?2 =uy +ug, z° :u1+(\/§—1)U3,
4 V2-1 5 V2-1

z =u2+(7)u3, T =U2—(7)U3,
where g, ug, us are real parameters. Then T'M is spanned by {U;, Us, Us}, where
0 0 0 0 0
h=V2gitoztam U2=gatas
0 ) ) V2-1,0 V2—-1_0
=2 4 7 S (YE Ny T (X 2
Us Oxt + Ox? (V2 )8:133 + V2 )81'4 ( V2 )8x5

Hence M is a 1-lightlike submanifold with Rad(TM) = Span{U;}. S(T'M) and
S(TM)* are spanned by {Us, Us} and {H}, respectively, where
o 0 0 V2-1 0  V2-1 0
=2+ Z (V212 - 7 .
3x1+8332+(\[ ) ( NG} )8x4+( V2 )8335

Ox3
Then the lightlike transversal vector bundle {tr(T'M) is spanned by

10 10 19
24202 4022 4023
Therefore, D = Span{Us}, D+ = Span{Us}, Dy = {0} and FRad(TM) =
Rad(TM), FD = D, FD*+ = S(TM%), Flitr(TM) = Itr(TM). Thus, M is a
proper SSI-lightlike submanifold of M whit D’ = Span{Uy,Us}.
Proposition 4.1. Let M be a SSI-lightlike submanifold of a semi-Riemannian

product manifold M = M, x My. Then M is an invariant lightlike submanifold of
M if and only if D+ = {0}.

Proof. If M is a invariant lightlike submanifold of M, then FTM = TM and
D+ = {0}. Conversely, if D+ = {0}, then FTM = TM. a



126 EROL KILIG, BAYRAM SAHIN AND SADIK KELES

From this Proposition, we have the following Corollary.

Corollary 4.1. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = My x Msy. If M is a co-isotropic or isotropic or totally lightlike, then
M is a invariant lightlike submanifold.

Example 4.2. Let M; and My be R and R? with standard metrics g; and go,
respectively. Consider a submanifold M in M; x M, given by the equations

T3 =x1COSQ — T5Sinq, x4 = —xi1siha — T5coSQ, Tg = \/59057

where (1, 29,73, 74) and (x5, 26) are standard coordinate systems of R and R?,
respectively. Then T'M is spanned by

Zl = (97‘%1—'—(3080(873—banéaia74
0
oy = —
2 8$27
0 0 0
Z3 = — — — 4+ _—
3 smaax3 cosaam + Er + f@xﬁ

Thus M is a 1-lightlike submanifold with invariant Rad(TM) = Span{Z,}. The
screen distribution S(T'M) = Span{Zs, Zs} and D = Span{Zg, s DJ- Span{Zg}
On the other hand S(TM<1) is spanned by Wy = sin aaxs +cos aam + 8ac5 + f 3o

and Wy = \f a -+ ai and the lightlike transversal bundle ¢tr(T M) is spanned
by N = —%M + 5 cosoz% - %smoz&lc Hence, FD = D, FD*+ c S(TM*) and
M is a proper SSI-lightlike ‘submanifold of My x M.

Let M be a lightlike submanifold of a semi-Riemannian product manifold M =
My x Ms. Then, for each X € T'(TM) and V € T'(¢r(T'M)), we put

(4.5) FX =fX+wX, FV=BV+CV

where fX, BV and wX, CV are the tangent and the transversal parts of F'X
and FV. If M is a SSI-lightlike submanifold of M, then fX € I'(D’') and wX €
['(FD%1), respectively.

Theorem 4.1. Let M be a SSI-lightlike submanifold of a semi- Riemannian product
manifold M = My x M. Then the screen distribution of M is integrable if and only
if the following three conditions are satisfied

(4.6) J(ANY,FX) =g(ANX,FY), X,Y €T'(D),
(4.7)  g(ANY,FX)=—g(D*(X,N),FY), X €I(D), Y e (D),
(4.8) g(D*(X,N),FY) =g(D*(Y,N), FX), X,Y € (D").

Theorem 4.2. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M; x My. Then the distribution D’ is integrable if and only if
MX,FY)=h(FX,Y), for all X,Y € T(D').

