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Abstract: There are a lot of centrality measures that have been introduced for networks.
One of them is betweenness centrality. It is a measure of the influence of a vertex over
the flow of information between all pairs of vertices. This information flows over the
shortest paths between these vertices. The fact that any vertex has a high value of centrality
indicates that what level this vertex is in connection with vertices which are not adjacent
with each other. Since this vertex controls flows of information, it has a potential role in
the network. In this paper, we study on the betweenness centrality of some complementary
prism graphs.

Baz Tiimleyen Prizma Graflarin Arasindalik Merkezligi

Anahtar Kelimeler
Graf teori,

Ag tasarimu ve iletigim,
Arasindalik merkezligi,
Tiimleyen prizma graf

Ozet: Literatiirde aglar i¢in tanimlanmus bircok merkezlik 6lgiimii vardir. Bunlardan biri
arasindalik merkezligidir. Arasindalik merkezli§i bir tepenin tiim tepe ciftleri arasindaki
bilgi akigina etkisinin bir dl¢iimiidiir. Bu bilgi akigi, tepeler arasindaki en kisa yollar
tizerinde olmaktadir. Herhangi bir tepenin yiiksek arasindalik merkezlige sahip olmasi o
tepenin birbiriyle komsu olmayan tepelerle ne diizeyde baglanti icinde oldugunu goster-
mektedir. Bu tepe agdaki bilgi akisini kontrol ettiginden agda 6nemli bir yere sahiptir. Bu

makalede bazi tiimleyen prizma graflarin arasindalik merkezligi tizerine ¢aligilmustir.

1. Introduction

There are a lot of important properties for a network.
One of them is which vertices lie on the shortest paths
(geodesics) among pairs of other vertices [1, 2]. Between-
ness centrality is based on shortest paths enumeration. It
determines the importance or the centrality of a vertex
(or an edge) in a network and plays an important role
in analysis of social or communication networks [3],
computer networks [4] and many other types of network
data models [5, 6]. For example, in a telecommunication
network, vertices with the higher value of centrality
are more important. Because, more information passes
through these vertices than the others. Since they lie on
the largest number of paths taken by messages, removing
these vertices from the network cuts off communications
between others. Hence, the betweenness centrality is
related to a network’s connectivity and therefore its
reliability [7].

The concept of betweenness centrality was first introduced
by Bavelas [8] in 1948. Particularly, this concept is used
in human communication in this study and and it indicates
that when a person in a group is located on the shortest
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communication path connecting pairs of others, that
person is in central position [9].

Betweenness centrality Cg(v) for a vertex v is defined as

Cp(v) = GS;(V)
sEVEL st

where o is the number of shortest paths with vertices s
and ¢ as their end vertices, while oy (v) is the number of
those shortest paths that include vertex v.

The betweenness centrality of a graph G on n vertices is
defined as

\'Ms

2 Y [Cp(v*) —Cp(vi)]

GO =Ty

where Cg(v*) is the largest value of Cg(v;) for any vertex
v; in the given graph G.

This paper determines betweenness centrality of some com-
plementary prism graphs. In 2007, Haynes et al. in [10]
introduced the complementary product as a generalization
of the Cartesian product. Complementary prisms of a graph
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Figure 1. The Petersen graph CsCs and the corona K5 o
K

G is the subset of complementary products. Let G be a
graph and G be the complement of G. The complemen-
tary prism GG of G is the graph formed from the disjoint
union GUG of G and G by adding the edges of a perfect
matching between the corresponding vertices of G and G.
In other words, for a graph G with vertex set V(G) and
edge set E(G) the complementary prism of G is the graph
with vertex set V(GG) = {vi,v2,...,vy } U{V1,V2, ...,V }
and edge set

E(GE)ZE(G)U{V,‘VJ'IISZ'<J'SI’1 and vyv; ¢ E(G)}

U {vﬁl,vﬁg, ...,ann},

in which for a vertex v of G, vertex Vv is the corresponding
vertex in G [11, 12]. As demonstrated in Figure 1, the
graph CsCs is the Petersen graph. Also, the graph K, K, is
the corona K, o K|, where the corona K, o K| is the graph
obtained from K, by attaching a pendant edge to each
vertex of K,. Complementary prisms are investigated in
[11-15].

