TANGENTIALLY CUBIC SUBMANIFOLDS OF \mathbb{E}^{m}

GÜNAY ÖZTÜRK, BENGÜ (KILIÇ) BAYRAM, AND KADRI ARSLAN

(Communicated by Luc VRANCKEN)

Abstract

In the present study we consider the submanifold M of \mathbb{E}^{m} satisfying the condition $\left\langle\Delta H, e_{i}\right\rangle=0$, where H is the mean curvature of M and $e_{i} \in T M$. We call such submanifolds tangentially cubic. We proved that every null 2 - type submanifold M of \mathbb{E}^{m} is tangentially cubic. Further, we prove that the pointed helical geodesic surfaces of \mathbb{E}^{5} with constant Gaussian curvature are tangentially cubic.

1. Introduction

Let $x: M \rightarrow \mathbb{E}^{m}$ be an isometric immersion from an n-dimensional connected manifold M into the Euclidean m-space \mathbb{E}^{m}. With respect to the Riemannian metric g on M induced from the Euclidean metric of the ambient space \mathbb{E}^{m}, M is a Riemannian manifold (M, g). Denote by Δ the Laplacian operator of the Riemannian manifold (M, g). One of the most important formulas in Differential Geometry of submanifolds is

$$
\begin{equation*}
\Delta x=-n H \tag{1.1}
\end{equation*}
$$

where H is the mean curvature vector field of the immersion, and x also denotes the position vector field of M in \mathbb{E}^{m}. Formula (1.1) implies that the immersion is minimal $(H=0)$ if and only if the immersion is harmonic, that is $\Delta x=0$. An isometric immersion $x: M \rightarrow \mathbb{E}^{m}$ is called biharmonic if we have $\Delta^{2} x=0$, that is $\Delta H=0$. It is obvious that minimal immersions are biharmonic [3].
M is said to be of null 2-type submanifold of \mathbb{E}^{m} if each component of the position vector x has a finite spectral decomposition (see, [4])

$$
\begin{equation*}
x=x_{0}+x_{1}, \Delta x_{0}=0, \Delta x_{1}=c x_{1} \tag{1.2}
\end{equation*}
$$

for some non-constant vectors x_{0} and x_{1} on M, where c is a non-zero constant.
In [2] the present authors considered the differentiable curve γ in \mathbb{E}^{m} satisfying the relation $\left\langle\Delta H, \gamma^{\prime}\right\rangle=0$. Such curves are called tangentially cubic, where H is the mean curvature vector of γ.

[^0]In the present study we extend the results in [2] to the submanifolds of \mathbb{E}^{m}. The submanifolds satisfying the condition

$$
\begin{equation*}
\left\langle\Delta H, e_{i}\right\rangle=0, \quad 1 \leq i \leq n, e_{i} \in T M \tag{1.3}
\end{equation*}
$$

are called tangentially cubic (T.C - submanifolds). We show that the hypercylinder over the tangentially cubic curves is also tangentially cubic. Further, we give some examples of $T . C$-submanifolds.

In [6] Y.H. Kim studied the submanifolds which has pointed helical geodesics with the same constant Frenet curvatures. We prove that the helical geodesics of \mathbb{E}^{5} with constant Gaussian curvature are tangentially cubic surfaces.

2. Basic Concepts

Let $x: M \rightarrow \mathbb{E}^{m}$ be an isometric immersion from an n-dimensional, connected manifold M into the Euclidean m-space \mathbb{E}^{m}. Let ∇ and $\tilde{\nabla}$ denote the covariant derivatives of M and \mathbb{E}^{m} respectively. Thus $\tilde{\nabla}_{X}$ is just the directional derivative in the direction X in \mathbb{E}^{m}. Then for tangent vector fields X, Y the second fundamental form h of the immersion x is defined by $h(X, Y)=\widetilde{\nabla}_{X} Y-\nabla_{X} Y$. For a vector field ξ normal to M we put $\tilde{\nabla}_{X} \xi=-A_{\xi} X+D_{X} \xi$, where $-A_{\xi} X$ (resp. $D_{X} \xi$) denotes the tangential and normal component of $\tilde{\nabla}_{X} \xi$ and D is the normal connection of M.

