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EQUITORSION HOLOMORPHICALLY PROJECTIVE MAPPINGS
OF GENERALIZED KAHLERIAN SPACE OF THE SECOND
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ABSTRACT. Starting from the definition of generalized Riemannian space (GRy)
[5], in which a non-symmetric basic tensor g;; is introduced, in the present pa-
per a generalized Kahlerian space Glz(N of the second kind is defined, as a

GRy with almost complex structure Fih7 that is covariantly constant with
respect to the second kind of covariant derivative (equation (2.3)).

We observe hollomorphically projective mapping of the spaces G[z( ~N and
Gg N with invariant complex structure. Also, we consider equitorsion geodesic

mapping between these two spaces, and for them we find invariant geometric
objects.

1. INTRODUCTION

A generalized Riemannian space GRy in the sense of Eisenhart’s definition [5]
is a differentiable N-dimensional manifold, equipped with a non-symmetric basic
tensor g;;. Connection coefficients of this space are generalized Christoffel’s symbols
of the second kind. Generally, T, # '} ;. More about GRy: [5, 14, 15, 16, 21, 31].

The use of non-symmetric basic tensor and non-symmetric connection became
especially topical after the appearance of the papers of A. Einstein [1]-[4] related
to the creation of the Unified Field Theory (UFT). We remark that in UFT the
symmetric part g;; of the basic tensor g;; is related to the gravitation, and the
antisymmetric one gi; is related to the electromagnetism.
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In a generalized Riemannian space one can define four kinds of covariant deriva-
tives [14, 15]. For example for a tensor aj in GRy we have

i i P i i P i
(1.1) Aj|m = +Ppm J ij P’ j|m = +Fmp J Fm] P’
1 2
i i P i i P i
(1.2) Aj|m = +Fpm J ij P’ j|m = +Fmp J ij P
3 4

In the case of the space GRy we have five independent curvature tensors [16] :

(13) }1% jmn — 1_‘][m n] + F][mF;n]
(14) ‘gljmn = Emj n) + I‘[m]]'—\;]
(15) ‘Zizjmn = F;m n F:w m + ]‘—fm]‘—‘:lp FZJF;m + Fflml—‘fpj]’
(1.6) By =T = g + DTy = T + T8 T,
i 1 i p i P % P i P 1
(17) 15?“ jmn — 5( ][m n| + F[mj,n} + F]mrpn + ijrnp F]nrmp Fnjrpm)

where [i...j] denotes an antisymmetrization without division with respect to the
indices 4, j, and also (i ... j) denotes a symmetrization without division with respect
to indices ¢, j.

Kahlerian spaces and their mappings were investigated by many authors, for
example K. Yano [33, 34], M. Prvanovié¢ [22], T. Otsuki [19], N. S. Sinyukov [28],
J. Mikes [11, 12], N. Pusi¢ [23]-[26] and many others.

In [17, 29] we defined a generalized K&hlerian space GKy as a generalized N-
dimensional Riemannian space with a (non-symmetric) metric tensor g;; and an
almost complex structure F; such that

h P _ h
Fp (z)Ff (z) = —0;",
(1.8) Ipa FIF} = 915, 9 = gPFLF],
Fl; =0, (0=1,2),
0
where | denotes the covariant derivative of the kind 6 with respect to the metric

0
tensor g;;.

In [30] we defined a generalized Kéhlerian space of the first kind Gfl( N as a

generalized N-dimensional Riemannian space with a (non-symmetric) metric tensor
gij and an almost complex structure F; such that

Fl'(2)FP () = =6},
(1.9) 9pa FYF) = gij, g2 =gMF,F),
F' =0,

ily
where | denotes the covariant derivative of the first kind with respect to the metric

1
tensor g;;.

2. GENERALIZED KAHLERIAN SPACES OF THE SECOND KIND

A generalized N-dimensional Riemannian space with (non-symmetric) metric
tensor g;j, is a generalized Kahlerian space of the second kind GIQ( n if there exists
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an almost complex structure F;(:C), such that

(2.1) F(2)F}(z) = =0},
(2.2) 9pg FIF) = gij, 92 = g"F}F],
(2.3) Fz’}\lj =0,

2

where | denotes the covariant derivative of the second kind with respect to the
2

metric tensor g;;. From (2.2), using (2.1), we get F;; = —Fj;, F'"/ = —FJ*, where
we denote Fj; = F} g™, Fit = Flg pi

Theorem 2.1. For the almost complex structure F} of a generalized Kdhlerian
space of the second kind the next relations

h
(2.4) Fi,

= 2(FTy; + EyT%).  F}); 72FPFZJ7 F}j; = 2F)T7,
A\ Vv 3 4 \%

are valid, where Ff] 18 a torsion tensor.

