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SEIBERG-WITTEN EQUATIONS WITH NEGATIVE SING

NEDİM DEĞİRMENCİ AND NÜLİFER ÖZDEMİR

(Communicated by Kazım İLARSLAN )

Abstract. In this work we write down Seiberg-Witten equations with nega-
tive sign. We give some explicit solutions to these equations on R4 which are
related with the famous Dirac monopole. We also point out a relationship bet-
ween Seiberg-Witten equations with negative sign and Freud equations which
are stated on Minkowski space R1,3.

1. Introduction

Seiberg-Witten equations which are stated for 4−dimensional spinc−manifolds
firstly appeared in 1994 ([12]). The solution space of these equations contains infor-
mations about the topological structure of underlying manifolds whose scalar curva-
ture are negative ([8]). There are some modifications ([7]) and some generalizations
to higher dimensions ([2, 3]). In the present paper we propose similar equations
to Seiberg-Witten equations for 4−dimensional manifolds which are meaningful for
4−manifolds whose scalar curvature is positive.

2. Basic Definitions

Most detailed form of the prerequisites below can be found in [11].

Definition 2.1. A spinc−structure on a 2n-dimensional oriented real Hilbert space
V is a pair (W,Γ) where W is a 2n−dimensional complex Hermitian vector space
and Γ : V −→ End (W ) is a linear map which satisfies

Γ (v)∗ + Γ (v) = 0, Γ (v)∗ Γ (v) = |v|2 1

for every v ∈ V.

Note that, because of the universal property of the Clifford algebra Cl(V ) on V,
Γ can be extended to an algebra homomorphism from Cl(V ) to End (W ).

Let (W,Γ) be a spinc structure on V . There is a natural splitting of W . Fix an
orientation of V and denote by

ε = e2n...e2e1 ∈ Cl(V ),
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the unique element of Cl(V ) which has degree 2n and is generated by a positively
oriented orthonormal basis {e1, ..., e2n} . Then ε2 = (−1)n and hence

W = W+ ⊕W−,

where the W± are the eigenspaces of Γ (ε) given by

W± = {w ∈ W | Γ (ε)w = ±inw} .

Note that Γ (v)W+ ⊂ W− and Γ (v) W− ⊂ W+ for every v ∈ V. So the
restriction of Γ (v) to W+ for any v ∈ V determines a linear map γ : V −→
Hom (W+, W−) satisfying

γ(v)∗γ(v) = |v|2 1

for every v ∈ V .
Let (W,Γ) be a spinc structure on V . Such a structure gives an action of the

space of 2−forms Λ2V on W . This action is defined by the following:
Firstly, identify Λ2V with the space of second order elements of Clifford algebra

C2(V ) via the map

Λ2V −→ C2(V ) ; η =
∑

i<j

ηijei ∧ ej 7−→
∑

i<j

ηijeiej .

Compose this map with Γ to obtain a map ρ : Λ2V −→ End (W ) given by

ρ


∑

i<j

ηijei ∧ ej


 =

∑

i<j

ηijΓ (ei) Γ (ej)

for any orthonormal basis {e1, ..., e2n} of V . This map is independent of the choice
of the orthonormal basis {e1, ..., e2n}. The spaces W± are invariant under ρ (η) for
every 2−form η ∈ Λ2V . Therefore we can define

ρ± (η) = ρ (η) |W±

for η ∈ Λ2V . If V is a 4-dimensional, then ρ+ (η) = ρ+ (η+) for every 2−form
η ∈ Λ2V , where η+ is the self-dual part of η. The map ρ extends to a map

ρ : Λ2V ⊗ C −→End(W )

on the space of complex valued 2−forms. If η is a real valued 2−form then ρ (η) is
skew-Hermitian and if η is imaginary valued then ρ (η) is Hermitian.

Under certain conditions over the 2n-dimensional oriented manifold M , a global
version of the map Γ can be defined. A spinc structure is defined by the map
Γ : TM −→ End (W ), W being a 2n-dimensional complex Hermitian vector bun-
dle on M . Such a structure exists iff w2(M) has an integral lift (see [6]). Γ ex-
tends to an isomorphism between the complex Clifford algebra bundle Cl (TM) and
End (W ) . There is a natural splitting W = W+ ⊕W− into the ±in eigenspaces of
Γ (e2ne2n−1...e1) where {e1, e2, ..., e2n} is any positively oriented local orthonormal
frame of TM .