Let us choose a local field of orthonormal frame $\left\{e_{1}, e_{2}, \ldots e_{n}, e_{n+1}, \ldots, e_{m}\right\}$ in \mathbb{E}^{m} such that, restricted to M, the vectors $e_{1}, e_{2}, \ldots e_{n}$ tangent to M and $e_{n+1}, \ldots e_{m}$ are normal to M. We denote by $\left\{w^{1}, w^{2}, \ldots, w^{m}\right\}$ the field of dual frames. The structure equations of \mathbb{E}^{m} are given by (see [3])

$$
\begin{equation*}
\widetilde{\nabla}_{e_{i}} e_{j}=\sum_{k=1}^{n} w_{j}^{k}\left(e_{i}\right) e_{k}+\sum_{\alpha=n+1}^{m} w_{j}^{\alpha}\left(e_{i}\right) e_{\alpha} . \tag{2.1}
\end{equation*}
$$

The mean curvature vector of M is

$$
\begin{equation*}
H=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) . \tag{2.2}
\end{equation*}
$$

If $H=0$, then M is said to be minimal.
The Laplace operator Δ acting on a vector valued function V is given by

$$
\begin{equation*}
\Delta V=\sum_{i=1}^{n}\left[\widetilde{\nabla}_{\nabla_{e_{i} e_{i}}} V-\widetilde{\nabla}_{e_{i}} \widetilde{\nabla}_{e_{i}} V\right] . \tag{2.3}
\end{equation*}
$$

We define the Laplacian Δ^{D} with respect to the normal connection D

$$
\begin{equation*}
\Delta^{D} H=\sum_{i=1}^{n}\left[D_{\nabla_{e_{i} e_{i}}} H-D_{e_{i}} D_{e_{i}} H\right] \tag{2.4}
\end{equation*}
$$

3. Main Results

Let M be a H-hypersurface in \mathbb{E}^{n+1} then applying (2.3) to H, since $H=\alpha N$, we find

$$
\begin{equation*}
\Delta H=2 A_{N} g r a d \alpha+n \alpha g r a d \alpha+(\Delta \alpha+S \alpha) N \tag{3.1}
\end{equation*}
$$

where α and S stand for the mean curvature and the square of the length of the second fundamental form, respectively. Suppose that the hypersurface M in the Euclidean space \mathbb{E}^{n+1} is biharmonic. Then from (3.1) we have

$$
\begin{equation*}
2 \text { Agrad } \alpha+\text { nograd } \alpha=0 \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta \alpha+S \alpha=0 \tag{3.3}
\end{equation*}
$$

The relations (3.2) and (3.3) are necessary and sufficient conditions for M to be biharmonic. The hypersurfaces which satisfy (3.2) are called H-hypersurfaces [5].

First we prove the following result.
Proposition 3.1. Every H-hypersurface is a trivial T.C-hypersurface.
Proof. Let M be a H-hypersurface in \mathbb{E}^{n+1} then using (3.2) with (3.1) we get

$$
\begin{equation*}
\Delta H=(\Delta \alpha+S \alpha) N \tag{3.4}
\end{equation*}
$$

So by the use of (3.4) we get

$$
\left\langle\Delta H, e_{i}\right\rangle=0
$$

which completes the proof.
Proposition 3.2. Every biharmonic submanifold of \mathbb{E}^{m} is trivial T.C-submanifold.
Proof. Let M be an n-dimensional connected submanifold of \mathbb{E}^{m}. Then by the Beltrami formula (1.1) we get

$$
\begin{equation*}
\left\langle\Delta H, e_{i}\right\rangle=-\frac{1}{n}<\Delta^{2} x, e_{i}>, \quad 1 \leq i \leq n \tag{3.5}
\end{equation*}
$$

which completes the proof.
Lemma 3.1. [4] Let M be an n-dimensional submanifold of an Euclidean space \mathbb{E}^{m}. If there is a constant $c \neq 0$ such that $\Delta H=c H$, then M is either of 1-type or of null 2-type.

