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Abstract: There are a lot of centrality measures that have been introduced for networks.
One of them is betweenness centrality. It is a measure of the influence of a vertex over
the flow of information between all pairs of vertices. This information flows over the
shortest paths between these vertices. The fact that any vertex has a high value of centrality
indicates that what level this vertex is in connection with vertices which are not adjacent
with each other. Since this vertex controls flows of information, it has a potential role in
the network. In this paper, we study on the betweenness centrality of some complementary
prism graphs.

Bazı Tümleyen Prizma Grafların Arasındalık Merkezliği

Anahtar Kelimeler
Graf teori,
Ağ tasarımı ve iletişim,
Arasındalık merkezliği,
Tümleyen prizma graf

Özet: Literatürde ağlar için tanımlanmış birçok merkezlik ölçümü vardır. Bunlardan biri
arasındalık merkezliğidir. Arasındalık merkezliği bir tepenin tüm tepe çiftleri arasındaki
bilgi akışına etkisinin bir ölçümüdür. Bu bilgi akışı, tepeler arasındaki en kısa yollar
üzerinde olmaktadır. Herhangi bir tepenin yüksek arasındalık merkezliğe sahip olması o
tepenin birbiriyle komşu olmayan tepelerle ne düzeyde bağlantı içinde olduğunu göster-
mektedir. Bu tepe ağdaki bilgi akışını kontrol ettiğinden ağda önemli bir yere sahiptir. Bu
makalede bazı tümleyen prizma grafların arasındalık merkezliği üzerine çalışılmıştır.

1. Introduction

There are a lot of important properties for a network.
One of them is which vertices lie on the shortest paths
(geodesics) among pairs of other vertices [1, 2]. Between-
ness centrality is based on shortest paths enumeration. It
determines the importance or the centrality of a vertex
(or an edge) in a network and plays an important role
in analysis of social or communication networks [3],
computer networks [4] and many other types of network
data models [5, 6]. For example, in a telecommunication
network, vertices with the higher value of centrality
are more important. Because, more information passes
through these vertices than the others. Since they lie on
the largest number of paths taken by messages, removing
these vertices from the network cuts off communications
between others. Hence, the betweenness centrality is
related to a network’s connectivity and therefore its
reliability [7].

The concept of betweenness centrality was first introduced
by Bavelas [8] in 1948. Particularly, this concept is used
in human communication in this study and and it indicates
that when a person in a group is located on the shortest

communication path connecting pairs of others, that
person is in central position [9].

Betweenness centrality CB(v) for a vertex v is defined as

CB(v) = ∑
s 6=v6=t

σst(v)
σst

,

where σst is the number of shortest paths with vertices s
and t as their end vertices, while σst(v) is the number of
those shortest paths that include vertex v.
The betweenness centrality of a graph G on n vertices is
defined as

CB(G) =

2
n
∑

i=1
[CB(v∗)−CB(vi)]

(n−1)2(n−2)
,

where CB(v∗) is the largest value of CB(vi) for any vertex
vi in the given graph G.

This paper determines betweenness centrality of some com-
plementary prism graphs. In 2007, Haynes et al. in [10]
introduced the complementary product as a generalization
of the Cartesian product. Complementary prisms of a graph
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Figure 1. The Petersen graph C5C5 and the corona K5 ◦
K1

G is the subset of complementary products. Let G be a
graph and G be the complement of G. The complemen-
tary prism GG of G is the graph formed from the disjoint
union G∪G of G and G by adding the edges of a perfect
matching between the corresponding vertices of G and G.
In other words, for a graph G with vertex set V (G) and
edge set E(G) the complementary prism of G is the graph
with vertex set V (GG) = {v1,v2, ...,vn} ∪ {v1,v2, ...,vn}
and edge set

E(GG) = E(G)∪{viv j : 1 6 i < j 6 n and viv j /∈ E(G)}
∪{v1v1,v2v2, ...,vnvn},

in which for a vertex v of G, vertex v is the corresponding
vertex in G [11, 12]. As demonstrated in Figure 1, the
graph C5C5 is the Petersen graph. Also, the graph KnKn is
the corona Kn ◦K1, where the corona Kn ◦K1 is the graph
obtained from Kn by attaching a pendant edge to each
vertex of Kn. Complementary prisms are investigated in
[11–15].