A Hermitian connection ∇ on W is called a spinc connection (compatible with
the Levi-Civita connection) if

∇v (Γ (w)Φ) = Γ (w)∇vΦ + Γ (∇vw)Φ,

where Φ is a spinor (section of W ), v and w are vector fields on M and ∇vw is
the Levi-Civita connection on M . ∇ preserves the subbundles W±.
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There is a principal Spinc (2n)-bundle P on M such that the bundle W of spinors
and the tangent bundle TM can be recovered as the associated bundles

W = P ×Spinc(2n) C2n , TM = P ×Ad R2n

where Ad is being the adjoint action of

Spinc (2n) =
{
eiθx : θ ∈ R, x ∈ Spin (2n)

} ⊂ Cl2n

on R2n. In addition a complex line bundle LΓ = P ×δ C can be obtained from the
principal Spinc (2n)-bundle P where δ : Spinc (2n) → S1 defined by δ

(
eiθx

)
= e2iθ.

There is a one-to-one correspondence between spinc connections on W and
spinc (2n) = Lie (Spinc (2n)) = spin (2n) ⊕ iR-valued connection 1-forms Â ∈
A (P ) ⊂ Ω1 (P, spinc (2n)) on P. Hence every spinc connection Â decomposes as

Â = Â0 +
1
2n

trace(Â),

where Â0 is the traceless part of Â. Let A = 1
2n trace(Â) which is an imaginary

valued 1-form in Ω1 (P, iR) that satisfies

(2.1) Apg (vg) = Ap (v) , Ap (p.ξ) =
1
2n

trace(ξ)

for v ∈ TpP, g ∈ Spinc (2n) , and ξ ∈ spinc (2n) . Let

A (Γ) =
{
A ∈ Ω1(P, iR) : A satisfies (2.1)

}
.

There is a one-to-one correspondence between the elements of A (Γ) and spinc con-
nections on W . Let ∇A be the spinc connection corresponding to A ∈ A (Γ). A (Γ)
is an affine space with the parallel vector space Ω1 (M, iR). Let FA ∈ Ω2 (P, iR) be
the curvature of the 1-form A and DA denote the Dirac operator corresponding to
A ∈ A (Γ),

DA : C∞
(
M,W+

) −→ C∞
(
M, W−)

defined by

DA (Φ) =
2n∑

i=1

Γ (ei)∇A,ei (Φ)

where Φ ∈ C∞ (M,W+) and {e1, e2, ..., e2n} is any local orthonormal frame.

3. Seiberg-Witten equations

The Seiberg-Witten equations on a 4−dimensional spinc−manifold M can be
expressed as follows:

Let Γ : TM −→ End (W ) be a fixed spinc structure on M and consider the pair
(A, Φ) ∈ A (Γ)× C∞ (M,W+). The Seiberg-Witten equations read

(3.1) DA (Φ) = 0,

(3.2) ρ+ (FA) = (ΦΦ∗)0 ,

where (ΦΦ∗)0 ∈ C∞ (M, End (W+)) is defined by (ΦΦ∗) (τ) = 〈Φ, τ〉Φ for τ ∈
C∞ (M, W+) and (ΦΦ∗)0 is the traceless part of (ΦΦ∗) . Hence the Seiberg-Witten
equations have been obtained on 4−dimensional spinc-manifolds.

Now let us consider these equations on flat space R4. The spinc connection
∇ = ∇A on R4 is given by

∇jΦ =
∂Φ
∂xj

+ AjΦ,
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where Aj : R4−→iR and Φ : R4 −→ C2 . Then the associated connection on the
line bundle LΓ = R4 × C is the connection 1−form

A =
4∑

i=1

Aidxi ∈ Ω1
(
R4, iR

)

and its curvature 2-form is given by

FA = dA =
∑

i<j

Fijdxi ∧ dxj ∈ Ω2
(
R4, iR

)
,

where Fij = ∂Aj

∂xi
− ∂Ai

∂xj
for i, j = 1, ..., 4 .

Let Γ : R4 −→ End(C4) be the classical spinc structure which is given by

Γ (w) =
[

0 γ (w)
−γ (w)∗ 0

]

where γ : R4 −→ End(C2) is defined on generators e0, e1, e2, e3 by the followings:

γ (e0)=
[

1 0
0 1

]
, γ (e1)=

[
i 0
0 −i

]
, γ (e2)=

[
0 1
−1 0

]
, γ (e3)=

[
0 i
i 0

]
.

Note that in the definition of γ, the 2×2 identity matrix and i multiples of the well-

known Pauli matrices σ1 =
[

1 0
0 −1

]
, σ2 =

[
0 i
−i 0

]
and σ3 =

[
0 1
1 0

]
are

used. In many works, the classical spinc−structure has been used (see for instance
[11], [10], [5]).