Proposition 3.3. [3] Let M be an n-dimensional submanifold of an m-dimensional Riemannian manifold \mathbb{E}^{m}. Let e_{n+1}, \ldots, e_{m} be mutually orthogonal unit normal vector fields of M in \mathbb{E}^{m} such that e_{n+1} is parallel to the mean curvature vector H of M in \mathbb{E}^{m} then

$$
\begin{equation*}
\Delta H=\Delta^{D} H+\left\|A_{n+1}\right\|^{2} H+a(H)+\operatorname{tr}\left(\widetilde{\nabla} A_{H}\right) \tag{3.6}
\end{equation*}
$$

where

$$
\begin{gather*}
a(H)=\sum_{r=n+2}^{m} \operatorname{tr}\left(A_{H} A_{r}\right) e_{r}, A_{r}=A_{e_{r}}, n+2 \leq r \leq m \tag{3.7}\\
\left\|A_{n+1}\right\|^{2}=\operatorname{tr}\left(A_{n+1} A_{n+1}\right)
\end{gather*}
$$

and

$$
\begin{equation*}
\operatorname{tr}\left(\widetilde{\nabla} A_{H}\right)=\sum_{i=1}^{n}\left[\left(\nabla_{e_{i}} A_{H}\right) e_{i}+A_{D_{e_{i}} H} e_{i}\right] \tag{3.8}
\end{equation*}
$$

Lemma 3.2. [4] Let M be an n-dimensional submanifold of an Euclidean space \mathbb{E}^{m} such that M is not of 1-type. Then M is of null 2-type if and only if we have

$$
\begin{equation*}
\operatorname{tr}\left(\widetilde{\nabla} A_{H}\right)=0 \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\Delta H=\Delta^{D} H+\left\|A_{n+1}\right\|^{2} H+a(H) \tag{3.10}
\end{equation*}
$$

Consequently we have the following result.
Proposition 3.4. Let M be an n-dimensional submanifold of an Euclidean space \mathbb{E}^{m}. If M is of null 2-type (i.e. not of 1-type) then M is a T.C-submanifold.
Proof. If M is of null 2-type then (3.9) and (3.10) are full filled. So using (3.10) we get

$$
<\Delta H, e_{i}>=0
$$

which completes the proof.
Definition 3.1. Consider the case when $M=M_{1} \times M_{2}$ is a product submanifold. That is, there exist isometric embeddings

$$
\begin{equation*}
f_{1}: M_{1} \rightarrow \mathbb{E}^{m_{1}+d_{1}}, f_{2}: M_{2} \rightarrow \mathbb{E}^{m_{2}+d_{2}} \tag{3.11}
\end{equation*}
$$

We put $m=m_{1}+m_{2}, d=d_{1}+d_{2}$ so that $\mathbb{E}^{m+d}=\mathbb{E}^{m_{1}+d_{1}}+\mathbb{E}^{m_{2}+d_{2}}$. Then the function $f\left(x_{1}, x_{2}\right)=\left(f_{1}\left(x_{1}\right), f_{2}\left(x_{2}\right)\right)$ defines an embedding $f: M \rightarrow \mathbb{E}^{m+d}$ which is called the product immersion of f_{1}, f_{2} (see, [7]).
Theorem 3.1. [1] Let $f_{1}: M_{1} \rightarrow \mathbb{E}^{m_{1}+d_{1}}$ and $f_{2}: M_{2} \rightarrow \mathbb{E}^{m_{2}+d_{2}}$ be two isometric immersions of closed manifolds and Δ, Δ_{1} and Δ_{2} be the Laplacian of the submanifolds $M=M_{1} \times M_{2}, M_{1}$ and M_{2} respectively. Then

$$
\Delta=\Delta_{1}+\Delta_{2}
$$

Theorem 3.2. Let γ be a differentiable curve in \mathbb{E}^{m}. If γ is a T.C-curve then the cylinder over γ is also a T.C-surface.
Proof. Let $\gamma(s)=\left(\gamma_{1}(s), \gamma_{2}(s), \ldots, \gamma_{n}(s)\right)$ be the curve in \mathbb{E}^{m}. The cylinder over γ will have the parametrization

$$
x=\left(s, u_{1}, u_{2}, \ldots, u_{n-1}\right)=\left(\gamma(s), u_{1}, u_{2}, \ldots, u_{n-1}\right)
$$