These last two theorems are similar to Theorem 3.3 and Theorem 3.4 given in
[3], respectively.

Theorem 4.3. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M, x M. Then the distribution D=+ is integrable if and only if
ApzW = Apw Z, for any W, Z € T' (D).
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Proof. Since F is parallel with respect to V, from (2.8), (2.10) and (4.5), we get
—ApwZ + DY Z, FW) + VL FW = fV ;W +wV ;W + Bh(Z,W) + Ch(Z, W)
for all W, Z € I'(D+). Taking tangential part of this equation, we have

(4.9) —ApwZ = [V ;W + Bh(Z,W).

By replacing role of vector fields W and Z in (4.9), by a direct calculation, we
obtain

ApzW — Apw Z = f[Z,W].

Since [Z, W] = f[Z, W] + w[Z, W], D+ is integrable if and only if f[Z, W] = 0 and
we complete the proof. O

Corollary 4.2. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M, x M. If the distribution D=+ is integrable, then the following
statements holds.

a) An is self-adjoint on D+ with respect to g, for any N € T'(¢tr(TM)).

b) ApzW has no components in D, for any Z,W € I'(D").

Proof. Suppose that D= is integrable. Then, ApzW = ApwZ, for any Z,W €
(D). Since g(FW,FN) =g(W,N) = 0 and V is a metric connection, we obtain

9(ArwZ, FN) = —gW,AnZ), G(ApzW,FN) = —g(Z, ANW),
for any N € I'(¢tr(TM)). From this last two equations, we have g(Z, ANW) =
gW,ANZ).

Since D+ is integrable, g([Z, W], FX) = 0, for any Z,W € T'(D+), X € T(D).
From (2.11), we have

(4.10) G(h*(2,X),FW) = g(Apw Z, X).
Using (2.8) and (2.10), we obtain

(4.11) G(h* (X, 2Z), FW) = —g(Apz X, W).
From (4.10) and (4.11), we have

(4.12) 9(ArwZ,X) = —g(Arz X, W).

Since V is a metric connection and g(Z, FX) = 0 and using to symmetric of h®, we
obtain

(4.13) 9(ApzW, X) = g(Apz X, W).
From (4.12) and (4.13), we have
(4.14) 9(Arw Z,X) = —g(Apz W, X).

On the other hand, we get

Thus we have (b). O
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Theorem 4.4. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = My x My. Then the distribution D is integrable if and only if the
following statements holds:

a) An is self adjoint on D, for any N € T'(¢tr(TM)).

b) g(FY,AyX) = g(FX,AyY), X,Y € (D) and U € T(FD4).

Proof. Suppose that D is integrable. Then, [X,Y] € I'(D), that is g([X,Y],N) =0
and §([X,Y],FU) = 0, X,Y € (D), N € T(¢tr(TM)) and U € T(FD). Thus
we have

(4.15) J([X, Y], N) = g(Y, AN X) — g(X, ANY),
(4.16) G([X,Y],FU) = g(FY, Ay X) — g(FX, AyY).

Hence, from (4.15) and (4.16), we obtain (a) and (b), respectively.
Conversely, (a) and (b) are satisfied. From (4.15) and (4.16), we have [X,Y] € T'(D),
for any X,Y € I'(D). O

Theorem 4.5. Let M be a SSI-lightlike submanifold of a semi-Riemannian product
manifold M = M, x My. Then the following assertions are equivalent:

a) S(TM) is parallel.

b) Aryz is S(TM)-valued for Z € T(D4).

¢) D°(X,FN) is Dy-valued, for X e I(TM), N € T'(¢tr(TM)).