For notation and graph theory terminology we in general
follow [16]. Before stating our results, we give some no-
tations and formal definitions. Let G = (V(G),E(G)) be
a graph with vertex set V(G) and edge set E(G). The or-
der of G is the number of vertices of G. Given any two
vertices u,v € V(G), the distance d(u,v) is the length of
the shortest path or geodesic path between u and v. The
diameter diam(G) of a graph G is the maximum distance
between two vertices of G. The degree of a vertex v in
a graph G is the number of edges of G incident to v and
denoted by degg(v). Throughout this paper, deg(v) repre-
sents deg . (v) for any vertex v in GG. The center vertex
of a star or wheel graph is the only vertex that has a maxi-
mum degree.

2. Betweenness Centrality of Some Complementary
Prism Graphs

In this section, we first state two known theorems that
we use in the proof of our results. Next, we determine
the betweenness centrality of some complementary prism
graphs.
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Theorem 2.1. [2] The betweenness centrality of a vertex
vin S, is given by

n—1
CB(V) = {(() 2

Theorem 2.2. [2] The betweenness centrality of a vertex
v in a wheel graph W,,, n > 5 is given by

) , for center vertex,

for other vertices.

if v is center vertex,

otherwise.

Theorem 2.3. Let K, K, be the complementary prism of
a complete graph on 2n vertices. Then the betweenness
centrality of a vertex v in K,K,, is given by
Calv) = {Zn -2, ifvis in. K,
0, otherwise.
Proof. Take a vertex v in K,,. On K, there exists n — 1
adjacent vertices of v and each pair of these vertices
contributes 0 to v. Consider any adjacent vertex of v in
K,. There is only one geodesic path joining this vertex to
corresponding vertex of v and it passes through v. Thus,
each pair contributes centrality 1 to v and gives a total
of n— 1. Now, consider any vertex in K, other than
corresponding vertex of v. There is only one geodesic
path from this vertex to corresponding vertex of v passing
through v, and it contributes a betweenness centrality
1 to v. Since there are n — 1 such pairs, they provide a
betweenness centrality n — 1 to v. Hence, the betweenness
centrality of any vertex v in K}, is 2n — 2.

Take a vertex v in K,,. Since deg(v) = 1, there is one path
joining vertex v and all other vertices of K, K,. However,
it does not pass through v. Then the betweenness centrality
of vis 0. O

Maximum value of the betweenness centrality of vertices
in K, K, and the graph centrality are as follows:

Co(v') =2n—2,

2 G -Colv)]
Cs(K,K,) = —=* = .
(2n—1)2(2n—2) (2n—1)2

Theorem 2.4. Let S,,S, be the complementary prism of a
star on 2n vertices and c be the center vertex of S,. Then
the betweenness centrality of a vertex v in S,,S,, is given by

%, for center vertex c,

Co(v) = 0, fore,
2, for any vertex in S, — {c},
n—2, for any vertex in S, — {c},

in which € is the corresponding vertex of c.

Proof. Let v| be the center vertex of S, in S,S,. By
Theorem 2.1, pairs of vertices in S, contribute ("51)
to v;. Consider the pairs (vi,v;) and (v},¥;) for all
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i €{2,3,...,n}. Each pair has a geodesic path which
passes through v; and contributes 1 to the centrality of
vi. Since there are 2n — 2 such pairs, they give a total
of 2n — 2. Thus, the betweenness centrality of vy is

(n 1)+27’l 9 — (n— )2(n+2)

Let v be the corresponding vertex of center vertex in S,,.
Since deg(vi) = 1, there are no pairs in S,S, which pass
through v;. Thus, the betweenness centrality of v; is 0.