For notation and graph theory terminology we in general
follow [16]. Before stating our results, we give some no-
tations and formal definitions. Let G = (V (G),E(G)) be
a graph with vertex set V (G) and edge set E(G). The or-
der of G is the number of vertices of G. Given any two
vertices u,v ∈ V (G), the distance d(u,v) is the length of
the shortest path or geodesic path between u and v. The
diameter diam(G) of a graph G is the maximum distance
between two vertices of G. The degree of a vertex v in
a graph G is the number of edges of G incident to v and
denoted by degG(v). Throughout this paper, deg(v) repre-
sents degGG(v) for any vertex v in GG. The center vertex
of a star or wheel graph is the only vertex that has a maxi-
mum degree.

2. Betweenness Centrality of Some Complementary
Prism Graphs

In this section, we first state two known theorems that
we use in the proof of our results. Next, we determine
the betweenness centrality of some complementary prism
graphs.

Theorem 2.1. [2] The betweenness centrality of a vertex
v in Sn is given by

CB(v) =

{(n−1
2

)
, for center vertex,

0, for other vertices.

Theorem 2.2. [2] The betweenness centrality of a vertex
v in a wheel graph Wn, n > 5 is given by

CB(v) =

{
(n−1)(n−5)

2 , if v is center vertex,
1
2 , otherwise.

Theorem 2.3. Let KnKn be the complementary prism of
a complete graph on 2n vertices. Then the betweenness
centrality of a vertex v in KnKn is given by

CB(v) =

{
2n−2, if v is in Kn,

0, otherwise.

Proof. Take a vertex v in Kn. On Kn, there exists n− 1
adjacent vertices of v and each pair of these vertices
contributes 0 to v. Consider any adjacent vertex of v in
Kn. There is only one geodesic path joining this vertex to
corresponding vertex of v and it passes through v. Thus,
each pair contributes centrality 1 to v and gives a total
of n− 1. Now, consider any vertex in Kn other than
corresponding vertex of v. There is only one geodesic
path from this vertex to corresponding vertex of v passing
through v, and it contributes a betweenness centrality
1 to v. Since there are n− 1 such pairs, they provide a
betweenness centrality n−1 to v. Hence, the betweenness
centrality of any vertex v in Kn is 2n−2.

Take a vertex v in Kn. Since deg(v) = 1, there is one path
joining vertex v and all other vertices of KnKn. However,
it does not pass through v. Then the betweenness centrality
of v is 0.

Maximum value of the betweenness centrality of vertices
in KnKn and the graph centrality are as follows:

CB(v∗) = 2n−2,

CB(KnKn) =

2
2n
∑

i=1
[CB(v∗)−CB(vi)]

(2n−1)2(2n−2)
=

2n
(2n−1)2 .

Theorem 2.4. Let SnSn be the complementary prism of a
star on 2n vertices and c be the center vertex of Sn. Then
the betweenness centrality of a vertex v in SnSn is given by

CB(v) =


(n−1)(n+2)

2 , for center vertex c,
0, for c,
2, for any vertex in Sn−{c},
n−2, for any vertex in Sn−{c},

in which c is the corresponding vertex of c.

Proof. Let v1 be the center vertex of Sn in SnSn. By
Theorem 2.1, pairs of vertices in Sn contribute

(n−1
2

)
to v1. Consider the pairs (v1,vi) and (v1,vi) for all
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i ∈ {2,3, ...,n}. Each pair has a geodesic path which
passes through v1 and contributes 1 to the centrality of
v1. Since there are 2n− 2 such pairs, they give a total
of 2n− 2. Thus, the betweenness centrality of v1 is(n−1

2

)
+2n−2 = (n−1)(n+2)

2 .

Let v1 be the corresponding vertex of center vertex in Sn.
Since deg(v1) = 1, there are no pairs in SnSn which pass
through v1. Thus, the betweenness centrality of v1 is 0.

Consider any vertex vi in Sn, where i ∈ {2,3, ...,n}. None
of
(n−1

2

)
pairs in Sn contains vi. However, there is a

geodesic path joining corresponding vertex vi and v1
and v1 passing through vi. Since each one contributes
1 to the centrality of vi, the betweenness centrality of vi is 2.