Note that Γ (e3e2e1e0) =




−1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 1


 and the eigenspaces of

Γ (e3e2e1e0) are

W+
1 =

{
(φ1, φ2, 0, 0) | φ1, φ2 ∈ C∞

(
R4,C

)}
,

W−
1 =

{
(0, 0, φ3, φ4) | φ3, φ4 ∈ C∞

(
R4,C

)}
.

According to the above data Seiberg-Witten equations on R4, i. e. equations
(3.1) and (3.2), are as follows (see [11], [10] ):

The first of these equations, DAΦ = 0, can be expressed as

−∇0Φ + iσ1∇1Φ + iσ2∇2Φ + iσ3∇3Φ = 0,

or more explicitly

(3.3)

∂φ1
∂x0

+A0φ1 = i
(

∂φ1
∂x1

+A1φ1

)
+

(
∂φ2
∂x2

+A2φ2

)
+i

(
∂φ2
∂x3

+A3φ2

)

∂φ2
∂x0

+A0φ2 =−i
(

∂φ2
∂x1

+A1φ2

)
−

(
∂φ1
∂x2

+A2φ1

)
+i

(
∂φ1
∂x3

+A3φ1

)

where Φ = (φ1, φ2, 0, 0). The second one is

ρ+ (FA) = (ΦΦ∗)0
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and this equation can be expressed explicitly

(3.4)
F01 + F23 = − i

2

(
φ1φ1 − φ2φ2

)
,

F02 − F13 = 1
2

(
φ1φ2 − φ2φ1

)
,

F03 + F12 = − i
2

(
φ1φ2 + φ2φ1

)
.

where FA = dA hence FA = F01dx0∧dx1 +F02dx0∧dx2 +F03dx0∧dx3 +F12dx1∧
dx2 + F13dx1 ∧ dx3 + F23dx2 ∧ dx3.

4. Seiberg-Witten Equations with Negative Sign

Now we change the second equation of Seiberg-Witten equations by multiplying
(−1) its right hand side. Then the Seiberg-Witten equations with negative sign on
a 4−dimensional spinc manifold can be expressed as follow:

(4.1) DA (Φ) = 0,

(4.2) ρ+ (FA) = − (ΦΦ∗)0 .

Now we consider the Seiberg-Witten Equations with negative sign on R4. The
second equation of the Seiberg-Witten equations with negative sign on R4 is

ρ+ (FA) = − (ΦΦ∗)0
and this equation can be expressed explicitly as follows:

(4.3)
F01 + F23 = i

2

(
φ1φ1 − φ2φ2

)
,

F02 − F13 = − 1
2

(
φ1φ2 − φ2φ1

)
,

F03 + F12 = i
2

(
φ1φ2 + φ2φ1

)
.

5. Seiberg-Witten Equations on Minkowski Space

When one take 4-dimensional Euclidean space with the metric

η(x, y) = x0y0 − x1y1 − x2y2 − x3y3,

where x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) ∈ R4, this space is called Minkowski
space and it’s denoted by R1,3. A spinc−structure on R1,3 can be defined similar
to the Euclidean case as follows:

Definition 5.1. A spinc−structure on R1,3 is a pair (W,Γ) where W is a 4−dimensional
complex vector space and Γ : R1,3 −→ End (W ) is a linear map which satisfies

Γ (v)2 = −η(v, v)1

for every v ∈ V.

Due to the universal properties of Clifford algebras, the map Γ can be extended to
an algebra isomorphism from complex Clifford algebra Cl4 ∼= Cl1,3⊗C to End (W )
which is still denoted by Γ where Cl1,3 is the real Clifford algebra on R1,3.

An explicit spinc−structure on R1,3 can be given by using Pauli matrices:

Γ(e0) =
(

0 σ0

−σ0 0

)
, Γ(e1) =

(
0 σ1

σ1 0

)

Γ(e2) =
(

0 σ2

σ2 0

)
, Γ(e3) =

(
0 σ3

σ3 0

)
,
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where

σ0 =
(

1 0
0 1

)
, σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

Note that Γ(e0)2 = −I4, Γ(e1)2 = Γ(e2)2 = Γ(e3)2 = I4, where I4 is 4×4 identity
matrix. As in the Euclidean case, Γ gives rise to an action of the space Λ2

(
R1,3

)
on W which is induced by Clifford multiplication:

ρ : Λ2
(
R1,3

) → End (W ) , ρ


∑

i<j

ηijdxi ∧ dxj


 =

∑

i<j

ηijΓ(ei)Γ(j).

