GIDALARDA SU AKTİVİTESİNİN KONTROL VE BELİRLEME YÖNTEMLERİ-II.

THE CONTROL AND DETERMINATION METHODS OF WATER ACTIVITY IN FOODS-II.

Muharrem CERTEZ1, M.Fatih ERTUGAY2
1 Akdeniz Üniversitesi, Ziraat Fakültesi, Gida Bilimi ve Teknolojisi Bölümü, ANTALYA
2 Atatürk Üniversitesi, Ziraat Fakültesi, Gıda Mühendisliği Bölümü, ERZURUM

Teorik Yöntemler

Teorik yöntemlerle su aktivitesinin hesaplanması, ideal ve ideal olmayan çözelti̇ler olmak üzere iki kısımda yapılmaktadır.

İdeal Çözelti̇lerde Su Aktivitesinin Hesaplanması

İdeal çözelti̇ler söz konusu olduğunda, su aktivitesi çözünen maddenin mol fraksiyonuna eşittir ki, bu da Raoult kanununa ifade edilmektedir. Raoult kanunu:

\[a_w = x_w = n_w/(n_w + n_s) \] \hspace{2cm} (2)

Bu eşitlik; şekerler (sakkaroz < 2 mol, glikoz ve fruktoz < 4 mol) ve tuzlar (< 1 mol) gibi düşük molekül ağırlıklı çözünen maddelerin seyreltik sulu çözelti̇lerinde doğru bir şekilde kullanılabilmektedir.
Ideal Olmayan Çözeltiçiklerde Su Aktivitesinin Hesaplanması

Çok yaygın karşılaşılan ideal olmayan çözeltiçiklerde aktivite katsayısına dikkate almak gerektirmektedir. Bu nedenle Raoult kanununa bir düzeltme faktörü eklenerek, eşitsiz aşıdaaki gibi düzenlenmiştir.

\[a_w = x_w / (n_w + n_w), \ \gamma_w = x_w \cdot \gamma_w \] \hspace{1cm} (3)

Düşük molekül ağırlıklı çözün en madde ilavesi su aktivitesini düşüreceğinden bu durumda aktivite katsayısı I'den düşük olacaktır (MULTON ve ark., 1988).

SU AKTIVİTESİNİN KONTROLÜ

Su aktivitesinin kontrolü, gıdalarda arzu edilme mikrobiyal ve kimyasal değişimlerin önlenmesi ve gıdanın emniyetle muhafaza edilişine şarttır.

Kontrolü Etkileyen Faktörler

Yaygın olarak kullanılan diğer humektantlar gliserol ve sakkarozdur. Ancak bunların fiyatında skylıkla büyük değişimler olmaktadır.

İlcele, paketleme ve depolama şartları da su aktivitesinin kontrolünde humektantın gücünü etkileyen faktördürler. Özellikle sıcaklık bu bakımından çok önemlidir. Çünkü çoğu humektantın çözünürüğü sıcaklıkta eklentikefektedir.

SU AKTİVİTESİNİ AYARLAMA YÖNTEMLERİ

Gaz Buharları

Çeşitli nem seviyelerini ayarlayan gaz buharları, önceden belirlenen su aktivitesini sağlamak için gida doğrudan uygulanabilir. Su aktivitesi kontrolünde kullanılır bu yöntem özellikle kurutma ile birlikte kullanılmaktadır. Kuru ve yaş hava buharlarının karştırılması ile (su aktiviti bilinen sülfrik asit çözeltiçiklerine doğru havanın geçişi veya su aktivitesi bilinen doymuş tuz çözeltiçiklerine doğru havanın geçişi şeklinde) arzu edilen nisbi nem seviyeline ulaşılmaktadır.
Tuzlar

Doymuş çözelti denge uygulamaları için doymamış çözeltiye tercih edilir. Ayrıca doymuş tuz çözeltilerinin karışmaları, tek başına tuz çözeltisiyle elde edilen değerlerden daha düşük su aktivite değerleri elde etmek için kullanılmaktadır.

