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Abstract. In the present study we consider the submanifold M of Em sat-
isfying the condition 〈∆H, ei〉 = 0, where H is the mean curvature of M
and ei ∈ TM . We call such submanifolds tangentially cubic. We proved that
every null 2- type submanifold M of Em is tangentially cubic. Further, we
prove that the pointed helical geodesic surfaces of E5 with constant Gaussian
curvature are tangentially cubic.

1. Introduction

Let x : M → Em be an isometric immersion from an n-dimensional connected
manifold M into the Euclidean m-space Em. With respect to the Riemannian
metric g on M induced from the Euclidean metric of the ambient space Em, M
is a Riemannian manifold (M, g). Denote by ∆ the Laplacian operator of the
Riemannian manifold (M, g). One of the most important formulas in Differential
Geometry of submanifolds is

(1.1) ∆x = −nH,

where H is the mean curvature vector field of the immersion, and x also denotes
the position vector field of M in Em. Formula (1.1) implies that the immersion is
minimal (H = 0) if and only if the immersion is harmonic, that is ∆x = 0. An
isometric immersion x : M → Em is called biharmonic if we have ∆2x = 0, that is
∆H = 0. It is obvious that minimal immersions are biharmonic [3].

M is said to be of null 2-type submanifold of Em if each component of the
position vector x has a finite spectral decomposition (see, [4])

(1.2) x = x0 + x1, ∆x0 = 0, ∆x1 = cx1,

for some non-constant vectors x0 and x1 on M, where c is a non-zero constant.
In [2] the present authors considered the differentiable curve γ in Em satisfying

the relation
〈
∆H, γ

′
〉

= 0. Such curves are called tangentially cubic, where H is
the mean curvature vector of γ.
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In the present study we extend the results in [2] to the submanifolds of Em. The
submanifolds satisfying the condition

(1.3) 〈∆H, ei〉 = 0, 1 ≤ i ≤ n, ei ∈ TM

are called tangentially cubic (T.C - submanifolds). We show that the hypercylinder
over the tangentially cubic curves is also tangentially cubic. Further, we give some
examples of T.C-submanifolds.

In [6] Y.H. Kim studied the submanifolds which has pointed helical geodesics
with the same constant Frenet curvatures. We prove that the helical geodesics of
E5 with constant Gaussian curvature are tangentially cubic surfaces.

2. Basic Concepts

Let x : M → Em be an isometric immersion from an n-dimensional, connected

manifold M into the Euclidean m-space Em. Let ∇ and
∼
∇ denote the covariant

derivatives of M and Em respectively. Thus
∼
∇X is just the directional derivative in

the direction X in Em. Then for tangent vector fields X, Y the second fundamental

form h of the immersion x is defined by h(X, Y ) =
∼
∇XY −∇XY. For a vector field

ξ normal to M we put
∼
∇Xξ = −AξX + DXξ, where −AξX (resp. DXξ) denotes

the tangential and normal component of
∼
∇Xξ and D is the normal connection of

M .
Let us choose a local field of orthonormal frame {e1, e2, ...en, en+1, ..., em} in Em

such that, restricted to M , the vectors e1, e2, ...en tangent to M and en+1, ...em

are normal to M . We denote by {w1, w2, ..., wm} the field of dual frames. The
structure equations of Em are given by (see [3])

(2.1) 5̃ei
ej =

n∑

k=1

wk
j (ei)ek +

m∑
α=n+1

wα
j (ei)eα.

The mean curvature vector of M is

(2.2) H =
1
n

n∑

i=1

h(ei, ei).

If H = 0, then M is said to be minimal .
The Laplace operator ∆ acting on a vector valued function V is given by

(2.3) ∆V =
n∑

i=1

[
∇̃∇ei

eiV − ∇̃ei∇̃eiV
]
.

We define the Laplacian ∆D with respect to the normal connection D

(2.4) ∆DH =
n∑

i=1

[
D∇ei

eiH −DeiDeiH
]
.

3. Main Results

Let M be a H-hypersurface in En+1 then applying (2.3) to H , since H = αN ,
we find

(3.1) ∆H = 2ANgradα + nαgradα + (∆α + Sα)N,
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where α and S stand for the mean curvature and the square of the length of the
second fundamental form, respectively. Suppose that the hypersurface M in the
Euclidean space En+1 is biharmonic. Then from (3.1) we have

(3.2) 2Agradα + nαgradα = 0

and

(3.3) ∆α + Sα = 0.

The relations (3.2) and (3.3) are necessary and sufficient conditions for M to be
biharmonic. The hypersurfaces which satisfy (3.2) are called H-hypersurfaces [5].