Consider any vertex v; in S, where i € {2,3,...,n}. None
of ( ) pairs in S, contains v;. However, there is a
geodesm path joining corresponding vertex v; and v
and v; passing through v;. Since each one contributes
1 to the centrality of v;, the betweenness centrality of v; is 2.

For any vertex v;, there exists n — 2 adjacent vertices of v;
in Sy, in which i € {2,3,...,n}. Then there is a geodesic
path joining each adjacent vertex to v; and it passes
through v;. Thus, each pair contributes centrality 1 to v;
and they contribute a total of n — 2. O

The largest value of the betweenness centrality of vertices
of S,S,, is

(n—1)(n+2)

CB(V*) = ) )

and the betweenness centrality of S,,S,, is

2 22,, [Co(v*) — Ca(v1)]
(Zn —1)2(2n—

—|—(n—1)<( 1)2(”+2) (n— z))}
_2n2—|—n—2
- 2(2n—1)?2

Theorem 2.5. Let P,P, be the complementary prism of
a path of order 2n. Then the betweenness centrality of
vertices of P,P,, for n > 6 is given as follows:

Ifvi e V(B,), then
1, ifie{l,n},
Cp(vi) = %, ifie{2,n—1},
4, ifie{3,4,..,n—2}.
Ifv; € V(Py), then
= ifi € {1,n},
It L 415 1S ric o
CB(VZ‘): n+nT3+Z:é 127’ lfl { n }7
2n+m+m_7, lfl€{37n—2},
2n+ 240 -9, ifi€{4,5,...,n—3}.
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Proof. Since diam(P,P,) = 3, there is a geodesic path of
length at most 3 between two vertices in P,P,. For the
betweenness centrality of any vertex v in P,P,, we have
two cases: when v € V(P,) and when v € V(P,,).

Case 1. Let v; be a vertex in B,, where i € {1,2,...,n}.
Since the distance between any non-adjacent vertices of
P, is 2, none of ( ) pairs of vertices of P, passes through
Vi.

For all i > 1, consider the pair (v;,Vk), where
je{1,2,..n}, j#iand k € {1,2,...,n}. There is
a geodesic path joining v; to adjacent vertices of v; in
P, which passes through v;. Since there are deg(v;) — 1
adjacent vertices of v; in P,, they contribute a betweenness
centrality deg(v;) — 1 to v;.

For contribution of any pair of vertices in P, to the be-
tweenness centrality of v;, we partitioned the vertex set of
P, into the following three pairs.

o Letie {l,n}.

Since the distance between any two vertices of P, is at
most 3 in P,P,, none of geodesic paths between these
vertices except v| and v, contains v; or v,. Thus, these
pairs contribute to vq or v, the betweenness centrality zero.

As a consequence, we have
Cp(vi) = deg(vi) —
in which deg(v;) = 2.

1=1 for ie{l,n},

o Letie {2,n—1}.

For the pair (v;_,vit+1), there is a geodesic path of length
2 passing through v; and it contributes a betweenness
centrality 1 to v;. Moreover, consider the paths of length
3 containing v;. There are two geodesic paths joining v;
and v4, one of which passes through v;,. Similarly, there
are two geodesic paths joining v, and v,_3, one of which
passes through v,,_1. Hence, each pair contributes % to v;.

As a consequence, we have

1
Cp(vi) = deg(vi) =1+ 145 =5 for

in which deg(v;) = 3.

ie{2,n—1},

e Leti€{3,4,5,...n—2}.

There is a geodesic path of length 2 between adjacent
vertices of v; in P, passing through v; and it contributes
a betweenness centrality 1 to v;. Moreover, each pair
(vi—2,vit1) and (vi_1,viy2) have two geodesic paths of
length 3, one of which passes through v;. These two pairs
provide a total of 1 to the centrality of v;.

As a consequence, we have

Cp(vi)=deg(vi)—1+1+1=4 for i€{3,4,..,n—2},
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in which deg(v;) = 3.

