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Abstract: A phytoplankton-zooplankton model is proposed and analyzed as a sub-
model of oxygen-plankton model. Mathematically, two coupled differential equations
are considered. In this work, oxygen which is produced as a result of photosynthetic
process by phytoplankton in ocean is assumed stable by keep oxygen concentration as a
constant value. Basic properties of the phytoplankton-zooplankton population are detailed
with analytical and numerical way under the effect of change in system parameters. In
particular, effects of per-capita growth rate of zooplankton and intraspecific competition
for phytoplankton on the systems’ dynamical behavior are considered. To understand the
system temporal structure nonspatial system is detailed. Then the spatial case is focussed
with the assist of extensive numerical simulations. It is observed that the model system
has rich patterns in both temporal and spatial case.

Sistem Parametrelerinin Plankton Dinamiği Üzerine Etkisi:
Matematiksel Modelleme Yaklaşımı

Anahtar Kelimeler
Fitoplankton-zooplankton,
Matematiksel modelleme,
Yapı oluşumu

Özet: Fitoplankton-zooplankton modeli oksijen-plankton modelinin bir alt modeli olarak
önerilmiş ve analiz edilmiştir. Matematiksel olarak, ikili diferensiyel denklem yapısı
dikkate alınmıştır. Bu çalışmada, okyanuslardaki fitoplanktonlar tarafından fotosentez
işleminin sonucu olarak üretilen oksijen oranı, kararlı olduğu varsayılarak oksijen kon-
santrasyonu sabit bir değer olarak seçilmiştir. Sistem parametrelerindeki değişim etkisi
altındaki fitoplankton-zooplankton popülasyonunun temel özellikleri, analitik ve nümerik
yöntemlerle detaylandırılmıştır. Özellikle, zooplanktonun büyüme hızı ve fitoplankton
için tür içi rekabetin sistem davranışı üzerindeki etkileri ele alınmıştır. Sistemin zamana
bağlı deişimini görmek için, mekâna bağlı olmayan sistem ele alınmıştır. Sonrasında ise
mekânsal sistem, çok sayıdaki sayısal simülasyonlar yardımıyla calışılmıştır. Mevcut
model sisteminin hem zamana hem de mekâna bağlı olduğu durumda zengin dinamiğe
sahip olduğu görülmüştür.

1. Introduction

Mathematical modelling is based on combination of
mathematics with other disciplines such as computer sci-
ence, biology, physics etc. It plays an important role on
exploring and understanding the underlying structure of
ecological problems. For instance in biology, it provides
a sensible approach when laboratory experiments are ex-
pensive or not applicable [1]. In many cases, experimental
works on plankton populations usually are impossible due
to its’ cost and duration. Therefore, with assist of the ex-
perimental studies, mathematical modelling becomes an
important way to investigate plankton dynamics. Various
aspect of plankton species has a considerable place in lit-
erature. Phytoplankton and zooplankton interaction as a
prey-predator system takes its place in many works [1–5].

Determination of the spatial distribution and the abun-
dance of the organism is one of the important question in
ecology [6]. Competition in species is one of the crucial
factor which affects the distribution and abundance [7].
For this reason, underlying mechanism of competition is
an attracting phenomenon in marine sciences. Especially,
competition in plankton species is very common behav-
ior and it can be stem from some reasons such as same
resources, space etc [8, 9]. Sometimes competition can
be very severe [10] and can be even results in extinction.
Therefore, in this work the losses term of phytoplankton
(i.e. intraspecific competition) is one of the question which
need to be detailed.

Phytoplankton productivity is investigated by several
researches and some fundamental works of them based
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on [11, 12]. Models on this productivity issue are pre-
sented by [13]. The model that we investigated in previous
works focus on the phytoplankton productivity due to pho-
tosynthetic activity by taking into account zooplankton
interaction as a prey-predator system [14, 15]. But here
oxygen concentration effects on phytoplankton and zoo-
plankton interaction is fixed to see the interaction between
phytoplankton-zooplankton due to only stem from prey-
predator system. So the only interaction in this system
exists between zooplankton and it’s prey as phytoplankton.