For any vertex vi, there exists n−2 adjacent vertices of vi
in Sn, in which i ∈ {2,3, ...,n}. Then there is a geodesic
path joining each adjacent vertex to vi and it passes
through vi. Thus, each pair contributes centrality 1 to vi
and they contribute a total of n−2.

The largest value of the betweenness centrality of vertices
of SnSn is

CB(v∗) =
(n−1)(n+2)

2
,

and the betweenness centrality of SnSn is

CB(SnSn) =

2
2n
∑

i=1
[CB(v∗)−CB(vi)]

(2n−1)2(2n−2)

=
2

(2n−1)2(2n−2)

{(
(n−1)(n+2)

2
−0
)

+(n−1)
(
(n−1)(n+2)

2
−2
)

+(n−1)
(
(n−1)(n+2)

2
− (n−2)

)}

=
2n2 +n−2
2(2n−1)2 .

Theorem 2.5. Let PnPn be the complementary prism of
a path of order 2n. Then the betweenness centrality of
vertices of PnPn for n > 6 is given as follows:

If vi ∈V (Pn), then

CB(vi) =


1, if i ∈ {1,n},
7
2 , if i ∈ {2,n−1},
4, if i ∈ {3,4, ...,n−2}.

If vi ∈V (Pn), then

CB(vi) =


2n+ 1

n−3 −
9
2 , if i ∈ {1,n},

2n+ 1
n−3 +

n−5
n−4 −

15
2 , if i ∈ {2,n−1},

2n+ 1
n−3 +

n−6
n−4 −

17
2 , if i ∈ {3,n−2},

2n+ 2
n−3 +

n−7
n−4 −9, if i ∈ {4,5, ...,n−3}.

Proof. Since diam(PnPn) = 3, there is a geodesic path of
length at most 3 between two vertices in PnPn. For the
betweenness centrality of any vertex v in PnPn, we have
two cases: when v ∈V (Pn) and when v ∈V (Pn).

Case 1. Let vi be a vertex in Pn, where i ∈ {1,2, ...,n}.
Since the distance between any non-adjacent vertices of
Pn is 2, none of

(n
2

)
pairs of vertices of Pn passes through

vi.

For all i > 1, consider the pair (v j,vk), where
j ∈ {1,2, ...,n}, j 6= i and k ∈ {1,2, ...,n}. There is
a geodesic path joining vi to adjacent vertices of vi in
Pn which passes through vi. Since there are deg(vi)− 1
adjacent vertices of vi in Pn, they contribute a betweenness
centrality deg(vi)−1 to vi.

For contribution of any pair of vertices in Pn to the be-
tweenness centrality of vi, we partitioned the vertex set of
Pn into the following three pairs.

• Let i ∈ {1,n}.

Since the distance between any two vertices of Pn is at
most 3 in PnPn, none of geodesic paths between these
vertices except v1 and vn contains v1 or vn. Thus, these
pairs contribute to v1 or vn the betweenness centrality zero.

As a consequence, we have

CB(vi) = deg(vi)−1 = 1 for i ∈ {1,n},

in which deg(vi) = 2.

• Let i ∈ {2,n−1}.

For the pair (vi−1,vi+1), there is a geodesic path of length
2 passing through vi and it contributes a betweenness
centrality 1 to vi. Moreover, consider the paths of length
3 containing vi. There are two geodesic paths joining v1
and v4, one of which passes through v2. Similarly, there
are two geodesic paths joining vn and vn−3, one of which
passes through vn−1. Hence, each pair contributes 1

2 to vi.

As a consequence, we have

CB(vi) = deg(vi)−1+1+
1
2
=

7
2

for i ∈ {2,n−1},

in which deg(vi) = 3.

• Let i ∈ {3,4,5, ...,n−2}.

There is a geodesic path of length 2 between adjacent
vertices of vi in Pn passing through vi and it contributes
a betweenness centrality 1 to vi. Moreover, each pair
(vi−2,vi+1) and (vi−1,vi+2) have two geodesic paths of
length 3, one of which passes through vi. These two pairs
provide a total of 1 to the centrality of vi.

As a consequence, we have

CB(vi)= deg(vi)−1+1+1= 4 for i∈{3,4, ...,n−2},
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in which deg(vi) = 3.