Case 2. Let v; be a vertex in P, where i € {1,2,...,n}.
For all i > 1, consider the pair (v j,Vk), where
J,k€{1,2,...,n} and k # i. There is only one geodesic
path joining v; and adjacent vertices of v; in P, and it
passes through v;. Since V; has deg(v;) — 1 adjacent
vertices in P,, it provides the betweenness centrality
deg(vi) —1tov;.

We partitioned vertex set of P, into three pairs for contri-
bution of any pair of vertices in P, and similarly any pair
of vertices in P, to the betweenness centrality of v;.

e Letie {1,2,3}.

Consider pairs of vertices in P,. Now, for each pair
(Vj42,Vj43), where j € {i,i+1,i+2,...,n — 3}, there is
one geodesic path passing through v;. There are n —i —2
such pairs. While there are n — 3 geodesic paths for the
pair (V,—1,V,), there are n — 4 geodesic paths for the
remaining n — i — 3 pairs. Thus, these n —i —2 pairs
contribute ﬁ + % to the betweenness centrality of v;.

Consider pairs of vertices in P,. If the distance between
two vertices of P, is 1 or 2 in P,, there is a geodesic path
joining these vertices but it does not contain v;. Thus,
consider paths of length at least 3 in P,. There are two
geodesic paths of length 3 joining v; and v;;3, one of
which passes through v;. Thereby, they contribute % to the
centrality of v;. Now, consider paths of length greater than
3in P,. Each pair (v, v;;34«) has only one geodesic path
and it passes through v; for each k € {1,2,...,n—i—3}.
Since there are n —i — 3 such pairs, it contributes a
betweenness centrality n —i — 3 to v;.

As a consequence, for i € {1,2,3}

_ _ 1 n—i—3 7
CB(v,-):deg(vi)+7n_3+7_4 tn—i-.
o Letic {4,5,....n—3}.
Consider the pair (Vj42,Vj43), Wwhere j €

{-1,0,1,....i = 5,i,i+ 1,....,n —3}. There are n — 5
such pairs and two of them are (v;,v,) and (v,_1,V,). For
these two pairs, there are n — 3 geodesic paths of length
2, one of them passes through v;. Hence, they contribute
centrality n%% to v;. For the remaining n — 7 pairs, there
are n — 4 geodesic paths of length 2, one of them passes
through v;. Hence, each pair contributes centrality ﬁ
to v; and they contribute a total of g. Therefore, n — 5
pairs of vertices in P, provides a betweenness centrality
24T o V.

Consider pairs of vertices in P,. There is a geodesic
path of length at least 3 passing through v;. Thus,
we consider pairs (v;_3_x,v;) and (v;,vii34y), Where
ke{0,1,...,i—4} and [ € {0,1,....n—i—3}. For each
pair (v;_3,v;) and (v;,vi+3) where k = 0 and / = 0, there
are two geodesic paths of length 3 and one of them passes
through v;. Thus, they contribute a betweenness centrality
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1tov,. If k>0 or!l >0, then each pair has only one
geodesic path of length greater than 3 passing through
v;. Since there are n — 7 such pairs, they contribute a
betweenness centrality n — 7 to v;.

As a consequence, for i € {4,5,...,n—3}

n—717
n—4

2
—_ —17.
n—3Jr

o Letie {n—2,n—1,n}.

CB(V,') = deg(V,') + +n

Consider the pair (v;,v;11) for j € {1,2,...,i —3}. There
are [ — 3 such pairs and one of them is (v;,v;). For this
pair, there is n — 3 geodesic paths joining v; and v, one
of which passes through v;. Thus, it contributes nl3 to
v;. For the remaining i — 4 pairs, there are n — 4 geodesic
paths joining V; and v, 1, one of which passes through v;
for each j € {2,3,...,i — 3}. Each pair contributes ﬁ to

v; giving a total of %.