Let $\gamma^{\prime}(s)=v_{1}, v_{2}, \ldots, v_{n}$ be the oriented frame field of γ. We chose an orthonormal tangent frame of the cylinder by $\left\{x_{s}, x_{u_{1}}, x_{u_{2}}, \ldots, x_{u_{n-1}}\right\}$, where

$$
\begin{aligned}
x_{s} & =\left(v_{1}, 0, \ldots, 0\right) \\
x_{u_{j}} & =(0,0, \ldots, 1, \ldots, 0), 1 \leq j \leq n-1
\end{aligned}
$$

A simple calculation gives

$$
\nabla_{x_{s}} x_{s}=0, \nabla_{x_{s}} x_{u_{j}}=0=\nabla_{x_{u_{j}}} x_{s}=0, \nabla_{x_{u_{j}}} x_{u_{k}}=0
$$

and

$$
\begin{aligned}
h\left(x_{s}, x_{s}\right) & =\left(\gamma_{1}^{\prime \prime}(s), \gamma_{2}^{\prime \prime}(s), \ldots, \gamma_{n}^{\prime \prime}(s), 0,0, \ldots, 0\right) \\
h\left(x_{s}, x_{u_{j}}\right) & =h\left(x_{u_{j}}, x_{u_{k}}\right)=0
\end{aligned}
$$

So the mean curvature vector of the cylinder will become

$$
\begin{aligned}
H & =\frac{1}{n} \sum_{i=1}^{n-1}\left\{h\left(x_{s}, x_{s}\right)+h\left(x_{u_{i}}, x_{u_{i}}\right)\right\} \\
& =h\left(x_{s}, x_{s}\right)
\end{aligned}
$$

which is equal to the second derivative of γ with $n-1$ zeros will be added. If γ is a T.C- curve then the cylinder $\gamma \times \mathbb{E}^{n-1}$ will be a $T . C$-surface.

We give the following examples.
Example 3.1. The helix in $\mathbb{S}^{3} \subset \mathbb{E}^{4}$ given by the parametrization

$$
\begin{equation*}
\gamma(s)=(\cos \phi \cos (a s), \cos \phi \sin (a s), \sin \phi \cos (b s), \sin \phi \sin (b s)) \tag{3.12}
\end{equation*}
$$

is a $T . C$-curve in $\mathbb{S}^{3} \subset \mathbb{E}^{4}$ (see, [2]). Hence, the cylinder M over γ given with the parametrization

$$
\begin{equation*}
x(s, t)=(\cos \phi \cos (a s), \cos \phi \sin (a s), \sin \phi \cos (b s), \sin \phi \sin (b s), t) \tag{3.13}
\end{equation*}
$$

is a T.C-surface.
Example 3.2. The product manifold of Catenoid with the circle $S^{1}(b)$ is given by the parametrization

$$
\begin{equation*}
x\left(s, u_{1}, u_{2}\right)=\left(b \cos s, b \sin s, a \cosh u_{1} \cos u_{2}, a \cosh u_{1} \sin u_{2}, a u_{1}\right), \tag{3.14}
\end{equation*}
$$

In [1] it has been shown that the product immersion $x\left(s, u_{1}, u_{2}\right)$ is of null 2-type. So, by Theorem 3.2 the product submanifold given with the parametrization (3.14) is a $T . C$-submanifold.

In [6] Y.H. Kim studied the submanifolds which has pointed helical geodesics with the same constant Frenet curvatures. He proved the following result.