Case 2. Let vi be a vertex in Pn, where i ∈ {1,2, ...,n}.
For all i > 1, consider the pair (v j,vk), where
j,k ∈ {1,2, ...,n} and k 6= i. There is only one geodesic
path joining vi and adjacent vertices of vi in Pn and it
passes through vi. Since vi has deg(vi)− 1 adjacent
vertices in Pn, it provides the betweenness centrality
deg(vi)−1 to vi.

We partitioned vertex set of Pn into three pairs for contri-
bution of any pair of vertices in Pn and similarly any pair
of vertices in Pn to the betweenness centrality of vi.

• Let i ∈ {1,2,3}.

Consider pairs of vertices in Pn. Now, for each pair
(v j+2,v j+3), where j ∈ {i, i+ 1, i+ 2, ...,n− 3}, there is
one geodesic path passing through vi. There are n− i−2
such pairs. While there are n− 3 geodesic paths for the
pair (vn−1,vn), there are n− 4 geodesic paths for the
remaining n− i− 3 pairs. Thus, these n− i− 2 pairs
contribute 1

n−3 +
n−i−3

n−4 to the betweenness centrality of vi.

Consider pairs of vertices in Pn. If the distance between
two vertices of Pn is 1 or 2 in Pn, there is a geodesic path
joining these vertices but it does not contain vi. Thus,
consider paths of length at least 3 in Pn. There are two
geodesic paths of length 3 joining vi and vi+3, one of
which passes through vi. Thereby, they contribute 1

2 to the
centrality of vi. Now, consider paths of length greater than
3 in Pn. Each pair (vi,vi+3+k) has only one geodesic path
and it passes through vi for each k ∈ {1,2, ...,n− i− 3}.
Since there are n− i− 3 such pairs, it contributes a
betweenness centrality n− i−3 to vi.

As a consequence, for i ∈ {1,2,3}

CB(vi) = deg(vi)+
1

n−3
+

n− i−3
n−4

+n− i− 7
2
.

• Let i ∈ {4,5, ...,n−3}.

Consider the pair (v j+2,v j+3), where j ∈
{−1,0,1, ..., i − 5, i, i + 1, ...,n − 3}. There are n − 5
such pairs and two of them are (v1,v2) and (vn−1,vn). For
these two pairs, there are n− 3 geodesic paths of length
2, one of them passes through vi. Hence, they contribute
centrality 2

n−3 to vi. For the remaining n− 7 pairs, there
are n−4 geodesic paths of length 2, one of them passes
through vi. Hence, each pair contributes centrality 1

n−4
to vi and they contribute a total of n−7

n−4 . Therefore, n−5
pairs of vertices in Pn provides a betweenness centrality

2
n−3 +

n−7
n−4 to vi.

Consider pairs of vertices in Pn. There is a geodesic
path of length at least 3 passing through vi. Thus,
we consider pairs (vi−3−k,vi) and (vi,vi+3+l), where
k ∈ {0,1, ..., i− 4} and l ∈ {0,1, ...,n− i− 3}. For each
pair (vi−3,vi) and (vi,vi+3) where k = 0 and l = 0, there
are two geodesic paths of length 3 and one of them passes
through vi. Thus, they contribute a betweenness centrality

1 to vi. If k > 0 or l > 0, then each pair has only one
geodesic path of length greater than 3 passing through
vi. Since there are n− 7 such pairs, they contribute a
betweenness centrality n−7 to vi.

As a consequence, for i ∈ {4,5, ...,n−3}

CB(vi) = deg(vi)+
2

n−3
+

n−7
n−4

+n−7.

• Let i ∈ {n−2,n−1,n}.

Consider the pair (v j,v j+1) for j ∈ {1,2, ..., i−3}. There
are i− 3 such pairs and one of them is (v1,v2). For this
pair, there is n− 3 geodesic paths joining v1 and v2, one
of which passes through vi. Thus, it contributes 1

n−3 to
vi. For the remaining i−4 pairs, there are n−4 geodesic
paths joining v j and v j+1, one of which passes through vi
for each j ∈ {2,3, ..., i−3}. Each pair contributes 1

n−4 to
vi giving a total of i−4

n−4 .