Consider pairs of vertices in B,. Among the paths of length
3 in P,, there are two geodesic paths joining v; and v;_3,
one of which passes through v;. Hence, they contribute %
to v;. Now, consider all paths of length greater than 3 in P,.
There are i — 4 geodesic paths joining v; and v;_3_y, one
of which passes through ¥; for k € {1,2,...,i —4}. Thus,
each pairs contributes centrality 1 to v; giving a total of
i—4.

As a consequence, fori € {n—2,n—1,n}

Cp(v;) = deg(v;) + -

It is clear that deg(v|) = deg(v,) = n— 1 and deg(V;)
n—2 fori # 1,n. Simplifying the equations of Case 2,

2n+ -3, ifi € {1,n},

Ca() = 2n+$+;%j—%, ifi e {2,n—1},
nt 4=l Aifie {3,n-2},
2n+ 2 +0 -9 ifie{4,5,...,n—3}.

is obtained. O
The maximum centrality value of Case 2 is at the first or
end vertex of P,. Comparing the maximum values of Case
1 and Case 2 we have

1 9

n-3 2

Cg(v') =2n+

Thus, the betweenness centrality of P,P,, is as follows:

2 2n

EEEeEaPY
23 — 11n* 4+ 14n+9
2n—1)2(n—1)(n—3)

CB(Pnﬁn) = CB(V*) _CB(Vi)]

Theorem 2.6. The betweenness centrality of any vertex v
in the complementary prism of a cycle withn > 6 is

Ca(v) = {4’

2n—8,

ifvev(C)

ifveV(C,).
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Proof. Since diam(C,C,) = 3, there is a geodesic path
of length at most 3 between two vertices in C,C,. Since
C, and C,, are vertex transitive, it is sufficient to consider
without loss of generality that the betweenness centrality
of any vertex in C, and similarly in C,,.

Case 1. Let v; be any vertex in C,, where i € {1,2,...,n}.
The distance between non—adjacent vertices of C,, is 2 in
C,C, and these vertices do not lie on any geodesic paths
containing v;. Then their betweenness centralities to v; are
Zero.

Consider pairs of vertices in C,. For each pairs (vi_1,vi12)
and (v;_p,v;y1), there are two geodesic paths of length 3,
one of which passes through v;. Note that, we take vo = v,
and v_; = v,_. Among the paths of length less than 3 in
C,,, there is only one geodesic path joining two adjacent
vertices of v; in C, passes through v;. Thus, they provide a
total of 2 to the centrality of v;.

Now, consider the paths joining vertices of C, and vertices
of C,.. There is only one geodesic path joining v; and two
adjacent vertices of v; in C,, passing through v;. Thus, each
one contributes 1 to the centrality of v; and they give a
total of 2.

Consequently, the betweenness centrality of any vertex in
C,is 4.

Case 2. Let ; be any vertex in C,, where i € {1,2,...,n}.
Consider pairs of vertices in C,. There are two vertices
in C, at distance 3 with v;, and there are two geodesic
paths joining v; and each of these two vertices. One of
two geodesic paths passes through v;. Thus, each one
contributes % to the centrality of v; and they give a total of
1. Furthermore, each geodesic path joining v; and n —7
vertices of C, that the distance with v; in C,, is greater than
3, if any, contributes 1 to the centrality of v;. Then it gives
atotal of n—7.

Consider pairs of vertices between V(C,) and V(C,).

There is only one geodesic path joining vertex v; and each
adjacent vertex of v; in C,,. Since there are n — 3 such
adjacent vertices, they contribute a betweenness centrality
n—3tov;.

Consider pairs of vertices in C,,. Since there are n — 3
adjacent vertices of v; in C,,, there are n — 4 non—adjacent
pairs of vertices with these n — 3 vertices. For each pair,
there are n — 4 geodesic paths joining its vertices, one of
which passes through v;. Thus, n — 4 pairs contribute 1 to
the centrality of v;.