The map ρ extends to a map

ρ : Λ2V ⊗ C −→End(W )

on the space of complex valued 2−forms. The representation space W = C4 is
called spinor space. This space has the following natural decomposition:

W = W+ ⊕W−

where
W+ = {(ψ1, ψ2, 0, 0)|ψi ∈ C} ,
W− = {(0, 0, ψ3, ψ4)|ψi ∈ C} .

These subspaces are invariant under the action ρ. Hence we get the new maps ρ±

by restrictions:

ρ+(η) = ρ(η)|W+ ; ρ−(η) = ρ(η)|W− .

Generally Dirac operator DA : C∞
(
R1,3,W

) −→ C∞
(
R1,3,W

)
on R1,3 associ-

ated to spinc−structure Γ is defined by

DA (Φ) = −Γ (e0)∇A
e0

(Φ) + Γ (e1)∇A
e1

(Φ) + Γ (e2)∇A
e2

(Φ) + Γ (e3)∇A
e3

(Φ)

where Φ ∈ C∞
(
R1,3,W

)
and {e0, e1, e2, e3} is any orthonormal frame on R1,3.

Note that ∇A preserves subbundles W± and the Clifford multiplication by vectors
interchanges these subbundles. Hence we get the following decomposition

D±
A : C∞

(
R1,3,W±) −→ C∞

(
R1,3,W∓)

.

From now on we consider the Dirac operator D+
A and denote it by DA, explicitly

DA (Φ) = −σ0∇A
e0

(Φ) + σ1∇A
e1

(Φ) + σ2∇A
e2

(Φ) + σ3∇A
e3

(Φ) .

Now we can state Seiberg-Witten equations on R1,3:

DA (Φ) = 0
ρ+(FA) = (ΦΦ∗)0 .

The explicit form of the first equation is

∂φ1
∂x0

+ A0φ1 = ∂φ2
∂x1

+ A1φ2 − i
(

∂φ2
∂x2

+ A2φ2

)
+ ∂φ1

∂x3
+ A3φ1,

∂φ2
∂x0

+ A0φ2 = ∂φ1
∂x1

+ A1φ1 + i
(

∂φ1
∂x2

+ A2φ1

)
−

(
∂φ2
∂x3

+ A3φ2

)
.

The left side of the second equation can be written by

ρ+(FA) =
(

F03 + iF12 F01 + iF23 − i (F02 − iF13)
F01 + iF23 + i (F02 − iF13) − (F03 + iF12)

)
.
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On the other hand the traceless part of the endomorphism (ΦΦ∗) is

(ΦΦ∗)0 =

(
φ1φ1−φ2φ2

2 φ1φ2

φ1φ2
φ2φ2−φ1φ1

2

)
.

Then the second equation is

F03 + iF12 = φ1φ1−φ2φ2
2 ,

F01 + iF23 − i (F02 − iF13) = φ1φ2,

F01 + iF23 + i (F02 − iF13) = φ1φ2.

If we rearrange these equations, we obtain

F03 + iF12 = 1
2 (φ1φ1 − φ2φ2),

F01 + iF23 = 1
2

(
φ1φ2 + φ1φ2

)
,

F02 − iF13 = i
2

(
φ1φ2 − φ1φ2

)
.

These equations are also known as Freund equations, because in [4] Freund gave
the following explicit solutions to these equations:

A0 = A3 = 0, A1 =
−ix2

2r (r − x3)
, A2 =

ix1

2r (r − x3)
and

φ1 =
1√
2r

x1 − ix2√
r (r − x3)

, φ2 =
1√
2r

√
r − x3

r
.

Also see [1, 9, 10] for some discussion of these solutions.
We can produce a solution for the Seiberg-Witten equations with negative sign

by using the Freund’s solution. Firstly, in the above solution of Freund, change the
coordinate (x0, x1, x2, x3) to (x0, x3, x2, x1) , then the pair (A,Φ) become the pair
(A′, Φ′) with the following components:

A′0 = A′3 = 0, A′1 =
−ix2

2r (r − x1)
, A′2 =

ix3

2r (r − x1)
and

φ′1 =
1√
2r

x3 − ix2√
r (r − x1)

, φ′2 =
1√
2r

√
r − x1

r
.

Then the pair (B, Ψ) is a solution to the Seiberg-Witten equations with negative
sign by B0 = A′0, B1 = A′3, B2 = A′2, B3 = A′1 and ψ1 = φ′1, ψ2 = φ′2.