Consider pairs of vertices in Pn. Among the paths of length
3 in Pn, there are two geodesic paths joining vi and vi−3,
one of which passes through vi. Hence, they contribute 1

2
to vi. Now, consider all paths of length greater than 3 in Pn.
There are i−4 geodesic paths joining vi and vi−3−k, one
of which passes through vi for k ∈ {1,2, ..., i−4}. Thus,
each pairs contributes centrality 1 to vi giving a total of
i−4.

As a consequence, for i ∈ {n−2,n−1,n}

CB(vi) = deg(vi)+
1

n−3
+

i−4
n−4

− 9
2
+ i.

It is clear that deg(v1) = deg(vn) = n− 1 and deg(vi) =
n−2 for i 6= 1,n. Simplifying the equations of Case 2,

CB(vi) =


2n+ 1

n−3 −
9
2 , if i ∈ {1,n},

2n+ 1
n−3 +

n−5
n−4 −

15
2 , if i ∈ {2,n−1},

2n+ 1
n−3 +

n−6
n−4 −

17
2 , if i ∈ {3,n−2},

2n+ 2
n−3 +

n−7
n−4 −9, if i ∈ {4,5, ...,n−3}.

is obtained.
The maximum centrality value of Case 2 is at the first or
end vertex of Pn. Comparing the maximum values of Case
1 and Case 2 we have

CB(v∗) = 2n+
1

n−3
− 9

2
.

Thus, the betweenness centrality of PnPn is as follows:

CB(PnPn) =
2

(2n−1)2(2n−2)

2n

∑
i=1

[CB(v∗)−CB(vi)]

=
2n3−11n2 +14n+9
(2n−1)2(n−1)(n−3)

.

Theorem 2.6. The betweenness centrality of any vertex v
in the complementary prism of a cycle with n > 6 is

CB(v) =

{
4, if v ∈V (Cn)

2n−8, if v ∈V (Cn).
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Proof. Since diam(CnCn) = 3, there is a geodesic path
of length at most 3 between two vertices in CnCn. Since
Cn and Cn are vertex transitive, it is sufficient to consider
without loss of generality that the betweenness centrality
of any vertex in Cn and similarly in Cn.

Case 1. Let vi be any vertex in Cn, where i ∈ {1,2, ...,n}.
The distance between non–adjacent vertices of Cn is 2 in
CnCn and these vertices do not lie on any geodesic paths
containing vi. Then their betweenness centralities to vi are
zero.

Consider pairs of vertices in Cn. For each pairs (vi−1,vi+2)
and (vi−2,vi+1), there are two geodesic paths of length 3,
one of which passes through vi. Note that, we take v0 = vn
and v−1 = vn−1. Among the paths of length less than 3 in
Cn, there is only one geodesic path joining two adjacent
vertices of vi in Cn passes through vi. Thus, they provide a
total of 2 to the centrality of vi.

Now, consider the paths joining vertices of Cn and vertices
of Cn. There is only one geodesic path joining vi and two
adjacent vertices of vi in Cn passing through vi. Thus, each
one contributes 1 to the centrality of vi and they give a
total of 2.

Consequently, the betweenness centrality of any vertex in
Cn is 4.

Case 2. Let vi be any vertex in Cn, where i ∈ {1,2, ...,n}.
Consider pairs of vertices in Cn. There are two vertices
in Cn at distance 3 with vi, and there are two geodesic
paths joining vi and each of these two vertices. One of
two geodesic paths passes through vi. Thus, each one
contributes 1

2 to the centrality of vi and they give a total of
1. Furthermore, each geodesic path joining vi and n− 7
vertices of Cn that the distance with vi in Cn is greater than
3, if any, contributes 1 to the centrality of vi. Then it gives
a total of n−7.

Consider pairs of vertices between V (Cn) and V (Cn).
There is only one geodesic path joining vertex vi and each
adjacent vertex of vi in Cn. Since there are n− 3 such
adjacent vertices, they contribute a betweenness centrality
n−3 to vi.

Consider pairs of vertices in Cn. Since there are n− 3
adjacent vertices of vi in Cn, there are n−4 non–adjacent
pairs of vertices with these n−3 vertices. For each pair,
there are n−4 geodesic paths joining its vertices, one of
which passes through vi. Thus, n−4 pairs contribute 1 to
the centrality of vi.