Consequently, the betweenness centrality of any vertex in
C,is2n—38. O

The largest value of the betweenness centrality of vertices
of C,C,

Cg(v*) =2n-38,
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and the betweenness centrality of C,C, is

2 3 1Ca)~ Cato)

2n(n—06)
(2n—1)22n—-2)  (2n—1)2%(n—1)

CB (Cncn) =

Theorem 2.7. Let K,,ﬁmf,,’m be the complementary prism
of a complete bipartite graph with n < m. Then the be-
tweenness centrality of a vertex v in Kmmf,,_,m is given

by

2

mmbdmn - if deg(v)=m+1,
Cs(v) = 7"2_3,‘;4’”", if deg(v)=n+1,

=1 ifdeg(v)=n,

m—1, if deg(v)=m.

Proof Let V(KpmKum) =V UVP UV UV, where
1 2

Vl( ) = {Vi,v2y.esVn}, Vl( ) = {Vnt1,Vit2s ooy Vapm p and
1 _ - 2 - _

Vz( ) — {V1,%2,,Vn}, V2( ) = {¥n+1,%n42, -, Vnm}. The

degree of any vertex of Vl(l), V1<2), Vz(l) and V2(2) in

Ky mKpnm are m+ 1, n+ 1, n and m, respectively. Then we

have following cases:

Case 1. Let v; be a vertex in Vlm, where i € {1,2,...,n}.

Consider  pairs of  vertices (v;,v),  where
hke{n+1,n+2,...,n+m} and j # k. For each
pair, there are n geodesic paths joining the adjacent
vertices of v; in Vl(]) and vy, one of which passes through
v;. Thus, each pair contributes centrality % to v; and they

give a total of (5) 1.

e

vk € V2<1>. For these pairs there is only one geodesic path

joining vertex v; and corresponding vertex of v; in Vz( b
containing v;. Since there are m such pairs, they contribute
a betweenness centrality m to v;.

Consider pairs of vertices (v;,v;) for v; € and

Consider pairs of vertices between Vz(l) and Vz(z). There
is only one geodesic path joining corresponding vertex
of v; in Vz(l) and any vertex of Vz(z) passing through v;.
Since ‘V2(2)| = m, this contributes centrality m to v;. The
remaining pairs of vertices do not lie on any geodesic
paths passing through v;. Thus, their contribution of the
betweenness centrality to v; is zero.

As a consequence, the betweenness centrality of v; in Vl(l)

is
—m+4mn

m 1_‘_2 _m2
2/)n "= 2n

Case 2. Let v; be a vertex in Vl(z), where i € {n+1,n+
2,...,n+m}. The proof is similar to that of Case 1 and is
omitted. Hence, we have

B n? —n+4mn

C(vi) = 2m

Case 3. Let ¥; be a vertex in V2<1), where i € {1,2,...,n}.

In this case, there is only one geodesic path from
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corresponding vertex of v; in Vl(l) to any vertex vy passing

through v; for each k € {1,2,...,n} and k # i. Since there
are n — 1 such pairs, they contribute n — 1 to v;. None of
other pairs lies on any geodesic paths. As a consequence,
the betweenness centrality of any vertex v; in Vz(l) isn—1.
Case 4. Let v; be a vertex in V2(2) ,  where
i€e{n+1,n+2,...,n+m}.

When this case is proved similar to Case 3, we have
CB(Vl') =m—1. O

The largest value of the betweenness centrality of vertices
of Ky K m 18

2 _m+4mn

oom
Cp(v) = 2n ’

and the betweenness centrality of Kn,mfn,m is

2(n+m)
2 r [Cs(v") — Cp(vi)]
2(n+m)—1)22(n+m)—2)
_ mn+3n?+Tm*n—3n + m*(2m —2)
N 2n(2n+2m—1)2(n+m—1)

CB (Kn,mKn,m) =

Theorem 2.8. For the complementary prism of a wheel
graph Wy _an1 n of order 2n+2, let c and € be center vertex
of Wi, and corresponding vertex of ¢ in W , respectively.
Then the betweenness centrality of a vertex v in Wl,nWLn
forn > 5 is given by

[N]

2, ifv=c
Cs(v) 0, ifv=c
V) =
? 2, ifvisin Wi, —{c}
n—2, ifvisinWy,—{c}.