Hence the solution space of Seiberg-Witten equations with negative sign is non-
empty. One can produce infinitely many solutions by using the above special solu-
tion:

The group G = Map(M, S1) acts on the space A (Γ)× C∞ (M, W+) via

u∗ (B, Ψ) =
(
B + u−1du, u−1Ψ

)

for u ∈ Map(M, S1), B ∈ A (Γ) and Ψ ∈ C∞ (M, W+). It can be checked that

Du∗B

(
u−1Ψ

)
= u−1DBΨ, Fu∗B = FB

and thus (B, Ψ) satisfies the Seiberg-Witten equations with negative sign if and
only if the pair

(
u∗B, u−1Ψ

)
satisfies these equations.

Let us consider the smooth map u : R4 → S1, u(x) = eif(x) where f : R4 → R is a
smooth map. Then the pair

(
B + idf, eifΨ

)
is a new solution to the Seiberg-Witten

equations with negative sign. More explicitly
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B̃ = (B0 + i
∂f

∂x0
)dx0 + (B1 + i

∂f

∂x1
)dx1 + (B2 + i

∂f

∂x2
)dx2 + (B3 + i

∂f

∂x3
)dx3

Ψ̃ =
(
eifψ1, e

ifψ2

)
.

Putting above special solution in this last expressions:

B̃ = (i
∂f

∂x0
)dx0 + (i

∂f

∂x1
)dx1 + (

ix3

2r (r + x1)
+ i

∂f

∂x2
)dx2 + (

−ix2

2r (r + x1)
+ i

∂f

∂x3
)dx3

Ψ̃ =

(
eif 1√

2r

−x3 + ix2√
r (r + x1)

, eif 1√
2r

√
r + x1

r

)
,

where r = (x2
1 + x2

2 + x2
3)

1/2.
It is known that if (A,Φ) is a solution to the Seiberg-Witten equation on a

4-dimensional compact manifold, then it has the global bound

‖Φ(x)‖2 ≤ −s.

The proof of the compacness of the solution set of the Seiberg-Witten equations
based on this fact. Unfortunately similar situation doesn’t hold for the Seiberg-
Witten equations with negative sign.

Lemma 5.1. Let (A, Φ) be a solution to the Seiberg-Witten equation with negative
sign on a compact manifold. Then the following inequality

1
2
s ≤ ‖Φ(x)‖2

holds.

Proof. The proof relies on the identity

∆g‖Φ‖2 = −2‖∇AΦ‖2 + 2Re 〈Φ,∇∗A∇AΦ〉
where ∆g = d∗d denotes the positive definite Laplace operator of the metric g ( see
[11]). From the last equation and Weitzenbock formula,

∆g‖Φ‖2 = −2‖∇AΦ‖2 + 2Re 〈Φ,∇∗A∇AΦ〉
≤ 2Re 〈Φ,∇∗A∇AΦ〉
= −2 〈Φ, ρ+(FA)Φ〉 − 1

2s‖Φ‖2
= 2 〈Φ, (ΦΦ∗)0 Φ〉 − 1

2s‖Φ‖2
= ‖Φ‖4 − 1

2s‖Φ‖2.
Since ∆g ‖Φ‖2 ≥ 0, ‖Φ‖4 − 1

2s ‖Φ‖2 ≥ 0, hence we obtain

1
2
s ≤ ‖Φ‖2 .

¤

Note that if the manifold M has positive scalar curvature s , then the spinor
Φ = 0 is not a solution to the Seiberg-Witten equation with negative sign on M .
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Conclusion 1. We have proposed the Seiberg-Witten equations with negative sign,
and we have observed that these equations have some solutions which are related
with the Dirac monopole. But we have not discussed structure of the solution space.

It is known that if (A, Φ) is a solution of Seiberg-Witten equations over a compact
4-dimensional Riemannian manifold M , then

‖Φ(x)‖2 ≤ −s

at each point, where s is the scalar curvature of M . Compacness of the modulo space
of Seiberg-Witten equations is proved by using this property and familar Sobolev
imbedding theorems (see [8]). On the other hand there is no a priory pointwise
bound to the size of the spinor field of any solution to the Seiberg-Witten equations
with negative sign as we shown above.

The Seiberg-Witten equations give invariants for 4-dimensional compact Rie-
mannian manifolds with negative scalar curvature. These equations are meaning-
less for 4-dimensional compact Riemannian manifolds with positive scalar curva-
ture. At this point a question arise: Is it possible to define similar invariants
for 4-dimensional compact Riemannian manifolds with positive scalar curvature by
considering the Seiberg-Witten equations with negative sign?
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