In this work, it is shown how intraspecific competition in
phytoplankton species and the changes in maximal growth
rate of zooplankton effect the dynamical behavior of the
system in both temporal and spatiotemporal case. Intraspe-
cific competition rate and the coefficient for maximum
growth rate of zooplankton are determined as parameters
in the given model system and these values are totally hy-
pothetical. Note that it was not aimed here to calculate
precise value of intraspecific competition rate and growth
rate of zooplankton. Instead, the aim is to show how dy-
namical structure change with the change in these system
parameters.

In view of the above, structure of the paper is as follows.
In Section 2, phytoplankton-zooplankton model proposed
and analyzed. In Section 3, the properties of the system are
detailed by extensive numerical simulations both in terms
of temporal and spatial structure. In last Section (Sec. 4),
findings and its importance are focussed.

2. Mathematical Model

In this section, temporal dynamics of prey (phyto-
plankton) and predator (zooplankton) system is taken
into account. In the present work, conceptual oxygen-
phytoplankton-zooplankton model (see [14, 15] for more
details) is revisited with a sub-model system. Therefore,
Phytoplankton-zooplankton sub-model has the following
form:

du
dt

=
Bo

o+o1
u− γu2−σ

uv
u+h

, (1)

dv
dt

=
βuv
u+h

−µv. (2)

Due to their biological meaning, all parameters are non-
negative where o is the concentration of oxygen which is
supplied at a constant rate at time t, u and v are the densi-
ties of phytoplankton and zooplankton, respectively. The
term B is the maximum phytoplankton density per capita
growth rate and o1 is the half saturation-constant, due to
limited resources, competition play an important role on
shaping population size and structure. Competition is two
fold; first one is competition between same species indi-
vidual i.e. intraspecific competition and the second one
is competition between different species, i.e. interspecific
competition [16, 17]. As in Eq. (5) for the phytoplankton
growth, the logistic growth equation is taken into account
and intra specific competition is outlined. So, γ is density-
dependent decrease in phytoplankton growth and can be
assumed as intraspecific competition or self shading, h is
the half saturation-abundance, β is the maximum predation

rate for zooplankton on phytoplankton and the parameter
µ is the natural mortality rate of zooplankton.
Considerable part of this work will use numerical simu-
lations, dimensionless variables and system parameters
should be introduced. It is considered

t ′ = tσ , u′ =
u
σ
, v′ =

v
σ

(3)

and the dimensionless parameters as

B̃ =
B
σ
, γ̃ =

γ

σ
, β̃ =

β

σ
, µ̃ =

µ

σ
(4)

then Eqs. (5-6) take the following form

du
dt

=
Bo

o+o1
u− γu2− uv

u+h
, (5)

dv
dt

=
βuv
u+h

−µv. (6)

where primes and tildes are neglected for the notations
simplicity, hence all system parameters are in their dimen-
sionless form.

First, the local dynamics of the system (5-6) is consid-
ered. It is obtained from linear stability analysis of the
system:

Bo
o+o1

u− γu2− uv
u+h

= 0,
βuv
u+h

−µv = 0. (7)

System (5-6) has three stationary state which are the so-
lutions of system (7): extinction state (0,0), extinction of
zooplankton state (u,0), and coexistence state (u,v).

• The extinction (trivial) state is always exist.

• Zooplankton extinction steady state is the solutions
of the system (7):

ũ =
Bo

γ(o+o1)
, ṽ = 0. (8)

There is no restriction for the existence of zooplankton
extinction state.

• The coexistence steady states of the systems are the
solutions of the system (7):

u? =
µh

β −µ
, v? = (u?+h)

(
Bo

o+o1
− γu?

)
. (9)

It is readily seen that for all nonnegative values of system
parameters B, γ , o1, h, β , µ and biologically meaningful
region for u > 0 and v > 0, the following conditions should
be satisfied.

