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Abstract. In a Riemannian manifold, the existence of a quarter symmetric
non-metric connection is proved. We find formula for curvature tensor of this

new connection. We also study this connection in Kenmotsu manifold and find
the first and second Bianchi identities for the curvature tensor. Finally we get

some identities for projective curvature tensor.

1. Introduction

Let M be an n-dimensional differentiable manifold equipped with a linear con-
nection ∇̃. The torsion tensor T̃ of ∇̃ is given by

T̃ (X,Y ) ≡ ∇̃XY − ∇̃YX − [X,Y ],

and the curvature tensor R̃ of ∇̃ is

R̃ (X,Y )Z ≡ ∇̃X∇̃Y Z − ∇̃Y ∇̃XZ − ∇̃[X,Y ]Z.

The connection ∇̃ is symmetric if its torsion tensor T̃ vanishes, otherwise it is
non-symmetric. If there is a Riemannian metric g in M such that ∇̃g = 0, the
connection ∇̃ is a metric connection , otherwise it is non-metric. It is well known
that a linear connection is symmetric and metric if and only if it is the Levi-Civita
connection.

Hayden [7] introduced a metric connection ∇̃ with a non-zero torsion on a Rie-
mannian manifold. Such a connection is called a Hayden connection. On the other
hand, in a Riemannian manifold given a 1-form ω, the Weyl connection ∇̃ con-
structed with ω and its associated vector B (Folland 1970, [5]) is a symmetric
non-metric connection. In fact, the Riemannian metric of the manifold is recur-
rent with respect to the Weyl connection with the recurrence 1-form ω, that is,
∇̃g = ω ⊗ g. Another symmetric non-metric connection is projectively related to
the Levi-Civita connection (cf. Yano [19], Smaranda [16]).

2000 Mathematics Subject Classification. 53B15.
Key words and phrases. Hayden connection; Levi-Civita connection; connection; quarter-

symmetric metric connection; quarter-symmetric non-metric connection; Kenmotsu manifold.

115



116 MOHIT KUMAR DWIVEDI

Friedmann and Schouten ([4], [14]) introduced the idea of a semi-symmetric
linear connection in a differentiable manifold. A linear connection is said to be a
semi-symmetric connection if its torsion tensor T̃ is of the form

(1.1) T̃ (X,Y ) = u (Y )X − u (X)Y,

where u is a 1-form. A Hayden connection with the torsion tensor of the form
(1.1) is a semi-symmetric metric connection. In 1970, Yano [20] considered a semi-
symmetric metric connection and studied some of its properties. Some different
kind of semi-symmetric connections are studied in [1], [2], [9] and [15].

In 1975, S. Golab [6] defined and studied quarter-symmetric linear connections
in differentiable manifolds. A linear connection is said to be a quarter-symmetric
connection if its torsion tensor T̃ is of the form

(1.2) T̃ (X,Y ) = u (Y )ϕX − u (X)ϕY, X, Y ∈ TM,

where u is a 1-form and ϕ is a tensor of type (1, 1). Note that a quarter-symmetric
metric connection is a Hayden connection with the torsion tensor of the form (1.2).
Studies of various types of quarter-symmetric metric connections and their proper-
ties include [11], [12], [13] and [21] among others.

On the other hand, there is well known class of almost contact metric manifolds
introduced by K. Kenmotsu, which is now known as Kenmotsu manifolds [8].

In this paper we study a quarter-symmetric non-metric connection. The paper is
organized as follows. In section 2, we get a quarter symmetric non-metric connec-
tion. In this section the curvature tensor of the Riemannian manifold with respect
to the defined quarter symmetric non-metric connection is also find. In last of this
section first Bianchi identity for the curvature tensor of the Riemannian manifold
with respect given quarter symmetric non-metric connection is find. In section 3
we study this quarter symmetric non-metric connection in Kenmotsu manifold. We
have given the covariant derivative of a 1-form and the torsion tensor we also get
the curvature tensor of the Kenmotsu manifold with respect to the defined quarter
symmetric non-metric connection and find first and second Bianchi identities. In
last of this section we have given the Ricci-tensor, scalar curvature and the pro-
jective curvature of the Kenmotsu manifold with respect to the defined quarter
symmetric non-metric connection.

