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ABSTRACT. In the present study we consider the submanifold M of E™ sat-
isfying the condition (AH,e;) = 0, where H is the mean curvature of M
and e; € TM. We call such submanifolds tangentially cubic. We proved that
every null 2- type submanifold M of E™ is tangentially cubic. Further, we
prove that the pointed helical geodesic surfaces of E® with constant Gaussian
curvature are tangentially cubic.

1. INTRODUCTION

Let x : M — E™ be an isometric immersion from an n-dimensional connected
manifold M into the Euclidean m-space E™. With respect to the Riemannian
metric g on M induced from the Euclidean metric of the ambient space E™, M
is a Riemannian manifold (M,g). Denote by A the Laplacian operator of the
Riemannian manifold (M, g). One of the most important formulas in Differential
Geometry of submanifolds is

(1.1) Az = —nH,

where H is the mean curvature vector field of the immersion, and = also denotes
the position vector field of M in E™. Formula (1.1) implies that the immersion is
minimal (H = 0) if and only if the immersion is harmonic, that is Az = 0. An
isometric immersion x : M — E™ is called biharmonic if we have A2z = 0, that is
AH = 0. It is obvious that minimal immersions are biharmonic [3].

M is said to be of null 2-type submanifold of E™ if each component of the
position vector x has a finite spectral decomposition (see, [4])

(1.2) T =x9+ 21, Axg =0, A1 = Ccx1,
for some non-constant vectors xg and x; on M, where ¢ is a non-zero constant.
In [2] the present authors considered the differentiable curve v in E™ satisfying

the relation <AH , 71> = 0. Such curves are called tangentially cubic, where H is

the mean curvature vector of +.
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In the present study we extend the results in [2] to the submanifolds of E™. The
submanifolds satisfying the condition

(1.3) (AH,e;)) =0, 1<i<n, ;€ TM

are called tangentially cubic (T.C - submanifolds). We show that the hypercylinder
over the tangentially cubic curves is also tangentially cubic. Further, we give some
examples of T.C'-submanifolds.

In [6] Y.H. Kim studied the submanifolds which has pointed helical geodesics
with the same constant Frenet curvatures. We prove that the helical geodesics of
E® with constant Gaussian curvature are tangentially cubic surfaces.

2. Basic CONCEPTS

Let z : M — E™ be an isometric immersion from an n-dimensional, connected
manifold M into the Euclidean m-space E™. Let V and V denote the covariant

derivatives of M and E™ respectively. Thus V x is just the directional derivative in
the direction X in E™. Then for tangent vector fields X, Y the second fundamental

form h of the immersion z is defined by h(X,Y) = VxY — VxY. For a vector field
¢ normal to M we put Vx§ = —AcX + Dx&, where —A: X (resp. Dx&) denotes

the tangential and normal component of Vx& and D is the normal connection of
M.

Let us choose a local field of orthonormal frame {ey, e, ...€n, €441, ..., € } in E™
such that, restricted to M, the vectors ey, es,...e,, tangent to M and eny1,...m
are normal to M. We denote by {w!, w?,...,w™} the field of dual frames. The
structure equations of E™ are given by (see [3])

(21) VGiej = Zw?(ei)ek + Z w;'x(ei)ea-
k=1

a=n+1

The mean curvature vector of M is
1 n
(2.2) H = Ez;h(el,el)
i

If H =0, then M is said to be minimal.
The Laplace operator A acting on a vector valued function V' is given by

(2.3) AV =3 [Vo. oV = Ve VeV
i=1
We define the Laplacian AP with respect to the normal connection D

2 APH =3 [Ds, ol ~ DD, H).
=1
3. MAIN RESULTS

Let M be a H-hypersurface in E"*! then applying (2.3) to H , since H = aN ,
we find

(3.1) AH =2Angrada + nagrada + (Aa + Sa)N,
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where o and S stand for the mean curvature and the square of the length of the
second fundamental form, respectively. Suppose that the hypersurface M in the
Euclidean space E"*! is biharmonic. Then from (3.1) we have

(3.2) 2Agrada 4+ nagrada = 0
and
(3.3) Aa+ Sa=0.

The relations (3.2) and (3.3) are necessary and sufficient conditions for M to be
biharmonic. The hypersurfaces which satisfy (3.2) are called H-hypersurfaces [5].
First we prove the following result.

Proposition 3.1. FEvery H-hypersurface is a trivial T.C-hypersurface.
Proof. Let M be a H-hypersurface in E"*! then using (3.2) with (3.1) we get
(3.4) AH = (Aa+ Sa)N.

So by the use of (3.4) we get
<AH, €i> = 07
which completes the proof. (I

Proposition 3.2. Fvery biharmonic submanifold of E™ s trivial T.C-submanifold.

Proof. Let M be an n-dimensional connected submanifold of E™. Then by the
Beltrami formula (1.1) we get

1
(3.5) (AH,e;) = —— < Az,e; >, 1<i<mn,
n
which completes the proof. (I

Lemma 3.1. [4] Let M be an n-dimensional submanifold of an Euclidean space
E™. If there is a constant ¢ # 0 such that AH = cH , then M is either of 1-type
or of null 2-type.