β 6= µ β > µ, and
Bo

o+o1
> γu. (10)

Stationary point type depends on the eigenvalues that are
the solutions of the following equation:

λ
2−λ trA+detA = 0 (11)
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where A is the linearised system matrix , which is as follow;

A =

( Bo
o+o1
−2γu− vh

(u+h)2 − u
u+h

βvh
(u+h)2

βu
u+h −µ

)

For extinction state stability, Matrix A takes the following
form:

det(A(0,0)−λ I) =
∣∣∣∣ Bo

o+o1
−λ 0

0 −µ−λ

∣∣∣∣= 0

the characteristic equation is

(
Bo

o+o1
−λ

)
(−µ−λ ) = 0 (12)

from Eq. (12) λ1 = −µ , λ2 = Bo
o+o1

. Therefore the
extinction state is always saddle, regardless what the pa-
rameter values are.
For zooplankton extinction state stability, Matrix A takes
the following form:

det(A(ũ,0)−λ I) =
∣∣∣∣ Bo

o+o1
−2γu−λ − u

u+h
0 Bu

u+h −µ−λ

∣∣∣∣= 0

then the characteristic equation is

(
Bo

o+o1
−2γu−λ

)(
βu

u+h
−µ−λ

)
= 0 (13)

from Eq. (13) λ1 =
Bo

o+o1
−2γu, λ2 =

βu
u+h −µ .

Therefore zooplankton extinction state can be of any type
i.e. depending on system parameters.
For coexistence state stability, Matrix A takes the following
form:

det(A(u?,v?)−λ I) =
∣∣∣∣ Bo

o+o1
−2γu? − v?h

(u?+h)2
−λ − u?

u?+h
βv?h

(u?+h)2
βu?

u?+h −µ−λ

∣∣∣∣= 0

then the characteristic equation is

(
Bo

o+o1
−2γu?−

v?h
(u?+h)2 −λ

)(
βu?

u?+h
−µ−λ

)
+

u?
u?+h

(
βv?h

(u?+h)2

)
= 0 (14)

where u?, v? is defined as in Eq. (9). The calculation of
eigenvalues Eq. (14) is rather bulky. So it is not detailed
here for the sake of brevity. But, to understand the un-
derlying reason of controlling parameters choice some
mathematical interpretations are needed.
Let

ξ =
Bo

o+o1
−2γu?−

v?h
(u?+h)2 ,

κ =
Bu?

u?+h
−µ, (15)

η =
u?

u?+h

(
βv?h

(u?+h)2

)
.

Then the eigenvalues of the system (14) are the solutions
of the following equation:

λ
2− (ξ +κ)λ +(ξ κ +η) = 0 (16)

The stability of the system is readily depend on the choice
of system parameters. For this reason, the choice of
systems’ controlling parameters is actually based on the
mathematical approach rather than its biological mean-
ing. Hence, stability of this equilibrium is detailed with
extensive numerical simulations.
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Figure 1. Steady states of phytoplankton and zooplank-
ton vs β , γ for given ranges (0.2 < β < 3), (0.3 < γ < 3)
and the initials are u0 = 0.0167, v0 = 0.0123. Other
system parameters are given in the text.

To show system dynamical behavior on both spatial
and nonspatial case, system parameters range should be
defined under some conditions Eq. (10). Figures (1a-b)
show the system steady states under the controlling param-
eters β and γ and keep all other parameters constant to see
where phytoplankton and zooplankton have positive steady
state to correspond biologically meaningful area. For cho-
sen hypothetical values both system components satisfy
positive existence state. Hence for the following numerical
simulations the system parameters can be chosen from this
range as it is shown in Figure (1).

3. Numerical Simulations

3.1. Temporal Distribution

In this section, nonspatial system for phytoplankton-
zooplankton system is performed. In all following nu-
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merical simulations, system parameters are fixed at some
hypothetical values as B = 1.8, µ = 0.1, h = 0.1, o1 = 0.7
and t(time) = 1500 and β and γ take their values from
corresponding steady state figure (i.e. Fig. (1)). Note that,
system parameters are selected to be compatible with the
improved version of this sub-model system due to exis-
tence of oxygen in [15]. In this work our particular interest
is to reveal the dynamical structure of oxygen sub-model by
taking into account only phytoplankton as a main producer
and zooplankton as its main consumer. The well-being of
phytoplankton mainly depend on the predation rate and
intraspecific competition which is detailed in model con-
struction part. So, here, these two parameters are focussed
to show systems’ dynamical behavior.