2. A quarter-symmetric connection

In this section we find the existance of a quarter-symmetric non-metric connec-
tion

Theorem 2.1. Let M be an n-dimensional Riemannian manifold equipped with
the Levi-Civita connection ∇ of its Riemannian metric g. Let η be a 1-form and ϕ
a (1, 1) tensor field in M such that

(2.1) η (X) ≡ g (ξ,X) ,

(2.2) g (ϕX, Y ) = − g (X,ϕY )

for all X,Y ∈ TM . Then there exists a unique quarter symmetric non-metric
connection ∇̃ in M given by

(2.3) ∇̃XY = ∇XY − η (X)ϕY − g (X,Y ) ξ,
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which satisfies

(2.4) T̃ (X,Y ) = η (Y )ϕX − η (X)ϕY,

and

(2.5) (∇̃Xg) (Y, Z) = η (Y ) g (X,Z) + η (Z) g (X,Y ) ,

where T̃ is the torsion tensor of ∇̃.

Proof. The equation (2.4) of [18] is

∇̃XY = ∇XY + u (Y )ϕ1X − u (X)ϕ2Y − g (ϕ1X,Y )U

−f1 {u1 (X)Y + u1 (Y )X − g (X,Y )U1}
−f2g (X,Y )U2.

Taking

(2.6) ϕ1 = 0, ϕ2 = ϕ, u = u1 = u2 = η, f1 = 0, f2 = 1 and U2 = ξ,

in above equation we get (2.3). The equations (2.5) and (2.6) of [18] are

T̃ (X,Y ) = u (Y )ϕX − u (X)ϕY,

(∇̃Xg) (Y, Z) = 2f1u1 (X) g (Y, Z)

+f2 {u2 (Y ) g (X,Z) + u2 (Z) g (X,Y )} .
Using (2.6) in above equations we get respectively (2.4) and (2.5).

Conversely, a connection defined by (2.3) satisfies the conditions (2.4) and (2.5).

Proposition 2.1. Let M be an n-dimensional Riemannian manifold. For the quar-
ter symmetric connection defined by (2.3) the covariant derivatives of the torsion

tensor T̃ and any 1-form π are given respectively by

(∇̃X T̃ ) (Y, Z) = ((∇̃Xη)Z)ϕY − ((∇̃Xη)Y )ϕZ

+ η (Z) (∇̃Xϕ)Y − η (Y ) (∇̃Xϕ)Z,(2.7)

and

(2.8) (∇̃Xπ)Y = (∇Xπ)Y + η (X)π (ϕY ) + g (X,Y )π (ξ)

for all X,Y, Z ∈ TM .

Proof. Using (2.8) and (2.3) in

(∇̃X T̃ ) (Y,Z) = ∇̃X T̃ (Y, Z)− T̃ (∇̃XY,Z)− T̃ (Y, ∇̃XZ)

we obtain (2.7). Similarly, using (2.3) in

(∇̃Xπ)Y = ∇̃XπY − π(∇̃XY )

we get (2.8).
In an n-dimensional Riemannian manifold M , for the quarter symmetric con-

nection defined by (2.3), let us write

(2.9) T̃ (X,Y, Z) = g(T̃ (X,Y ) , Z), X, Y, Z ∈ TM.

Proposition 2.2. Let M be an n-dimensional Riemannian manifold. Then

T̃ (X,Y, Z) + T̃ (Y,Z,X) + T̃ (Z,X, Y )

= 2η (X) g (Y, ϕZ) + 2η (Y ) g (Z,ϕX) + 2η (Z) g (X,ϕY ) .(2.10)
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Proof. In view of (2.7) and (2.9) we get (2.10).