Consequently, the betweenness centrality of any vertex in
Cn is 2n−8.

The largest value of the betweenness centrality of vertices
of CnCn

CB(v∗) = 2n−8,

and the betweenness centrality of CnCn is

CB(CnCn) =

2
2n
∑

i=1
[CB(v∗)−CB(vi)]

(2n−1)2(2n−2)
=

2n(n−6)
(2n−1)2(n−1)

.

Theorem 2.7. Let Kn,mKn,m be the complementary prism
of a complete bipartite graph with n 6 m. Then the be-
tweenness centrality of a vertex v in Kn,mKn,m is given
by

CB(v) =


m2−m+4mn

2n , if deg(v)=m+1,
n2−n+4mn

2m , if deg(v)=n+1,
n−1, if deg(v)=n,
m−1, if deg(v)=m.

Proof. Let V (Kn,mKn,m) =V (1)
1 ∪V (2)

1 ∪V (1)
2 ∪V (2)

2 , where
V (1)

1 = {v1,v2, ...,vn}, V (2)
1 = {vn+1,vn+2, ...,vn+m} and

V (1)
2 = {v1,v2, ...,vn}, V (2)

2 = {vn+1,vn+2, ...,vn+m}. The
degree of any vertex of V (1)

1 , V (2)
1 , V (1)

2 and V (2)
2 in

Kn,mKn,m are m+1, n+1, n and m, respectively. Then we
have following cases:

Case 1. Let vi be a vertex in V (1)
1 , where i ∈ {1,2, ...,n}.

Consider pairs of vertices (v j,vk), where
j,k ∈ {n + 1,n + 2, ...,n + m} and j 6= k. For each
pair, there are n geodesic paths joining the adjacent
vertices of v j in V (1)

1 and vk, one of which passes through
vi. Thus, each pair contributes centrality 1

n to vi and they
give a total of

(m
2

) 1
n .

Consider pairs of vertices (v j,vk) for v j ∈ V (2)
1 and

vk ∈V (1)
2 . For these pairs there is only one geodesic path

joining vertex v j and corresponding vertex of vi in V (1)
2

containing vi. Since there are m such pairs, they contribute
a betweenness centrality m to vi.

Consider pairs of vertices between V (1)
2 and V (2)

2 . There
is only one geodesic path joining corresponding vertex
of vi in V (1)

2 and any vertex of V (2)
2 passing through vi.

Since |V (2)
2 | = m, this contributes centrality m to vi. The

remaining pairs of vertices do not lie on any geodesic
paths passing through vi. Thus, their contribution of the
betweenness centrality to vi is zero.

As a consequence, the betweenness centrality of vi in V (1)
1

is (
m
2

)
1
n
+2m =

m2−m+4mn
2n

.

Case 2. Let vi be a vertex in V (2)
1 , where i ∈ {n+ 1,n+

2, ...,n+m}. The proof is similar to that of Case 1 and is
omitted. Hence, we have

CB(vi) =
n2−n+4mn

2m
.

Case 3. Let vi be a vertex in V (1)
2 , where i ∈ {1,2, ...,n}.

In this case, there is only one geodesic path from
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corresponding vertex of vi in V (1)
1 to any vertex vk passing

through vi for each k ∈ {1,2, ...,n} and k 6= i. Since there
are n−1 such pairs, they contribute n−1 to vi. None of
other pairs lies on any geodesic paths. As a consequence,
the betweenness centrality of any vertex vi in V (1)

2 is n−1.

Case 4. Let vi be a vertex in V (2)
2 , where

i ∈ {n+1,n+2, ...,n+m}.
When this case is proved similar to Case 3, we have
CB(vi) = m−1.

The largest value of the betweenness centrality of vertices
of Kn,mKn,m is

CB(v∗) =
m2−m+4mn

2n
,

and the betweenness centrality of Kn,mKn,m is

CB(Kn,mKn,m) =

2
2(n+m)

∑
i=1

[CB(v∗)−CB(vi)]

(2(n+m)−1)2(2(n+m)−2)

=
mn+3n2 +7m2n−3n3 +m2(2m−2)

2n(2n+2m−1)2(n+m−1)
.