Proof. We get the relations (2.4) by using the condition (2.3) and the covariant
derivative (1.1), (1.2). O

In [32] several theorems are proved. These theorems are generalizations of the
corresponding theorems relating to K. The relations between F* and four curva-
ture tensors from G Ry are obtained. From here we state these theorems

Theorem 2.2. For the Ricci tensor R;j, given by gi;, the relation
(2.5) Ry = Fy Fil Rpq — 9PLERD (s.pgk)

is valid, where

h _pp 1h ph P hp
(26) D ijk _Fi;[krj\]/P + F,Lv F[ pk] + F [kI‘ ] + F P [J k]’
Dh.ijr = Dp”k, and (;) is a covariant derivative with respect to symmetric

connection I‘Z

Theorem 2.3. The Ricci tensors gjm (6 =1,---,5) of the space GIQ{N satisfy

the relations

Rpg) F Frly = R(jm) = 207, D) Fy By + 215,15 4 264 F D par)

Tq PS J‘I pm
a=1,23,
2.7 T S S
27) Ripo) Fy By = R + 17 T By iy = 6T T + 2624 Do gk
Bopo) Fj By = By + 207,15, 1 By = 205, + 20215 D

where (jm) denotes the symmetrization without division with respect to the indices
J,m
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3. HOLOMORPHICALLY PROJECTIVE MAPPINGS OF GENERALIZED KAHLERIAN
SPACE OF THE SECOND KIND WHICH PRESERVE COMPLEX STRUCTURE

By generalizing the notion of analytic planar curve of K&hlerian space [19, 28]
we come to an analogous notion of generalized Kéhlerian spaces of the second kind.
Definition 3.1. A GI2( ~N space curve, which is, in parametric form, given by equa-
tion
(3.1) v =a"t), (h=1,2,---,N)
will be called planar if:

(3.2) N AP = a(t)N" +b(H)FPAP,  (0=1,2)

[p
6
where \" = dx" /dt, also a(t) and b(t) are the functions of the parameter .

Considering that

A\ Ap—ﬂ TP APAT = \! AP
lp ~ at + Pq - Lp )

we conclude that the expression on the left-hand side in (3.2) is the same with
respect to both kinds of covariant derivative, so we can define analytic planar curve
in the space GIQ( ~ by the following relation:

d\
(3.3) -+ IR APAT = a(t)A" + b(t)F)AP.
We can consider two N-dimensional generalized Kéahlerian spaces of second kind

— —h
GIQ{ ~ and GIZ( N with complex structures Fih and F; , where:

(3.4) P

3

in the same local coordinate system, defined by the map f : GIQ{N — GgN.

Definition 3.2. A diffeomorphism f : GIQ(N — GgN will be called holomorphi-

cally projective or analytic planar if it maps analytic planar curves of the space
Glz( N~ into analytic planar curves of the space GIQ( N-

We can denote
(3.5) Pl =Tk TV
the deformation tensor of connection under an analytic planar mapping. Here Ffj
and ffj are the second kind Christoffel’s symbols of the spaces GIQ( ~ and GgN,
respectively. Analytic planar curves of the space GIQ( ~ and GIQ( N~ are given by the
following relations, respectively:
d\" a\"

h h h Th — h 7 h
T TRAN = a0 BOFSN, o A TR WA =GN + BN,

From the previous relations we have

(Th, = Th NPT = ()" + o () FINP,
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where we denote () = @(t) — a(t), o(t) = b(t) — b(t). We can now put: ¥(t) =
YpAP, o(t) = 04A%. So we have
(Th, =Tk —hpdh — o FIAPAY =0,

wherefrom we can conclude that:

wh

(36) Fz] + ’(/)(’L + U(z + 6177

where fihj is an arbitrary anti-symmetric tensor. In (3.6) we can select the vector
o; so that o; = —pr-p. Because of that we have:

(3.7) Tl =T +9a0) — dpFLF + &

Contracting over the indices h, i in (3.7) and using F} = 0, =0, we get:

(3.8) LD =T = (N +2)y;.