Theorem 2.2. Let M be an n-dimensional Riemannian manifold equipped with the
Levi-Civita connection ∇ of its Riemannian metric g. Then the curvature tensor
R̃ of the quarter symmetric connection defined by (2.3) is given by

R̃ (X,Y )Z = R (X,Y )Z − T̃ (X,Y, Z) ξ − 2dη (X,Y )ϕZ

+ η (X) (∇Y ϕ)Z − η (Y ) (∇Xϕ)Z

+ g (Y,Z) {η (X) ξ −∇Xξ + η (X)ϕξ}
− g (X,Z) {η (Y ) ξ −∇Y ξ + η (Y )ϕξ}(2.11)

for all X,Y, Z ∈ TM , where R is the curvature of Levi-Civita connection.

Proof. In view of (2.3), (2.2), (2.4) and (2.9) we get (2.11).

Theorem 2.3. In an n-dimensional Riemannian manifold the first Bianchi identity
for the curvature tensor of the Riemannian manifold with respect to the quarter
symmetric connection defined by (2.3) is

R̃ (X,Y )Z + R̃ (Y,Z)X + R̃ (Z,X)Y

= −
{
T̃ (X,Y, Z) ξ + T̃ (Y, Z,X) ξ + T̃ (Z,X, Y ) ξ

}
+ η (X)B (Y,Z) + η (Y )B (Z,X) + η (Z)B (X,Y )

− 2dη (X,Y )ϕZ − 2dη (Y,Z)ϕX − 2dη (Z,X)ϕY(2.12)

for all X,Y, Z ∈ TM , where

(2.13) B (X,Y ) = (∇Xϕ)Y − (∇Y ϕ)X.

Proof. From (2.11) we get

R̃ (X,Y )Z + R̃ (Y, Z)X + R̃ (Z,X)Y

= 2η (X) g (ϕY,Z) ξ + 2η (Y ) g (ϕZ,X) ξ + 2η (Z) g (ϕX, Y ) ξ

+ η (X) (∇Y ϕ)Z − η (X) (∇Zϕ)Y + η (Y ) (∇Zϕ)X

− η (Y ) (∇Xϕ)Z + η (Z) (∇Xϕ)Y − η (Z) (∇Y ϕ)X

− ((∇Xη)Y )ϕZ + ((∇Y η)X)ϕZ − ((∇Y η)Z)ϕX

+ ((∇Zη)Y )ϕX − ((∇Zη)X)ϕY + ((∇Xη)Z)ϕY.

Using (2.13) and (2.10) in the previous equation we get (2.12).

Let us write the curvature tensor R̃ as a (0, 4) -tensor by

(2.14) R̃ (X,Y, Z,W ) = g
(
R̃ (X,Y )Z,W

)
, X, Y, Z,W ∈ TM.

Then we have the following:

Theorem 2.4. Let M be a Riemannian manifold. Then

(2.15) R̃ (X,Y, Z,W ) + R̃ (Y,X,Z,W ) = 0,

for all X,Y, Z,W ∈ TM .

Proof. Using (3.25) in (2.14) we get

R̃ (X,Y, Z,W ) = R (X,Y, Z,W )− η (Z) g(T̃ (X,Y ) ,W )

+ g (Y,Z) g (X,W )− g (X,Z) g (Y,W ) .(2.16)
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Interchanging X and Y in the previous equation and adding the resultant equation
in (3.28) and using (2.4) we get (2.15).

3. Quarter symmetric non-metric connection in a Kenmotsu manifold

Let M be a (2n + 1)-dimensional almost contact metric manifold [3] equipped
with an almost contact metric structure (ϕ, ξ, η, g) consisting of a (1, 1) tensor field
ϕ, a vector field ξ, a 1-form η and a compatible Riemannian metric g satisfying

(3.1) ϕ2 = − I + η ⊗ ξ, η (ξ) = 1, ϕξ = 0, η ◦ ϕ = 0,

(3.2) g (X,Y ) = g (ϕX,ϕY ) + η (X) η (Y ) ,

(3.3) g (ϕX, Y ) = −g (X,ϕY ) , g (ξ,X) = η (X)

for all X,Y ∈ TM . An almost contact metric manifold is called a Kenmotsu
manifold if it satisfies [8]