Theorem 2.8. For the complementary prism of a wheel
graph W1,nW 1,n of order 2n+2, let c and c be center vertex
of W1,n and corresponding vertex of c in W 1,n, respectively.
Then the betweenness centrality of a vertex v in W1,nW 1,n
for n > 5 is given by

CB(v) =


n2

2 , if v = c
0, if v = c
9
2 , if v is in W1,n−{c}
n−2, if v is in W 1,n−{c}.

Proof.Let V (W1,n) = {c,v1,v2, ...,vn} and V (W 1,n) =
{c,v1,v2, ...,vn}, where c is center vertex of W1,n and c
is corresponding vertex of c in W 1,n. Wheel graph W1,n
contains a cycle of order n and center vertex is adjacent
to each vertex of cycle Cn. Then we have following four
cases:

Case 1. Take center vertex c of W1,n.
Since diam(W1,n) = 2, the distance between two vertices
of Cn in W1,nW 1,n is at most 2. Thus, by Theorem 2.2
vertices of W1,n in W1,nW 1,n contribute a betweenness
centrality n(n−4)

2 to c.

Among the paths between any vertex of W1,n and any
vertex of W 1,n, there is only one geodesic path of length 2
joining c and vi for each i ∈ {1,2, ...,n} passing through
c. Thus, each path contributes 1 to the centrality of c and
they give a total of n.

Consider pairs of vertices in W 1,n. Since the distance
between any two vertices in W 1,n−{c} is at most 2 in
W1,nW 1,n, none of paths joining two vertices of W 1,n−{c}
contains c. Only there is one geodesic path joining vertex
c and vertex vi passing through c for each i ∈ {1,2, ...,n}.

Since there is n such pairs, they contribute centrality n to
c.

As a consequence, the betweenness centrality of c is
n(n−4)

2 +2n = n2

2 .

Case 2. Take corresponding vertex of center vertex.
Since deg(c) = 1, there is one path joining c and all
other vertices. However, no one contains c. Thus, the
betweenness centrality of c is zero.

Case 3. Consider any vertex vi in W1,n − {c}, where
i ∈ {1,2, ...,n}.
There are two geodesic paths joining adjacent vertices
of vi on Cn, one of them passes through vi. Thus, its
contribution to the centrality of vi is 1

2 .

After examining the geodesic paths joining vertices of
W1,n and vertices of W 1,n, it is seen that there is a geodesic
path of length 2 only joining corresponding vertex of vi
and adjacent vertex of vi in W1,n passing through vi. Since
vi has three adjacent vertices in W1,n, they contribute a
betweenness centrality 3 to vi.

Now, consider pairs of vertices in W 1,n. Since the distance
between any two vertices of W 1,n−{c} is at most 2 in
W1,nW 1,n, no paths joining vertices of W 1,n −{c} pass
through vi. However, there is a geodesic path of length
3 joining vertex c and vertex vi passing through vi. It
contributes a betweenness centrality 1 to vi.

As a consequence, the betweenness centrality of any
vertex in W1,n−{c} is 1

2 +3+1 = 9
2 .

Case 4. Consider any vertex vi in W 1,n − {c}, where
i ∈ {1,2, ...,n}.
There is a geodesic path joining vi and adjacent vertices of
vi in W 1,n and it contains vi. Since vi has n− 3 adjacent
vertices in W 1,n, their contribution is n− 3 to vi. The
distance between all pair of vertices of W1,n is at most 2
in W1,nW 1,n. Thus, none of paths joining these vertices
contains vi.

Among pairs of vertices in W 1,n, consider the pair
(v j(mod n),v j+1(mod n)), where j ∈ {i+2, i+3, ...,n+ i−3}
and v0 = vn. There are n− 4 geodesic paths joining v j
and v j+1 for each j ∈ {i+2, i+3, ...,n+ i−3} and one of
these contains vi. Since there are n− 4 such pairs, they
contribute a betweenness centrality 1 to vi.

As a consequence, the betweenness centrality of any vertex
in W 1,n−{c} is n−3+1 = n−2.
The largest value CB(v∗) is n2

2 and the graph centrality is
as follows:

CB(W1,nW 1,n) =

2
2(n+1)

∑
i=1

[CB(v∗)−CB(vi)]

2n(2n+1)2 =
2n2−n−5
2(2n+1)2 .
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