Thus from (3.8) we can see that 1, is obviously a gradient vector. If we substitute
from (3.8) into (3.7) we have

Th Fh
) Iy - N+2(Fp 5 F F( F])) Fivj
' 1

—_1h P P h

=TIy - N 2(Fp(15 -1 F( FJ)) szj
Denoting

h _ ph

(3.10) HT;, = I‘ “NT 2(I‘g 5 - FgFj))

we can present (3.9) in the form:

(3.11) HT ;= HT!

R
where by H T?j we denoted the object of the form (3.10) for GgN. The magnitude

H Tf; is not a tensor. We will call it holomorphically projective parameter of
the type of Tomas’s projective parameter. This way, based on the fact above
we have proved:

Theorem 3.1. The quantities (3.10) represent invariants of holomorphically pro-
jective mapping of generalized Kdhlerian space of the second kind with the equals
complex structures. [

4. HOLOMORPHICALLY PROJECTIVE PARAMETERS OF GENERALIZED KAHLERIAN
SPACE OF THE SECOND KIND

If f GIQ( N — GgN is holomorphically projective mappings, and if the

torsion tensors of the spaces GK N and GFN satisfy

(4.1) Fh =TI

’LJ7
then we can tell that:

(4.2) h = 0.

L)
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4.1. Holomorphically projective parameters of the first kind. The rela-
tion between the curvature tensors ]1% and 11% of the GIQ( ~ and GIQ{ N Spaces is given

by:

Substituting (3.5), (3.7) and (4.2) in (4.3) we get

R =B + 0, Win) +0; Yl +FPF) o) + 20,0

(4.4)

+ 200,16 +2F[nq¢p @ F - — 218, b, F) — Zanszq F{FY)

where we denoted

(4.5) 11%] = T/Jilj — ithy + Y Pl FY.

Contracting with respect to indices ¢, n in (4.4) we get

(4.6)  Rim =Rjm + Vpmj) = Nbjm = FJF g = 285m0 = 2075000 I F.
Anti-symmetrizing without division in (4.6) with respect to indices j, m gives:

(4.7) (N +2)5m) = Bijm) = Biym) + 4rp Up + 2F[]T¢qF{pF;)].

By symmetrization without division in (4.6) with respect to indices j, m we obtain:

(48)  Rm) = Rgm) =N Yim) = 2F7 g + 2F?€T¢qF{pF$>>-

The relation analogous to relation (2.7) for ]1% in the GgN space is valid.

By composition with Fg F7", contraction with respect to j, m, and by use of the
conditions (2.7) for ]1% and ? in GIQ(N and GgN from (4.8) we get

(49) Fgmy = Bigm) = N F o = 20Gm) + 200y ) 200, 0o ).

From (4.8) and (4.9) we get:
(4.10) N - 2)F]?’Fﬂnif)(pq) = (N - 2)@1&(].,”) QFP B FTE +2F£vq Yo ELED.

Replacing (4.10) in (4.9) we get:

2
(N +2)¢m) =B(m) — Bam) + 773 (NT’ZJT% »Em)

(4.11)

2 Py ) + 2F(W¢quF
Using (4.7) and (4.11) we have:

(N + 2)@{1]-7,1 :ﬁjm - R]m + 21 ¢p
. N9 i
(4.12) + QF%qumFg + N3 F%.z/)qu F1
2 T (s
+ mFmrqupr ~N= 2 w(mF Fq
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Eliminating ¢; and using the (3.8) condition the last equation becomes:

(4.13) (N +2)¢jm = Rjm — Bjm + Pjm = Pjm,
where we denoted
Pl = (T T4 +TP TS FIF) + N lpe s FLEY
1]m_N+2 m] qp ]r sq N —2 jT’ sqgtm
(4.14) ) )
s q T S T 19
+ ﬁl—‘fnrrsqF F N rq s(m ij))

In the same way the object ]fjm of the GIQ( ~ space is defined. Eliminating 9 ;,
1
from (4.4) we get

(4.15) HPWi jmn = HPMl/i imns
where we denoted
i i 1 i
HPV}/ jmn :]ﬁjm”—’—N—FQ[ [m(R P)jn]+5j (R[mn]—P[mn])
(4.16) + F{'F) (R = P)ymy — 217,08 = 20,0, T4,