(3.4) (∇Xϕ)Y = η (Y )ϕX − g (ϕX, Y ) ξ, X, Y ∈ TM,

where ∇ is Levi-Civita connection of the Riemannian metric. From the above
equation it follows that

(3.5) ∇Xξ = −X + η (X) ξ,

(3.6) (∇Xη)Y = − g (X,Y ) + η (X) η (Y )

and consequently

(3.7) dη = 0.

where

(3.8) dη(X,Y ) =
1

2
((∇Xη)Y − (∇Y η)X) , X, Y ∈ TM.

Moreover, the curvature tensor R, the Ricci tensor S, and the Ricci operator Q
satisfy [8]

(3.9) R (X,Y ) ξ = η (X)Y − η (Y )X,

(3.10) S (X, ξ) = −2nη (X) ,

(3.11) Qξ = −2nξ.

The equation (3.9) is equivalent to

(3.12) R (ξ,X)Y = η (Y )X − g (X,Y ) ξ,

which implies that

(3.13) R (ξ,X) ξ = X − η (X) ξ.

From (3.9) and (3.12), we have

(3.14) η(R (X,Y ) ξ) = 0,

(3.15) η(R (ξ,X)Y ) = η (X) η (Y )− g (X,Y ) .
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Theorem 3.1. Let M be a Kenmotsu manifold. Then for the quarter symmetric
connection defined by (2.3) it follows that

(3.16) (∇̃Xπ)Y = (∇Xπ)Y + η (X)π (ϕY ) + g (X,Y )π (ξ) .

In particular,

(3.17) (∇̃Xη)Y = η (X) η (Y ) ,

and

(3.18) d̃η = 0,

where

(3.19) d̃η(X,Y ) =
1

2
((∇̃Xη)Y − (∇̃Y η)X), X, Y ∈ TM.

Proof. In view of (2.3) we get (3.16). Replacing π by η in (3.16) and using (3.1)
and (3.6) we get (3.17). The equation (3.18) follows from (3.17).

Theorem 3.2. Let M be a Kenmotsu manifold. Then

(3.20) (∇̃Xϕ)Y = η (Y )ϕX.

Consequently,

(3.21) T̃ (X,Y ) = (∇̃Xϕ)Y − (∇̃Y ϕ)X,

(3.22) ∇̃Xξ = −X

for all X,Y ∈ TM .

Proof. In view of (2.3) and (3.1) we get

(∇̃Xϕ)Y = (∇Xϕ)Y − g (X,ϕY ) ξ,

which in view of (3.4) gives (3.20). From ( 3.20) and (2.4) we get (3.21). In view
of (2.3), (3.5), (3.1) and (3.3) we get (3.22).

Theorem 3.3. Let M be a Kenmotsu manifold. Then

(3.23) (∇̃X T̃ ) (Y,Z) = η (X) T̃ (Y,Z) .

Consequently,

(3.24) (∇̃X T̃ ) (Y,Z) + (∇̃Y T̃ ) (Z,X) + (∇̃Z T̃ ) (X,Y ) = 0

for all X,Y, Z ∈ TM .

Proof. Using (3.17), (3.20) and (2.4) in (2.7) we obtain (3.23). The equation (3.24
) follows from (3.23) and (2.4).

Theorem 3.4. The curvature tensor R̃ of the quarter symmetric connection in a
Kenmotsu manifold is given by

(3.25) R̃ (X,Y )Z = R (X,Y )Z − η (X) T̃ (X,Y ) + g (Y, Z)X − g (X,Z)Y

for all X,Y, Z ∈ TM .
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Proof. Using (3.4), (3.1), (3.3), (2.9) and (2.4) in (2.11) we get

R̃ (X,Y )Z = R (X,Y )Z − η (Y ) (∇Xϕ)Z + η (X) (∇Y ϕ)Z

+ ((∇Y η)X)ϕZ − ((∇Xη)Y )ϕZ

+ g (Y, Z) (−∇Xξ + η (X) ξ)

− g (X,Z) (−∇Y ξ + η (Y ) ξ)

− η (Y ) g (ϕX,Z) ξ + η (X) g (ϕY,Z) ξ.