Proposition 3.5. [6] Let $M \subset \mathbb{E}^{5}$ be a compact connected surface fully lies in \mathbb{E}^{5}. If M has pointed helical geodesics with the same constant Frenet curvatures then it has the parametrization

$$
\begin{aligned}
x(s, \theta)= & \left(\frac{1}{k} \sin k s \cos \theta, \frac{1}{k} \sin k s \sin \theta, \frac{1}{k^{2}}(1-\cos k s)\left(k-\frac{2 a^{2}}{k} \sin ^{2} \theta\right),\right. \\
& \left.\frac{a}{k^{2}}(1-\cos k s) \sin 2 \theta, \frac{b}{k^{2}}(1-\cos k s) \sin ^{2} \theta\right)
\end{aligned}
$$

where k is the Frenet curvature of the helical geodesic on M and

$$
a=\left\|h\left(e_{1}, e_{2}\right)\right\|, b^{2}=k^{2}-\frac{\left(k^{2}-2 a^{2}\right)^{2}}{k^{2}} .
$$

Proposition 3.6. Let $M \subset \mathbb{E}^{5}$ be a compact connected surface fully lies in \mathbb{E}^{5}. If M has pointed helical geodesics with the same constant Frenet curvatures and has constant Gaussian curvature then it is a T.C-surface.

Proof. Let M be a proper surface of \mathbb{E}^{5}. If M has pointed helical geodesics with the same constant Frenet curvatures then by Proposition 3.5 it has the parametrization of the form (3.15). Further, we assume that the Gaussian curvature of M is constant. So by Lemma 2.14 of [6] the Laplacian operator Δ of M is given by

$$
\begin{equation*}
\Delta=-\left(\frac{\partial^{2}}{\partial s^{2}}+\frac{1}{G} \frac{\partial^{2}}{\partial \theta^{2}}\right)-\frac{1}{2} \frac{\partial}{\partial s}(\log G) \frac{\partial}{\partial s} \tag{3.16}
\end{equation*}
$$

where

$$
G=\frac{1}{k^{2}} \sin ^{2} k s+\frac{1}{k^{2}}(1-\cos k s)^{2} .
$$

Using Beltrami formula (1.1) and computing H where the means of (3.16), we obtain the following

$$
\begin{equation*}
\Delta H-\frac{3}{2} k^{2} H=0 \tag{3.17}
\end{equation*}
$$

So, by the use of Lemma 3.1 and Proposition $3.4 M$ becomes a $T . C$-surface.

References

[1] Arslan, K. and Kilic, B., Product Submanifolds and their types, Far East Journal of Mathematical Sciences, Volume 6 (1998), 125-134.
[2] Kilic, B.,Ozturk, G. and Arslan, K., Tangentcially Cubic Curves in Euclidean Spaces, Differential Geometry - Dynamical Systems, Vol 10,(2008), 186-196.
[3] Chen, B.Y., Total mean curvature and submanifolds of finite type, World Scientific, Singapore, (1984).
[4] Chen, B.Y., Null 2-type surfaces in Euclidean space , in Algebra, Analysis and Geometry, (Taipei , 1988) 1-18, World Sci.Publishing, Teaneck, NJ, 1989.
[5] Hasanis, T.H and Vlachos, T.H., Hypersurfaces in \mathbb{E}^{4} with Harmonic Mean Curvature Vector Field. Math.Nachr.172, (1995), 145-169.
[6] Kim, Y.H., Surfaces of a Euclidean space with Helical or Planar Geodesics Through a Point, Annali di Matematica pura ed applicata(IV), Vol CLXIV, (1993),1-35.
[7] T. D. Moore, Isometric immersions of Riemannian products, Jour. of Geom. 5 (1971), 159168.

Faculty of Art and Sciences, Department of Mathematics, Kocaeli University, 41380, Kocaeli, TURKEY

E-mail address: ogunay@kocaeli.edu.tr
Faculty of Art and Sciences, Department of Mathematics, Balikesir University, BaLikesir, TURKEY

E-mail address: benguk@balikesir.edu.tr
Faculty of Art and Sciences, Department of Mathematics, Uludag University, 16059, Bursa, TURKEY

E-mail address: arslan@uludag.edu.tr

[^0]: 2000 Mathematics Subject Classification. 53A05, 53A40, 53C40.
 Key words and phrases. Biharmonic surfaces, Tangentially cubic surfaces.