Proof. S(TM) is parallel if and only if g(VxZ, N) = 0, for any X, Z € ['(S(TM))
and N € I'(tr(T'M)). Since g(VxZ,N) = §(VxZ,N) and F is parallel with

respect to V, we obtain

(4.17) 9(VxZ,N)=g(VxFZ,FN).
If Z € T'(D4), then g(ApzX, N) = 0, that implies (b). Since V is a Levi-Civita
connection, from (4.17), we get g(FZ, D*(X,FN)) = 0. Thus we have (c). O

Theorem 4.6. Suppose that the secreen ditribution of M be a SSI-lightlike sub-
manifold of a semi-Riemannian product manifold M = My x My is integrable. Then
the following statements are equivalent.
1) The distribution D defines a totally geodesic folation in S(TM).
2) Bh*(X,Y) =0, for any X e I'(TM) and Y € I'(D).
3) ApzX has no components in D, for any X € T(TM) and Z € T'(D%).
Proof. We assume that D is totally geodesic in S(T'M). Then V%Y € I'(D) for any
X € I(TM) and Y € I'(D). Thus we have g(V% FY,Z) = 0, for any Z € T'(D4).
From (2.6) and (2.12), we get

g(VXFY,2)=g(VxY,FZ) = 0.
From (2.8), we have

3(h*(X,Y),FZ) = 0.

Hence we obtain (2). Since V is a Levi-Civita connection, we get

9(VxY,FZ) = g(ApzX,Y) = 0.
Thus we have (3). O

It is easy cheak that, D is totally geodesic in S(T'M) if and only if D+ is totally
geodesic in S(TM). So we have following corollary.
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Corollary 4.3. Suppose that the secreen ditribution of M be a SSI-lightlike sub-
manifold of a semi-Riemannian product manifold M = M, x My is integrable. Then
S(TM) is a locally product manifold if and only if ApzX has no components in D,
for any X € T(TM) and Z € T'(D%).

Theorem 4.7. Let M be a SSI-lightlike submanifold of a semi- Riemannian product
manifold M = My x M. Then M is a locally product manifold if and only if Vf =0

Proof. Let M be alocally product manifold. Then the leaves of distributions D’
and D+ are both totally geodesic in M. Since VF = 0 and from (2.6) and (2.7) we
get

(4.18) VX fY + h(X, fY) = fVxY + wVxY + Bh(X,Y) + Ch(X,Y),

for any X € T'(TM) and Y € I'(D’). Since D’ is totally geodesic in M, VxY €
['(D). Then, for any U € ['(FD1), we have

g(VxFY,U) =g(VxY,FU) = g(VxY,FU) =0.

Hence we get Bh(X,Y) = 0. Comparing the tangential and transversal parts with
respect to D of equation (4.18), Vx fY = fVxY, that is (Vx )Y =0.

Similarly,
(4.19) —ApzX +V%FZ = fVxZ +wVxZ+ BhX,Z)+ Ch(X, Z)
for any X € ['(TM) and Z € I'(D1). From (4.19), we have
—ApzX = fVxZ+ Bh(X, Z).
For any Y € I'(D’), we get
9(fVxZ,Y)=—g(ApzX,Y) = —g(Vx fY,Z) =0,
that is fVxZ = 0, which implies that (Vx f)Z = 0.

Conversely, we suppose that Vf = 0. Then we have Vx fY = fVxY, for any
X e'(T'M)and Y € I'(D'). Thus Vx fY € I'(D) and the distribution D’ is totally
geodesic in M. Similarly, VxfZ = fVxZ =0, for any X € I'(TM) , Z € T'(D+)
and D is totally geodesic in M. O

5. ToTtaLLY UMBILICAL SSI-LIGHTLIKE SUBMANIFOLDS

In this section, we study totally umbilical SSI-Ligthlike submanifolds of a semi-
Riemannian product manifold.

Definition 5.1. [7] A lightlike submanifold (M, g) of a semi-Riemannian manifold
(M, g) is called totally umbilical in M, if there is a smooth transversal vector field
H e T'(tr(TM)) on M, called the transversal curvature vector field of M, such that,
for all X, Y e (T M),

(5.1) hMX,Y)=g(X,Y)H.
It is known that M is totally umbilical if and only if on each coordinate neighbor-

hood U, there exist smooth vector fields H* € T'(¢tr(TM)) and H* € T'(S(TM™))
such that

(5.2) RYX,Y) = g(X,Y)H', h*(X,Y)=g(X,Y)H,
for any X,Y € I'(TM).
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Corollary 5.1. Let M be a totally umbilical SSI-lightlike submanifold of a semi-
Riemannian product manifold M = M, x My. Then the distribution DL is totally
geodesic in M.