Proposition 3.3. [3] Let M be an n-dimensional submanifold of an m-dimensional
Riemannian manifold E™ . Let e,11,...,e, be mutually orthogonal unit normal
vector fields of M in E™ such that e, is parallel to the mean curvature vector H
of M in E™ then

(3.6) AH = APH + || Aps1||> H 4 a(H) + tr(VAg),

where

(3.7) a(H) = Y tr(AgAy)e,, Ay =A. ,n+2<r<m,
r=n+2

[ Ant1 ”2 =tr(Ant14nt1),

n

(38) tT(%AH) = Z[(VelAH)el + ADeiHei]'

i=1
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Lemma 3.2. [4] Let M be an n—dimensional submanifold of an Fuclidean space
E™ such that M is not of 1-type. Then M is of null 2-type if and only if we have

(3.9) tr(VAyg) =0
and
(3.10) AH = APH + || Api|* H + a(H).

Consequently we have the following result.

Proposition 3.4. Let M be an n-dimensional submanifold of an Euclidean space
E™ . If M is of null 2-type (i.e. not of 1-type) then M is a T.C-submanifold.

Proof. It M is of null 2-type then (3.9) and (3.10) are full filled. So using (3.10) we
get

< AH,e; >=0,
which completes the proof. O

Definition 3.1. Consider the case when M = M; x Ms is a product submanifold.
That is, there exist isometric embeddings

(3.11) froMy — E™FN L fo s My — BT,

We put m = mq + mg,d = dy + dy so that E?td = Emitdi  Emetdz Then the
function f(z1,22) = (fi(z1), f2(z2)) defines an embedding f : M — E™*¢ which
is called the product immersion of f1, fa (see, [7]).

Theorem 3.1. [1] Let f; : My — E™*4  and fo © My — E™2F92 pe two
isometric immersions of closed manifolds and A, A1 and Ay be the Laplacian of
the submanifolds M = My x Ms , My and My respectively. Then

A=A+ As.

Theorem 3.2. Let v be a differentiable curve in E™. If v is a T.C'-curve then the
cylinder over v is also a T.C-surface.

Proof. Let v(s) = (71(8),72(8), -..,7n(8)) be the curve in E™. The cylinder over ~
will have the parametrization

T = (8,U1,U, .oy Up—1) = (Y(8), U1, Ug, .oy Up—_1).

Let (s) = v1,va, ..., v, be the oriented frame field of 7. We chose an orthonormal
tangent frame of the cylinder by {xs, Ty s Taagy ooy Tuuyy g }, where

zs = (v,0,..,0)
Zu, = (0,0,.1,.,0),1<j<n—1.

A simple calculation gives
Ve, xs =0, Vg, =0= V%jxs =0, quj Ty, =0

and

h(zs,xs) (fy;/ (s),’yg(s), ...,7;; (s),0,0,...,0),
h(l‘s, xuj) = h(xuj I x’U«k) = O
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So the mean curvature vector of the cylinder will become

n—1
1
H = - h sy Ls h u; s L,
22 (Bl ) + bl 1)
= h(ms, xs),
which is equal to the second derivative of v with n — 1 zeros will be added. If v is
a T.C- curve then the cylinder v x E*~! will be a T.C-surface. O

We give the following examples.

Example 3.1. The helix in S* € E* given by the parametrization

(3.12) ~(s) = (cos ¢ cos(as), cos ¢ sin(as), sin ¢ cos(bs), sin ¢ sin(bs)).

is a T.C-curve in S* C E*(see, [2]). Hence, the cylinder M over ~ given with the
parametrization

(3.13) x(s,t) = (cos ¢ cos(as), cos ¢ sin(as), sin ¢ cos(bs), sin ¢ sin(bs), t)

is a T.C-surface.

Example 3.2. The product manifold of Catenoid with the circle S*(b) is given by
the parametrization

(3.14) x(s,u1,us) = (beos s, bsin s, a cosh uy cos ug, a cosh uy sinug, auy),

In [1] it has been shown that the product immersion (s, u1,us) is of null 2-type.
So, by Theorem 3.2 the product submanifold given with the parametrization (3.14)
is a T.C'-submanifold.

In [6] Y.H. Kim studied the submanifolds which has pointed helical geodesics
with the same constant Frenet curvatures. He proved the following result.

Proposition 3.5. [6] Let M C E® be a compact connected surface fully lies in E5.
If M has pointed helical geodesics with the same constant Frenet curvatures then it
has the parametrization

1. 1 | 20° .,
x(s,0) = (E sin ks cos 6, 7 sin kssin, ﬁ(l —cosks) (k — —sin 9) ,
b
(3.15) %(1 — cos ks) sin 26, ﬁ(l — cos ks) sin” 0)
where k is the Frenet curvature of the helical geodesic on M and
- (k? — 242)?

a= ||h(er, )| ,0° = k 2
Proposition 3.6. Let M C E® be a compact connected surface fully lies in E®. If
M has pointed helical geodesics with the same constant Frenet curvatures and has
constant Gaussian curvature then it is a T.C-surface.

Proof. Let M be a proper surface of E°. If M has pointed helical geodesics with the
same constant Frenet curvatures then by Proposition 3.5 it has the parametriza-
tion of the form (3.15). Further, we assume that the Gaussian curvature of M is
constant. So by Lemma 2.14 of [6] the Laplacian operator A of M is given by

0? 1 02 10 0
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where ! 1
G= = sin ks + ﬁ(l — cos ks)?.
Using Beltrami formula (1.1) and computing H where the means of (3.16), we

obtain the following
3
(3.17) AH — 5k%{ =0.
So, by the use of Lemma 3.1 and Proposition 3.4 M becomes a T.C-surface. O
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