Using (3.4), (3.7), (3.5) and ( 3.1) in the above equation we get (3.25 ).

Now, we have the following theorems.

Theorem 3.5. Let M be a Kenmotsu manifold. Then

R̃ (X,Y, Z,W ) + R̃ (X,Y,W,Z)

= − η (Z) (gT̃ (X,Y ) ,W )− η (W ) (gT̃ (X,Y ) , Z),(3.26)

R̃ (X,Y, Z,W )− R̃ (Z,W,X, Y )

= η (X) (gT̃ (Z,W ) , Y )− η (Z) (gT̃ (X,Y ) ,W )(3.27)

for all X,Y, Z,W ∈ TM .

Proof. Using (3.25) in (2.14) we get

R̃ (X,Y, Z,W ) = R (X,Y, Z,W )− η (Z) g(T̃ (X,Y ) ,W )

+ g (Y,Z) g (X,W )− g (X,Z) g (Y,W ) .(3.28)

Interchanging X and Y in the previous equation and adding the resultant equation
in (3.28) and using (2.4) we get (2.15). The equation (3.26) can be obtained by
interchanging Z and W in (3.28) and adding the resultant equation to (3.28). In the
last, interchanging X and Z, and Y and W in (3.28) and subtracting the resultant
equation from ( 3.28) and using (2.4) we get (3.27).

Theorem 3.6. The first Bianchi identity for curvature tensor of the Kenmotsu
manifold with respect to the connection (2.3) is given as

(3.29) R̃ (X,Y )Z + R̃ (Y,Z)X + R̃ (Z,X)Y = 0

for all X,Y, Z ∈ TM .

Proof. Using (3.25) and (2.4) we get (3.29).
Let us define

(3.30) R0 (X,Y )Z = g (Y,Z)X − g (X,Z)Y
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Theorem 3.7. The second Bianchi identity for curvature tensor of the Kenmotsu
manifold with respect to the connection (2.3) is given as

(∇̃XR̃) (Y,Z)W + (∇̃Y R̃) (Z,X)W + (∇̃ZR̃) (X,Y )W

= η (X) {R (ϕY,Z)W +R (Y, ϕZ)W +R (Y,Z)ϕW

− ϕR (Y, Z)W +R0 (Z, Y )W}
+ η (Y ) {R (ϕZ,X)W +R (Z,ϕX)W

+ R (Z,X)ϕW − ϕR (Z,X)W +R0 (X,Z)W}
+ η (Z) {R (ϕX, Y )W +R (X,ϕY )W

+ R (X,Y )ϕW − ϕR (X,Y )W +R0 (Y,X)W}
+ g (X,W )R (Y,Z) ξ + g (Y,W )R (X,Z) ξ

+ g (Z,W )R (X,Y ) ξ(3.31)

for all X,Y, Z,W ∈ TM .

Proof. Using (3.25), (2.4), (3.1), and (3.3) in the following equation

(∇̃XR̃) (Y,Z)W = ∇̃X(R̃ (Y,Z)W )− R̃(∇̃XY,Z)W

− R̃(Y, ∇̃XZ)W − R̃(Y, Z)∇̃XW(3.32)