First we prove the following result.

Proposition 3.1. Every H-hypersurface is a trivial T.C-hypersurface.

Proof. Let M be a H-hypersurface in En+1 then using (3.2) with (3.1) we get

(3.4) ∆H = (∆α + Sα)N.

So by the use of (3.4) we get
〈∆H, ei〉 = 0,

which completes the proof. ¤

Proposition 3.2. Every biharmonic submanifold of Emis trivial T.C-submanifold.

Proof. Let M be an n-dimensional connected submanifold of Em. Then by the
Beltrami formula (1.1) we get

(3.5) 〈∆H, ei〉 = − 1
n

< ∆2x, ei >, 1 ≤ i ≤ n,

which completes the proof. ¤

Lemma 3.1. [4] Let M be an n-dimensional submanifold of an Euclidean space
Em. If there is a constant c 6= 0 such that ∆H = cH , then M is either of 1-type
or of null 2-type.

Proposition 3.3. [3] Let M be an n-dimensional submanifold of an m-dimensional
Riemannian manifold Em . Let en+1, ..., em be mutually orthogonal unit normal
vector fields of M in Em such that en+1 is parallel to the mean curvature vector H
of M in Em then

(3.6) ∆H = ∆DH + ‖An+1‖2 H + a(H) + tr(∇̃AH),

where

(3.7) a(H) =
m∑

r=n+2

tr(AHAr)er, Ar = Aer , n + 2 ≤ r ≤ m,

‖An+1‖2 = tr(An+1An+1),

and

(3.8) tr(∇̃AH) =
n∑

i=1

[(∇eiAH)ei + ADei
Hei].



TANGENTIALLY CUBIC SUBMANIFOLDS OF Em 115

Lemma 3.2. [4] Let M be an n−dimensional submanifold of an Euclidean space
Em such that M is not of 1-type. Then M is of null 2-type if and only if we have

(3.9) tr(∇̃AH) = 0

and

(3.10) ∆H = ∆DH + ‖An+1‖2 H + a(H).

Consequently we have the following result.

Proposition 3.4. Let M be an n-dimensional submanifold of an Euclidean space
Em . If M is of null 2-type (i.e. not of 1-type) then M is a T.C-submanifold.

Proof. If M is of null 2-type then (3.9) and (3.10) are full filled. So using (3.10) we
get

< ∆H, ei >= 0,

which completes the proof. ¤

Definition 3.1. Consider the case when M = M1×M2 is a product submanifold.
That is, there exist isometric embeddings

(3.11) f1 : M1 → Em1+d1 , f2 : M2 → Em2+d2 .

We put m = m1 + m2, d = d1 + d2 so that Em+d = Em1+d1 + Em2+d2 . Then the
function f(x1, x2) = (f1(x1), f2(x2)) defines an embedding f : M → Em+d which
is called the product immersion of f1, f2 (see, [7]).

Theorem 3.1. [1] Let f1 : M1 → Em1+d1 and f2 : M2 → Em2+d2 be two
isometric immersions of closed manifolds and ∆,∆1 and ∆2 be the Laplacian of
the submanifolds M = M1 ×M2 , M1 and M2 respectively. Then

∆ = ∆1 + ∆2.

Theorem 3.2. Let γ be a differentiable curve in Em. If γ is a T.C-curve then the
cylinder over γ is also a T.C-surface.

Proof. Let γ(s) = (γ1(s), γ2(s), ..., γn(s)) be the curve in Em. The cylinder over γ
will have the parametrization

x = (s, u1, u2, ..., un−1) = (γ(s), u1, u2, ..., un−1).

Let γ
′
(s) = v1, v2, ..., vn be the oriented frame field of γ. We chose an orthonormal

tangent frame of the cylinder by
{
xs, xu1 , xu2 , ..., xun−1

}
, where

xs = (v1, 0, ..., 0)
xuj = (0, 0, ..., 1, ..., 0), 1 ≤ j ≤ n− 1.

A simple calculation gives

∇xsxs = 0, ∇xsxuj = 0 = ∇xuj
xs = 0, ∇xuj

xuk
= 0

and

h(xs, xs) = (γ
′′
1 (s), γ

′′
2 (s), ..., γ

′′
n(s), 0, 0, ..., 0),

h(xs, xuj ) = h(xuj , xuk
) = 0.



116 GÜNAY ÖZTÜRK, BENGÜ (KILIÇ) BAYRAM, AND KADRI ARSLAN

So the mean curvature vector of the cylinder will become

H =
1
n

n−1∑

i=1

{h(xs, xs) + h(xui
, xui

)}

= h(xs, xs),

which is equal to the second derivative of γ with n− 1 zeros will be added. If γ is
a T.C- curve then the cylinder γ × En−1 will be a T.C-surface. ¤

We give the following examples.