Proof. Let X,Y € I'(D+). Then we have
VxY = VxY +h(X,Y),

where VxV € I'(DY) and h(X,Y) € I'(D'). Since D’ is a invariant distribution, for
any Z € I'(D'), we have FZ = fZ € T'(D'). Since V is a Levi-Civita connection,
it can be easily calculated
g(M(X,Y),FZ) = g(VxY,FZ)

= g(VxY,FZ)

— —G(FY,h*(X, 2)).
Since X € T'(D+) and Z € T'(D'), from (5.2), we have

h(X,Z)=0,

and we have assertion of corollary. O
Theorem 5.1. Let M be a totally umbilical SSI-lightlike submanifold of a semi-
Riemannian product manifold M = My x Ms. Then the following assertions are
equivalent:
1) The distribution D' is totally geodesic in M.
2) Apz is D*-valued, for any Z € T'(DV).
3) H® € T'(Dy).

Proof. Let X,Y € T'(D’). Then we have
VxY =ViY +h(X)Y),
where VY € T'(D’) and h'(X,Y) € I'(D"). Since V is a Levi-Civita connection,
it can be easily calculated
g(W (X, FY),Z) = g(h*(X,Y),Z)
g(FY, Apz X),
for any Z € (D). Thus we have (1)-(3). O

From Corollary 5.1 and Theorem 5.1, we have the following theorem.

Theorem 5.2. Let M be a totally umbilical SSI-lightlike submanifold of a semi-
Riemannian product manifold M = My x My. Then M is a locally product manifold
if and only if H® € T'(Dy).

Theorem 5.3. Let M be a totally umbilical SSI-lightlike submanifold of a semi-
Riemannian product manifold M = M (c1) X Mys(cg). Then, the Ricci tensor on M
is symmetric if and only if Aye is self adjoint on M.

Proof. The Ricci tensor of a lightlike submanifold is given by

m

Ric(X,Y) Zslg (e;, X Yez—i—Zg (&, X)Y,N,),

for any X,Y € I'(TM), where {eq,...,e,} is a orthonormal basis of I'(S(T'M)),
{&1,..,&} and {Ny,..., N, } are lightlike basis of I'(Rad TM) and T'(¢tr(TM)),
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respectively and g(N;,&;) = &;5, for any 4,5 € {1,...,r}. From (3.2) and (18), we
obtain

Ric(X,Y) — Ric(Y, X)) = —g(AyeX,Y) + g(Ay Y, X)
Suppose that Ricci tensor is symmetric on M. If X|Y € I'(Rad T M), then we have
9(Ape X)Y) = g(AyeY, X) = g(Ap= X, Y) = g(An-Y, X) = 0.
If X eT(Rad TM) and Y € T'(S(TM)), from (2.11) we have
g(Ayus X, Y) = g(Ayn:Y, X) = 0.
If X,Y e I'(S(T'M)), then from (2.11), we get
g(AHSXv Y) = g(Xv Y)g(HS7 HS);
that is —g(ApeX,Y) + g(AyeY, X) = 0. Thus we have our assertion. O

Theorem 5.4. There exist no totally umbilical proper SSI-lightlike submanifold
with dim(D) > 2 in any negatively or positively curved (and also null sectional
curved) semi-Riemannian product manifold.

Proof. Suppose that M is totally umbilical proper SSI-lightlike submanifold in semi-
Riemannian product manifold M (c) with ¢ # 0. From (2.19), for X € I'(D) and
Y € T'(D4), we have

JR(X,Y)X,Y)

G(R(X,Y)FX,FY)
= g((VxP*)(Y, FX), FY) = g((Vyh*)(X, FX), FY).
From (5.2), we get
(Vxh*)(Y, FX) = —(9(VxY,FX) + g(Y,VxFX))H"
Since X € I'(D) and Y € T'(D+), we have g(FX,Y) = 0. Since g is parallel with

respect to V, we get
0= Xg(Y. FX) = g(VxY,FX) + g(Y, Vx FX).
Since dim(D) > 2, we chose X € I'(D) such that g(X, FX) = 0. From (5.2), we
obtain
(Vyh*) (X, FX) = -29(Vy X, FX)H°.
Therefore,
0=Yqg(X,FX)=29(Vy X, FX).