we get

(∇̃XR̃) (Y,Z)W = ∇X(R (Y,Z)W − (Xη (Z))η (W )ϕY

− η (Z) (Xη (W ))ϕY − η (Z) η (W )∇XϕY

+ (Xη (Y ))η (W )ϕZ + η (Y ) (Xη (W ))ϕZ

+ η (Y ) η (W )∇XϕZ + (Xg (Z,W ))Y + g (Z,W )∇XY

− g (Y,W )∇XZ − η (X)ϕR (Y,Z)W − η (X)ϕg (Z,W )Y

+ η (X)ϕg (Y,W )Z − g (X,R(Y, Z)W ) ξ

+ η (Z) η (W ) g (X,ϕY ) ξ − η (Y ) η (W ) g (X,ϕZ) ξ

− R (∇XY, Z)W + η (Z) η (W )ϕ∇XY − η (∇XY ) η (W )ϕZ

− g (Z,W )∇XY + g (∇XY,W )Z + η (X)R (ϕY,Z)W

+ η (X) g (Z,W )ϕY + g (X,Y )R (ξ, Z)W

+ g (X,Y ) η (W )ϕZ − g (X,Y ) η (W )Z

− R (Y,∇XZ)W + η (∇XZ) η (W )ϕY

− η (Y ) η (W )ϕ∇XZ + g (∇XZ,W )Y

+ g (Y,W )∇XZ + η (X)R (Y, ϕZ)W

− η (X) g (Y,W )ϕZ + g (X,Z)R (Y, ξ)W

− g (X,Z) η (W )ϕY + g (X,Z) η (W )Y

− R (Y,Z)∇XW + η (Z) η (∇XW )ϕY

− η (Y ) η (∇XW )ϕZ − g (Z,∇XW )Y

+ g (Y,∇XW )Z + η (X)R (Y,Z)ϕW

+ g (X,W )R (Y, Z) ξ − g (X,W ) η (Z)ϕY

+ g (X,W ) η (Y )ϕZ + g (X,W ) η (Z)Y − g (X,W ) η (Y )(3.33)

In view of (3.7), (3.5), (3.3), ( 3.6) and (3.33) we get (3.31).
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Theorem 3.8. In an n-dimensional Kenmotsu manifold M , the Ricci tensor and
the scalar curvature with respect to the connection defined by (2.3) are given by

(3.34) S̃ (Y, Z) = S (Y,Z) + (n− 1) g (Y, Z) , Y, Z ∈ TM
and

(3.35) r̃ = r + n (n− 1)

respectively, where S is the Ricci tensor and r is the scalar curvature of M .

Proof. Let {e1, . . . , en} be a basis of M the

S̃ (Y, Z) =
∑

g
(
R̃ (ei, Y )Z, ei

)
Using (3.25) and trace (ϕ) = 0 in previous equation we get (3.34) and (3.34 ) gives
(3.35).

Theorem 3.9. The torsion tensor T̃ satisfies the following equation

(3.36) T̃
(
T̃ (X,Y ), Z

)
+ T̃

(
T̃ (Y,Z), X

)
+ T̃

(
T̃ (Z,X), Y

)
= 0

for all X,Y, Z ∈ TM .

Proof. Using (2.4) and (3.1) we get (3.36).

Theorem 3.10. The projective curvature tensor of Kenmotsu manifold M with
respect to the connection defined by (2.3) is given as

(3.37) P̃ (X,Y )Z = P (X,Y )Z − η (Z) T̃ (X,Y ) , X, Y, Z ∈ TM,

where P is the projective curvature tensor of the Kenmotsu manifold. We also have
the following identites

(3.38) P̃ (X,Y )Z + P̃ (Y,X)Z = 0

(3.39) P̃ (X,Y )Z + P̃ (Y,Z)X + P̃ (Z,X)Y = 0.

Proof. The projective curvature tensor is given as [10]

P̃ (X,Y )Z = R̃ (X,Y )Z +
1

n+ 1

(
S̃ (X,Y )− S̃ (Y,X)

)
Z

− n

n2 − 1

(
S̃ (Y,Z)X − S̃ (X,Z)Y

)
− 1

n2 − 1

(
S̃ (Z, Y )X − S̃ (Z,X)Y

)
(3.40)

Using (3.34) in (3.40) we get (3.37). In view of (3.37) we get ( 3.38) and (3.39).
Acknowledgement: The author is thankful to Prof. Mukut Mani Tripathi for his
valuable discussion during preparation of this paper.
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