Figure (2) shows the phytoplankton and zooplankton
densities versus time obtained for β = 0.7 and different
values of γ . For γ = 0.31 (Fig. 2a), the system develops
periodic oscillations. This periodic oscillation becomes
intense for the values of γ = 0.6 and γ = 1.2 (Fig. 2b)
and (Fig. 2c), respectively. Further increase in γ for γ =
2.1 (Fig. 2d), after a sequence of damping oscillations
phytoplankton and zooplankton densities converge to the
steady state values. For this value of γ , coexistence state is
stable focus. Figure (3) shows the phase plane of local
population for corresponding figure (Figs. 2b-d). Here blue
star shows the initial point of system tarjectories while red
star show the end point of it. Figure (4) shows densities of
phytoplankton and zooplankton versus time obtained for
γ = 1.3 and different values of β . For β = 0.3 (Fig. 4a),
densities of phytoplankton and zooplankton converge to the
steady state values after some damping oscillations. But for
an increase in value β (β = 0.37, Fig. 4b), the sequence of
damping oscillations becomes more intense. For β = 0.44
(Fig. 4c), the system dynamics has periodical densities and
it follows the stable limit cycle. Hopf bifurcation occur
when β changes from 0.3 to 0.66.

The system exhibits, as a response to changes in β and γ ,
a succession of oscillations observed with different scale.
Under the light of extensive numerical simulations per-
formed on this model, the question should be here whether
the model system satisfied the idea which is proposed by
Rosenweig as ‘paradox of enrichment’ [18]. But in Rosen-
weig system, the deviation of steady state to limit cycle is a
result of the change in carrying capacity in temporal scale.
According to his work, further increase in carrying capac-
ity is results in system extinction [18]. It should be noted
here, the term ‘paradox’ is also used by several researchers
to show the destabilization of ecosystem [19, 20]. But in
our case, the limit cycles in different scales emerges as a
result of increasing intraspecific competition or maximum
predation rate. Further increase both in predation rate or
competition rate results in extinction in our model system
(this figures are not given here for the sake of brevity), but
to reveal the destabilisation of our system is not in scope
of this paper for now.

3.2. Spatial Distribution

Above numerical analysis was done for nonspatial sys-
tem i.e. all species densities are distributed uniformly over
space. This type of ‘well-mixed’ system is used in the
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Figure 2. Densities of phytoplankton (green) and zoo-
plankton (black) versus time obtained for fixed value of
β = 0.7 for a) γ = 0.31, b) γ = 0.6, c) γ = 1.2, d) γ = 2.1
and the initials are u0 = 0.0167, v0 = 0.0123. Other
system parameters are given in the text.
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Figure 3. System trajectories for phytoplankton and
zooplankton with blue star for initial point and red star
for end point a) γ = 0.6, b) γ = 2.1 and the initials are
u0 = 0.0167, v0 = 0.0123. Other system parameters are
given in the text.

literature [21, 22]. But, as in observed in field researches,
plankton system has ‘patchy’ distribution observed by [23].
In this section, phytoplankton-zooplankton system is con-
sidered in space by using “turbulent diffusion” approach
defined as standard diffusion terms where the spatial mix-
ing and the corresponding fluxes of matter are attributed to
turbulence [24]. Actually, determining the diffusion coeffi-
cient, D, is quite a complicated issue. To consider transport
of oxygen in sea water, combined action of molecular and
turbulent diffusion should be taken into account. How-
ever, turbulent diffusion is much larger than its molecular
value and for the spatial scale of phytoplankton dynamics
(known to range from 10−1 to 105 m) molecular diffu-
sion is estimated to be several orders less magnitude than
turbulent diffusion. Since, the model system (5-6) is a
sub-model of improved oxygen-plankton system, the dif-
fusion coefficient is assumed accordingly as in [14, 15].
For this reason, extended version of the system (5-6) is
needed in terms of space which is described by following
diffusion-reaction system:

∂u
∂ t

= D1
∂ 2u
∂x2 +

Bo
o+o1

u− γu2− uv
u+h

, (17)