Hence, g(R(X,Y)X,Y) = 0 which is a contradiction. Similarly, it can be proved
for the null sectional curved case. (]

6. SCREEN ANTI-INVARIANT LIGHTLIKE SUBMANIFOLDS

In this section, we will investigate the screen anti-invariant lightlike submanifolds
of semi-Riemannian product manifolds.

Let M be a screen anti-invariant lightlike submanifold of a semi-Riemannian
product manifold (M,g). Then we have

S(TM™*) = FS(TM)LDy.

We say that M is a proper screen anti-invariant lightlike submanifold, if S(TM) #
{0} and Dy # {0}. Thus we have the following proposition.



132 EROL KILIG, BAYRAM SAHIN AND SADIK KELES

Proposition 6.1. There exist no proper screen anti-invariant co-isotropic, isotropic
or totally lightlike submanifold of a semi-Riemannian product manifold M.

Example 6.1. Consider in R x R} the submanifold M given by

1_ 2 3 1 _ 3 _ 4_
TT=Up U2, T = Uy U2, T = U3, Y o= Uy — U2, Y2 = Ul — U,y =uz, Yy =0,

where (2!, 22, 23) and (y!,y?, y>,y*) are standard coordinate systems of R?, respec-

tively, and R} and wuy,us,us are real parameters. Then we have

0 0 0 0 0 0 0 0
TM = = — —_— — — = — —_— e — — —_——
Spanil oe "oz T oyt * oy’ U2 o1 92 oyt oy’
0 0
Us =523 T g3t

The radical distribution Rad(TM) is spanned by {Uy, Uz} and the screen distribu-
tion S(TM) is spanned by Us. Hence M is a 2-lightlike submanifold of R} x Rj.
Take

0 0 0
T Vo= —
Ox3 ayg sy V2 ay4 }7
and by the direct calculations we get

S(TM*Y) = {V; =

1 0 0 0 0
ftT(TM) = Span{Nl = _5{2ﬁ + 922 + 2873/1 + 67y2}’
Ny = L 2 9 i 0 0

N —2 7 T
2{ ox! + 0x? oyl 0y? H
We easily check that, Rad(TM) and ¢tr(TM) are invariant distributions with re-

spect to F and FS(TM) C S(TM~), where Dy = Span{Vi}. Thus M is a screen
anti-invariant lightlike submanifold.

Let M be a screen anti-invariant lightlike submanifold of a semi-Riemannian
product manifold M .Then, for any X € I'(T'M), we can write

(6.1) FX =fX +wX
where fX € T'(Rad(TM)) and wX € I'(FS(TM)). Similarly, for any V € T'(tr(TM)),

we can write
(6.2) FV =BV +CV,
where BV € I'(S(TM)) and CV € I'(tr(TM)).

Theorem 6.1. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M. Then the induced connection V is a metric
connection if and only if h*(X,&") € T'(Dy), for any ' € T'(Rad TM), X € T'(TM).

Proof. It £ € T(Rad(TM)), then there exists a £’ € I'(Rad TM) such that £ = F¢'.
From (3.1) and Gauss formula, we get

Vx€+h(X,€) = [VxE +0Vx€(X, &) + BR*(X,€) + Ch*(X,£),
for any X € T'(TM). If we take tangential component of this equation, we have
Vxé=[Vx€& +Bh*(X,£).

Thus, the radical distribution Rad(T'M) is a parallel distribution if and only if
h*(X, &) € T(Dp). From Theorem 2.2 we have the assertion of the theorem. O
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Theorem 6.2. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M. Then the following assertion equivalent:
1) S(TM) is integrable.

2) For any X,Y e T(S(TM)), N e T(¢tr(TM)), g(Apy X,N) = g(ArxY,N).

3) g(FY, D*(X, N)) = §(FX, D*(Y, N)).

Proof. Suppose that S(T'M) is integrable. Then we have g([X,Y],FN) = 0,
for any X,Y € I'(S(TM)), N € T'(¢tr(T'M)). From (2.6) and (3.1) we have
G(Apy X, N) =g(ArxY, N). Since V is a metric connection, we get g(Apy X, N) =
g(FY,D*(X,N)) and (3) is satisfied. Since g([X,Y],FN) = g(FY,D*(X,N)) —
g(FX,D*(Y,N)), (3)=(1). U

Theorem 6.3. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M. Then the radical distribution integrable if
and only if

h (&, FE') = h*(F¢, ),
for any £,&' € T(Rad(TM)).