ProofLet V(Wy,) = {c,vi,v2,...,vo} and V(W)
{¢,v1,v2,...,v,}, where c is center vertex of W; , and ¢
is corresponding vertex of ¢ in Wy ,. Wheel graph W; ,
contains a cycle of order n and center vertex is adjacent
to each vertex of cycle C,. Then we have following four
cases:

Case 1. Take center vertex ¢ of Wy ,.
Since diam(W, ,) = 2, the distance between two vertices
of C, in W, ,HWM is at most 2. Thus, by Theorem 2.2
vertices of W;, in W17nW17n contribute a betweenness
.. n(n—4)
centrality —=—— to c.
Among the paths between any vertex of W, and any
vertex of W ,, there is only one geodesic path of length 2
joining ¢ and v; for each i € {1,2,...,n} passing through
c. Thus, each path contributes 1 to the centrality of ¢ and
they give a total of n.

Consider pairs of vertices in W} n- Since the distance
between any two vertices in Wy, — {¢} is at most 2 in
Wi W 1 », none of paths joining two vertices of W ,, — {c}
contains c. Only there is one geodesic path joining vertex
¢ and vertex v; passing through ¢ for each i € {1,2,...,n}.
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Since there is n such pairs, they contribute centrality 7 to
C.

As a consequence, the betweenness centrality of c is

”<";4> +2n= %

Case 2. Take corresponding vertex of center vertex.
Since deg(c) = 1, there is one path joining ¢ and all
other vertices. However, no one contains ¢. Thus, the
betweenness centrality of ¢ is zero.

Case 3. Consider any vertex v; in Wy, — {c}, where
ie{l,2,...,n}.

There are two geodesic paths joining adjacent vertices
of v; on C,, one of them passes through v;. Thus, its
contribution to the centrality of v; is %

After examining the geodesic paths joining vertices of
W1, and vertices of Whn, it is seen that there is a geodesic
path of length 2 only joining corresponding vertex of v;
and adjacent vertex of v; in Wy ,, passing through v;. Since
v; has three adjacent vertices in W ,, they contribute a
betweenness centrality 3 to v;.

Now, consider pairs of vertices in Wl_n. Since the distance
between any two vertices of Wy, — {¢} is at most 2 in
Wi.,W1 ., no paths joining vertices of Wy, — {c} pass
through v;. However, there is a geodesic path of length
3 joining vertex ¢ and vertex v; passing through v;. It
contributes a betweenness centrality 1 to v;.

As a consequence, the betweenness centrality of any
vertex in Wy, — {c} is %+3+1 - %

Case 4. Consider any vertex v; in Wy, — {¢}, where
ie{l,2,..,n}.

There is a geodesic path joining v; and adjacent vertices of
V; in Wl,n and it contains v;. Since v; has n — 3 adjacent
vertices in Wlﬁn, their contribution is n — 3 to v;. The
distance between all pair of vertices of Wy, is at most 2
in Wi 7,,W1_,n. Thus, none of paths joining these vertices
contains v;.

Among pairs of vertices in W ,, consider the pair
(Vj(mod )2V j+1(mod n)), where j € {i+2, i+3, ...,n+i—3}
and Vo = v,. There are n — 4 geodesic paths joining v;
and v, foreach j € {i+2,i+3,...,n+i—3} and one of
these contains v;. Since there are n — 4 such pairs, they
contribute a betweenness centrality 1 to v;.

As a consequence, the betweenness centrality of any vertex
inW,,—{c}isn—3+1=n-2. O
The largest value Cp(v*) is % and the graph centrality is
as follows:

2(n+1)
2 X [Cp(v*) —Cp(vi)]

2n(2n+1)>2

B 2 —n—5
- 2(2n+1)2°

Cs(Wi  Win) =
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