44T TS FS FiL - orp T3 FUR) ort 13 FUED

[ng™ 5P (m)™J nm= sq [n™ sq m]
is an object of the space GI2{N. We denoted in last equation (]1% - Jf)jm = (Il%jm -
lfjm)- We see that the quantity H PWi jmn 1s expressed in the same way as the
quantity H PVlVi jmn- Obviously, the quantity H PV}/i jmn 1S nOt a tensor, so we

shall call it an equitorsion holomorphically projective parameter of the
first kind of the space GIQ( ~- Because of all those facts the following theorem is

proved:
Theorem 4.1. The equitorsion holomorphically projective parameter of the first

kind is an invariant of equitorsion holomorphically projective mapping which pre-
serves the complex structure of the generalized Kdhlerian space GIQ(N and GIQ(N. g

4.2. Holomorphically projective parameter of the second kind. The
connection between the curvature tensors 12% and 12% of the GI2( ~ and GIQ( N Spaces

is given by:

]mn

+ 2T P!

[mj 721]1? nm= pj-
Replacing (3.5) (3.7) and (4.2) in (4.17) we have:

(4.18)
+ zrgmqppa; + 2F;mzpj 2T, zqu‘l F

(p" )
where we denoted
(4.19) ’(éjij = Vi|j — ik + U F g FY.
2
Contracting with respect to indices 7, n in (4.18) we get

(420)  Bim =Bim +Ylmg) = Nojm = FEL 0 gy + 250y — 20000 FGE)
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Anti-symmetrizing without division in (4.20) with respect to indices j, m gives:

(4.21) (N + Q)g[jm] = Rijm) = Bljm) + 417 zpp + 2F[W¢qF‘; Fy-

By symmetrization without division in (4.20) with respect to indices j, m gives:

(422) Bijm) = Bigm) = Nb(gm) = 27 E 0 gy = 2000 G, F) = 205000 FG F,

(p ]) m)

The relation analogous to relation (2.7) for é% in the GgN space is valid.

By composition with Fg FJ", contraction with respect to j, m, and by use of the
conditions (2.7) for {z% and E in the GIQ( ~ and GgN respectively, from (4.22) we
get

Bijmy =Bm) = NYwo) FJ F = 20 m)

(423) i r
+ 2F(]quFqF + 2Fqu/J(JF Fq

From (4.22) and (4.23) we get:
(424) (N =2F g = (N = 20Gm) + 200 a 5 Iy + 200G B 1y

m)”

Replacing (4.24) in (4.23) we get

w2s) (N +2)¢m) =Bim) = Bom) = 75V L ontbal ) Ey
217, GEyFL) — ZFf(mqquqF
Using (4.21) and (4.25) we have:
(N + 2)7é’jm :Iz{jm - gjm + 211%#/’1)
(4.26) = 20 o ] — ZJJVV __22 T2y Ey
_ %pg’vjwqﬂzﬁ - %I‘%}w(ngFgl).

Eliminating ¢; and using the condition (3.8) the last equation becomes:
(4.27) (N +2)¢jm = Bjm — Bjm + Pjm — Pjm,
5 2 2 2 2

where we denoted
2
P, =
27 N +2
1

D TS r
—N 2FTJFéqF'anFp N —2 rq é(_]

. N -
— (T2 T —TP2 T3 FqF’—in rs FqFT

]m qp rm sSq— p N 2 rm s5q

(4.28)
FIES

m)’

In the same way the object ?jm of the space GgN is defined. Eliminating %,
2
from (4.18) we get

(4.29) HP?‘ jmn = HPMQ/Z' s
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where we denoted

% i 1 g ]
HPV;/ jmn :]2% jmn + N + 2[6[m (]2% - I;)Jn] + 6]’ (g[mn] - g[mn])
(p pé) i
(4.30) + F P (B = B)pm) — 20519,

—ori T 4 oT? TS F1F.].

nm< qj nm= sq* (p* j

It is easy to prove that magnitude H PV2Vi jmn 1s nOt a tensor, so we shall call it an

equitorsion holomorphically projective parameter of the second kind of
the space GIQ( ~. The next theorem is valid:

Theorem 4.2. The equitorsion holomorphically projective parameter of the second
kind is an invariant of equitorsion holomorphically projective mapping which pre-
serves the complex structure of the generalized Kdhlerian space GIQ(N and GIQ(N. O