Proof. For any £,¢' € T'(Rad(TM)) and U € T'(FS(TM)), from (2.8) and (3.1), we
get

g([&,&'), FU) =g(h*(&, FE') — h*(F¢, &), U).
This the assertion of the theorem. O

Theorem 6.4. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M. Then the following assertion equivalent:
1) The screen distribution S(TM) defines a totally geodesic foliation in M.

2) Apy is valued S(TM), for allY € T'(S(TM)).

3) For any X € I'(TM) and N € T'(¢tr(T'M)), D*(X,N) € I'(Dy).

Proof. Suppose that S(TM) is totally geodesic. Then, for any X € T'(TM) and
Y e I'(S(TM)),VxY € T'(S(TM)). Thus we have g(VxY, FN) =g(VxFY,N) =
0 and (2) is satisfied. Since V is a metric connection, we get G(VxFY,N) =
—g(FY,D*(X,N)) =0 and D*(X, N) € I'(Dy). This is complete of proof. O

Theorem 6.5. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M. Then the screen distribution is a parallel
distribution in M if and only if Agy is S(TM) valued.

Proof. S(T'M) is parallel if and only if g(VxY, FN) =0, for any X, Y € I'(S(T'M))
and N € T'(¢tr(TM)). Since g(VxY, FN) = g(VxFY,N), we obtain g(VxY, FN) =
—g(Azy X, N). Thus we have the assertion of the theorem. O

Theorem 6.6. Let M be a proper screen anti-invariant lightlike submanifold of a
semi-Riemannian product manifold M. Then M is a locally product manifold if
and only if f is parallel with respect to induced connection V, that is, Vf = 0.

Proof. We suppose that M is a locally product manifold. Then the leaves of the
distributions of Rad(T'M) and S(T'M) are totally geodesic in M. Thus Vzf¢§ €
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['(Rad(TM)), for any Z € T(TM) and ¢ € I'(Rad(TM)). Since F¢ = f€, from
(3.1) we get

0 = VzF{—F(Vg8)
= Vzf&— f(Vz€) + hZ, f§) — Fh(Z,9).
If we take tangential component of this equation, we get (Vzf)¢ = 0. For any

X eT(S(TM)), VzfX =0 and f(VzX)=0. Thus we have f(VzX) =0 and f
is parallel.

Now suppose that f is parallel with respect to V. Then
VzfX = [(VzX)

for any X,Z € I(TM). If X € I'(Rad TM), then we have VzfX € ['(Rad(TM))
and I'(Rad(T'M)) is totally geodesic in M. If X € I'(S(T'M)), then we have fX =0
and f(VzX) =0, that is VzX € T'(S(TM)). O

Now, let M be totally umbilical proper screen anti-invariant lightlike submanifold
of a semi-Riemannian product manifold M. Then, from (2.6) and (5.1) we have

vX& = ngv

forany X € I'(TM) and £ € I'(Rad(T'M)). Since Rad(T' M) is invariant distribution
w.r.t. F, there exists a & € I'(Rad(T'M)) such that £ = F¢'. From above equation
and (3.1), we get

(6.3) Vxé=fVx¢.

Since fVx¢ € I'(Rad(TM)), then Vx¢ € I'(Rad(TM)), i.e. the radical distribu-
tion is a parallel distribution in M. From Theorem 2.2, we have following corollary.

Corollary 6.1. Let M be totally umbilical screen proper anti-invariant lightlike
submanifold of a semi-Riemannian product manifold M. Then the induced connec-
tion V is a metric connection.

Corollary 6.2. Let M be totally umbilical proper screen anti-invariant lightlike
submanifold of a semi-Riemannian product manifold M. Then the radical distribu-
tion defines a totally geodesic foliation in M.

Proof. The radical distribution defines a totally geodesic foliation if and only if
Ve & € T'(Rad(TM)), for any &1,£ € T'(Rad(TM)). If we take & for X in equation
(6.3), then we have V¢, & € T'(Rad(TM)). O
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