Example 3.1. The helix in S3 ⊂ E4 given by the parametrization

(3.12) γ(s) = (cos φ cos(as), cosφ sin(as), sin φ cos(bs), sinφ sin(bs)).

is a T.C-curve in S3 ⊂ E4(see, [2]). Hence, the cylinder M over γ given with the
parametrization

(3.13) x(s, t) = (cos φ cos(as), cos φ sin(as), sinφ cos(bs), sin φ sin(bs), t)

is a T.C-surface.

Example 3.2. The product manifold of Catenoid with the circle S1(b) is given by
the parametrization

(3.14) x(s, u1, u2) = (b cos s, b sin s, a coshu1 cos u2, a cosh u1 sin u2, au1),

In [1] it has been shown that the product immersion x(s, u1, u2) is of null 2-type.
So, by Theorem 3.2 the product submanifold given with the parametrization (3.14)
is a T.C-submanifold.

In [6] Y.H. Kim studied the submanifolds which has pointed helical geodesics
with the same constant Frenet curvatures. He proved the following result.

Proposition 3.5. [6] Let M ⊂ E5 be a compact connected surface fully lies in E5.
If M has pointed helical geodesics with the same constant Frenet curvatures then it
has the parametrization

x(s, θ) = (
1
k

sin ks cos θ,
1
k

sin ks sin θ,
1
k2

(1− cos ks)
(

k − 2a2

k
sin2 θ

)
,

a

k2
(1− cos ks) sin 2θ,

b

k2
(1− cos ks) sin2 θ)(3.15)

where k is the Frenet curvature of the helical geodesic on M and

a = ‖h(e1, e2)‖ , b2 = k2 − (k2 − 2a2)2

k2
.

Proposition 3.6. Let M ⊂ E5 be a compact connected surface fully lies in E5. If
M has pointed helical geodesics with the same constant Frenet curvatures and has
constant Gaussian curvature then it is a T.C-surface.

Proof. Let M be a proper surface of E5. If M has pointed helical geodesics with the
same constant Frenet curvatures then by Proposition 3.5 it has the parametriza-
tion of the form (3.15). Further, we assume that the Gaussian curvature of M is
constant. So by Lemma 2.14 of [6] the Laplacian operator ∆ of M is given by

(3.16) ∆ = −
(

∂2

∂s2
+

1
G

∂2

∂θ2

)
− 1

2
∂

∂s
(log G)

∂

∂s
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where
G =

1
k2

sin2 ks +
1
k2

(1− cos ks)2.

Using Beltrami formula (1.1) and computing H where the means of (3.16), we
obtain the following

(3.17) ∆H − 3
2
k2H = 0.

So, by the use of Lemma 3.1 and Proposition 3.4 M becomes a T.C-surface. ¤

References

[1] Arslan, K. and Kilic, B., Product Submanifolds and their types, Far East Journal of Mathe-
matical Sciences, Volume 6 (1998), 125-134.

[2] Kilic, B.,Ozturk, G. and Arslan, K., Tangentcially Cubic Curves in Euclidean Spaces, Differ-
ential Geometry - Dynamical Systems, Vol 10,(2008), 186-196.

[3] Chen, B.Y., Total mean curvature and submanifolds of finite type, World Scientific, Singapore,
(1984).

[4] Chen, B.Y., Null 2-type surfaces in Euclidean space , in Algebra, Analysis and Geometry,
(Taipei , 1988) 1-18, World Sci.Publishing, Teaneck , NJ, 1989.

[5] Hasanis, T.H and Vlachos, T.H., Hypersurfaces in E4 with Harmonic Mean Curvature Vector
Field. Math.Nachr.172, (1995), 145-169.

[6] Kim, Y.H., Surfaces of a Euclidean space with Helical or Planar Geodesics Through a Point,
Annali di Matematica pura ed applicata(IV), Vol CLXIV, (1993),1-35.

[7] T. D. Moore , Isometric immersions of Riemannian products, Jour. of Geom. 5 (1971), 159-
168.

Faculty of Art and Sciences, Department of Mathematics, Kocaeli University, 41380,
Kocaeli, TURKEY

E-mail address: ogunay@kocaeli.edu.tr

Faculty of Art and Sciences, Department of Mathematics, Balikesir University, Ba-
likesir, TURKEY

E-mail address: benguk@balikesir.edu.tr

Faculty of Art and Sciences, Department of Mathematics, Uludag University, 16059,
Bursa, TURKEY

E-mail address: arslan@uludag.edu.tr