4.3. Holomorphically projective parameters of the third kind.  The con-
nection between the curvature tensors I; and ]3% of the GIQ( ~ and GI2( N Spaces is

given by:
i _ 7 7 7 g % D 1
( ) }Szjmn - 13% jmn + ijLn - njlm + ijpnp - Pnjppm
4.31 ) )
2P0, + 200 Py

Replacing (3.5), (3.7) and (4.2) in (4.31) we have:

+ F;(Ff;?pm - Frﬁqun) + 2Finjwn + QFiljwm

(4.32) . Z_ i
_ 2rpvjqu(anfl )+ 2F§Cn¢pF(anj) + Wf@ Wb F(qp Fi

+ 207 g Fl, oy + 2F§T¢ij‘.’FZL + QFQJprFgFf,
where we use the notation
(4.33) Zé%‘j = z/lej — Pith; + pripqu]‘?, 0=1,2).
It is easy to prove

Vmn] = Vi) + 200 V-
The equation (4.32) becomes

20, Sy = 2y Foy + 2Dt

(4.34) i q p q i
—2F]gvj@/1qF F +21—‘chz/1pF(n b

(n” m)

P n

q i i q P P [ nl'}
+ 200 e G ) + 2Fqcn¢pF(an) + 2I‘7@j¢qF( Fl.

Contracting with respect to indices i, n in (4.34) we get

(4.35) Rjm = Bjm + %J[mﬂ - sz)jm - F;)F,qn%)(pq) + 2F§’@j¢p - 2F5’vjqu{pF;).
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Anti-symmetrizing without division in (4.35) with respect to indices j, m we obtain:

(4.36) (N + 2)?[]-”4 = Bijm) = Bljm) + 415, t0p + 217,00 F, 21“” e FY,

(p m)
By symmetrization without division in (4.35) with respect to indices j, m, we get:

(4 37) R(]m) = R( im) — N’llb(jm) - QF;)F%’({}(pq) - 2F£\7/n1/)qF(2F]g) - QFffj’gqu( F4

By composition with FIZ F7", contraction with respect to j, m, and by use of the

conditions (2.7) for I;i and I;E in GIQ( N and GgN respectively, from (4.37) we get

(4.38) Tm) = Bgmy = N F B = 20y + 200, 0 F By + 200, a5 Fr

From (4.37) and (4.38) we obtain

(N - 2)Fij’gl’(1p(PQ) = (N z)w(]m) + 2an¢ngqF£
(4.39)

+ 2r%¢qF%F; + 202 FyF .

Replacing (4.39) in (4.38) we get

(N +2)0Gm) =Bim) = Bam) — 573

+ 211%1 G Fy) = 207 g ).

(4.40) v

Using (4.36) and (4.40) one obtains:
(N 4 2)t0jm =Ljm — Rjm + 217, 0y

2N — 2 2

2 T T

Eliminating 9; and using the (3.8) condition the last equation becomes:

(4.42) (N +2)¢jm = Bim = Bjm + Pjm = Djm
where we denoted
2 N 1 S s 1 S s
Bim =TT = F 3T 5 l5 e — 3Tl sa ity
(4.43) 1
- ﬁquFz(jF;ng) - I"T’mfingFjr)

In the same way is given object ?jm in the space G§N~ Eliminating ¢, from
1

(4.34) we get

(4.44) HP? jmn = HPIg/Z’ s
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where
i i Lo i
HEVY g =8 mn + 5775 O (B = By + 05 o) = B )
(P pd) s i ;
(4.45) +EEL (B = P)pm) + QFQn spm) — 2F§£nF§pF(t_ljF:n)]

% s i s q 1P P K q
+ 21“(73]- an) — QFpV[stqF(nFm)] + 2Fmv(nFSqF(p

Ey)

Of course, H PWi jmn is expressed by geometric objects of the space G§N~ It
is not a tensor, so we shall call it an equitorsion holomorphically projective
parameter of the third kind of the space GIQ( ~- Finally, the next theorem is

proved:

Theorem 4.3. The equitorsion holomorphically projective parameter of the third
kind is an invariant of equitorsion holomorphically projective mapping which pre-
serves the complex structure of the generalized Kdhlerian space GIQ(N and GIQ(N. (]

4.4. Holomorphically projective parameters of the fourth kind. The
connection between the curvature tensors {4% and {4% of the G12( ~ and GIQ( N Spaces

is given by:

R = R + Pl — Bhji + Ph Pl — PR,
2

g Jmn 4 njlm jm* np nj+t pm

(4.46)

+ 2P Ty + 2, By,

With the help of (4.1) and (4.2) we see that the tensor deformation (3.5) is sym-
metric, i.e. Pj = P{;. Now we can write

From (4.47) we get
(4.48) HPT jmn = HPQ/Z' imn

where

HPW? jrp =1y + m[5fm (B = P)jn) + 05 (Bmn] = Plmn))

4 4
(p 17%) ' p i
(4.49) + B F (B = P)pm) + ZFQn spOm) — QF%”F;F GEm)
i s i s q 1P P s q 1
+ 2F(nvw- on) — 2va[jFSqF(nFm)] + 21"mv(nl"sqF(ij))

This quantity is not a tensor, and we shall call it an equitorsion holomorphically
projective parameter of the fourth kind of the space GIQ( ~- Finally, the next

theorem is proved:
Theorem 4.4. The equitorsion holomorphically projective parameter of the fourth

kind is an invariant of equitorsion holomorphically projective mapping which pre-
serves the complex structure of the generalized Kdhlerian space GIQ(N and GIQ{N. g
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4.5. Holomorphically projective parameters of the fifth kind.  The con-
nection between the curvature tensors ]5? and ]5% of the GIQ{ ~ and GIQ( N spaces is

given by:

Ezmn :}E?ijmn + 5( ;m|7l - P;n\m + P'rinj|n - 'rizj|m + Pjme;n
(450) ' 1 . 2 _ 2 '1 .

D pi P pi P pi P pi P i
— Pjnpmp + ijPnp — Pnjppm + 4FjVancn + 4F'j\7/npp\;n)'
Denote
1

(4.51) ;/szm = §(wjlm + 'l/)jlm) — P + Yp FF Y FY,.

For the holomorphically projective parameters of the fifth kind we can do the same
procedure that we used in the previous three cases, for the holomorphically projec-
tive parameters of the first, second and third kind. It is easy to prove that

(4.52) (N +2)¢jm = Rjm — Rjm + Pjm — Pjm,
12 5 5 5° 5°
where
2
L o —_ = (TP s o E} L nl'}
];Jm _NJFQ(F(@WFSqFI? 7) N?QF%JFSWFPFJ'

(4.53)
2 s T N P s T 19
B e A e S R

In the end for the fifth kind we get
(4.54) HP?’ jmn = HPI/g)/i s

)

where

i — i (p i)

[n\g 5

P s q i s q 1 P s i g
—2Up T3, FL F) — QFI;,,V,L VN R R 3 S

(455) s+ 33 Pl

The quantity H P?i jmn is not a tensor, so we shall call it an equitorsion
holomorphically projective parameter of the fifth kind of the space Glz( N-
Finally, the next theorem is proved:

Theorem 4.5. The equitorsion holomorphically projective parameter of the fifth

kind is an invariant of equitorsion holomorphically projective mapping which pre-
serves the complex structure of the generalized Kdhlerian space GIQ(N and GIQ(N. O

5. CONCLUDING REMARKS

1. For g;;(z) = gji(x) GRn reduces to the Riemannian space Ry. The curvature
tensors 1;%, 0 =1,...,5 in generalized Riemannian space reduce to the single cur-

vature tensor R in Riemannian space (in the symmetric case).

2. In the case of holomorphic mapping of the Kéhlerian spaces (in the symmetric
case) HPVX’ jmn, (0 =1,---,5), given by the formulas (4.16, 30, 45, 49, 55) reduce

to the holomorphically projective curvature tensor [28]
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N +2
3. In this paper by using the condition (2.3), non-symmetric metric tensor and equal
torsion tensors in the spaces GIQ{N and GIQ(N we get new quantities HPVg/’ jmn, (0=

1,---,5) given by the formulas (4.16, 30, 45, 49, 55), and 1;’, @=1,---,5).

HPW' s = R jpn + ( Rj[néjn] + F'Rypm, b+ 2F FP Rypy).

n]

4. In the future work we can consider mappings between spaces GK y, GI1< N
and GIQ{ ~ and probably get new quantities. All these quantities are interesting in

constructions of new mathematical and physical structures.
Also we can consider some connections of mentioned spaces.
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