Sülfirik Asit Çozeltileri

<table>
<thead>
<tr>
<th>% Sulfuric Acid</th>
<th>% Sulfuric Acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,10</td>
<td>64,8</td>
</tr>
<tr>
<td>0,25</td>
<td>55,9</td>
</tr>
<tr>
<td>0,35</td>
<td>50,9</td>
</tr>
<tr>
<td>0,50</td>
<td>43,4</td>
</tr>
<tr>
<td>0,65</td>
<td>36,0</td>
</tr>
<tr>
<td>0,75</td>
<td>30,4</td>
</tr>
<tr>
<td>0,90</td>
<td>18,5</td>
</tr>
</tbody>
</table>

Gida İçerisinde Çok Bileşenli Denge

Organik Bileşikler

Sakkaroz, gliserol ve propilen glikol gadalardaki su aktivite seviyelerini düşürmek için sık kullanılan organik bileşiklerdir. Levuloz, maltoz gibi diğer şekerler de su aktivitesini sınırlamak için kullanılabilir. Sodyum klorür hariç tutulursa, diğer humektanlar arasında en geniş uygulama alanı sakkaroz sahiptir. Sakkarozun kullanımı özellikle jeller, süruplar, şekerlemeler ve diğer tatlı aromaya sahip konfeksiyon ürünleriyle sınırlıdır.

Gliserolun yüksek konsantrasyonları da su aktivitesinde azalma sağlandığını için kullanılır. Ancak gliserol'un aroma özellikleri bu bileşenin kullanımını sınırlamaktadır. Çünkü gda baharlı ve açık bir tat vermektedir. Ayrıca, laboratuvar çalışmalarında mikrobiyal gelişme aralığındaki su aktivite seviyelerini ayarlamak için gliserolun kullanımı hatalara sebep olabilmektedir. Çünkü çoğu bakteri gliserolü metabolize edebilmektedir. Çizelge 2’de çeşitli gliserol-su çözeltisiyle elde edilen (25°C) su aktivite değerleri görülmektedir.

Çizelge 2. Glicerol-Su Çözeltiyle Sağlanan Su Aktivite Değerleri

<table>
<thead>
<tr>
<th>(a_w) (25°C)</th>
<th>Glicerol</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,98</td>
<td>11,25</td>
</tr>
<tr>
<td>0,96</td>
<td>18,80</td>
</tr>
<tr>
<td>0,95</td>
<td>22,00</td>
</tr>
<tr>
<td>0,90</td>
<td>34,90</td>
</tr>
<tr>
<td>0,85</td>
<td>44,72</td>
</tr>
<tr>
<td>0,80</td>
<td>52,30</td>
</tr>
<tr>
<td>0,75</td>
<td>58,61</td>
</tr>
<tr>
<td>0,70</td>
<td>64,15</td>
</tr>
<tr>
<td>0,65</td>
<td>69,05</td>
</tr>
<tr>
<td>0,60</td>
<td>73,40</td>
</tr>
<tr>
<td>0,55</td>
<td>77,30</td>
</tr>
<tr>
<td>0,50</td>
<td>80,65</td>
</tr>
<tr>
<td>0,40</td>
<td>86,30</td>
</tr>
</tbody>
</table>

SEMBOLLER

- \(a_w \): Su aktivitesi
- \(emf \): Elektro motor kuvvet
- \(n_w \): Çözünen maddenin mol sayısı
- \(n_w \): Suyun mol sayısı
- \(T \): sıcaklık
- \(x_w \): Suyun mol kesri
- \(\gamma_w \): Aktivite katsayısı

KAYNAKLAR

bolin, d.l., nelson, g.l., 1965. Desorption isotherms for wheat. Trans. of ASAE 293.

day, d.l., nelson, g.l., 1965. Desorption isotherms for wheat. Trans. of ASAE 293.

lang, k.w., steinberg, m.p., 1980. Calculation of moisture content of a formulated food system to any given water. J. Food Sci. 45: 1228.

lang, k.w., steinberg, m.p., 1981. Linearization of the water sorption for homogeneous ingredient over \(a_w \) 0,30-0,95. J. Food Sci. 46: 1450.

lang, k.w., steinberg, m.p., 1981a. Predicting water activity from 0,30 to 0,95 of amulticomponent food formulation. J. Food Sci. 46: 670.

lupin, h.m., boeri, r.l., moschiar, s.m., 1981. Water activity and salt content relationship in moist salted fish products. J. Food Tech. 16: 31.

mccune, t.d., steinberg, m.p., 1983. Salt binding by soy protein isolate at water activities 0,75 to 0,95. F.Food Sci. 15:446.