∂v
∂ t

= D2
∂ 2v
∂x2 +

βuv
u+h

−µv. (18)

u = u(x, t) and v = v(x, t) are the densities of phytoplank-
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Figure 4. Densities of phytoplankton (green) and zoo-
plankton (black) versus time obtained for fixed value
of γ = 1.3 for a) β = 0.3, b) β = 0.37, c) β = 0.44, d)
β = 0.66 and the initials are u0 = 0.0167, v0 = 0.0123.
Other system parameters are given in the text.
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ton and zooplankton at time t and position x. D1 = D2 =
DT is the turbulent diffusion [25, 26]. For more details
on assumption of turbulent diffusion as a coefficient for
phytoplankton-zooplankton system see [1, 14]. Addition-
ally, it should be mentioned here that, to consider appropri-
ate scaling for the spatial coordinates as x→ x′= x

√
1/DT ,

hence DT is reduced from the system. Therefore, choosing
D1 = D2 = DT = 1 for dimensionless setting is in an agree-
ment to reveal the spatial structure of the system (17-18).
Also, as in its nonspatial system other system parameters
are fixed (B = 1.8, µ = 0.1, h = 0.1, o1 = 0.7) to focus on
the effect of controlling parameters β and γ .

The spatial system is considered in a finite domain
0 < x < L where the length of domain is defined by L.
Neumann boundary conditions (zero-flux) is considered at
the domain boundaries.

In this work, zooplankton distribution is considered as
patch in space with uniformly distributed phytoplankton
distribution [1]:

u(x,0) = u0, (19)
v(x,0) = v0, f or |xi|< ε, else v(x,0) = 0

where u0 and v0 are the initial densities and ε (ε = 100) is
the patch diameter. System (17-18) is solved numerically
by finite difference method with the mesh steps are ∆t =
0.01 and ∆x = 0.5. It should be emphasized that the mesh
steps are sufficiently small to get rid of any numerical
artifacts.

Figure (5) shows the population spatial distribution over
time obtained for the same parameter values as in Fig. (2).
For Fig. (5a), different sort of oscillations arise at the wake
of travelling front, and the oscillations are produced by ir-
regular pattern. After the travelling wave leave the domain
for larger time limit the domain is invaded by irregular
population distribution. For an increase in γ (γ = 0.6,
Fig. 2b), regular spatial distribution band is eventually
displaced by the irregular spatiotemporal distribution for
both phytoplankton and zooplankton. For γ = 1.2 Fig. 2c,
the plateau is followed by the onset of irregular distribu-
tions in the wake of the travelling population wave behind
the strongly oscillating front. For a further increase in
γ (γ = 2.1, Fig. 2d), the front propagates to the right, so
in the large time limit, phytoplankton and zooplankton
densities converge to the spatially uniform system.

Figure (6) shows the population spatial distribution over
time obtained for different values of β . For an increase in
β , coexistence state connects extinction state Figs. (2c-d).
For Figs. (2c-d), phytoplankton ad zooplankton densities
form a narrow peak at the position of extinction and these
peak values show the maximum densities for both species.

The behavior of the system under the effects of the
changes in intraspesific competition and the changes in
max predation rate reveal that the system has rich spatial
and nonspatial structure.
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Figure 5. Distributions of phytoplankton (green) and
zooplankton (black) over space at t = 1500 obtained for
fixed value of β = 0.7 and for a) γ = 0.31, b) γ = 0.6, c)
γ = 1.2, d) γ = 2.1. System initials and other parameters
of the system are given in the text.
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Figure 6. Distributions of phytoplankton (green) and
zooplankton (black) over space at t = 1500 obtained for
fixed value of γ = 0.35 and for a) β = 0.85, b) β = 1.5, c)
β = 2.6, d) β = 2.8. System initials and other parameters
of the system are given in the text.

4. Concluding Remarks

The importance of plankton dynamics in marine ecosys-
tems have been searched for several decades. Main rea-
son of this significant interest from researchers arises due
to plankton role on constituting the base of ocean food
chain [27]. A considerable progress on these researches
have been focus on the understanding of the mechanisms
which is relevant for plankton species. Additionally, oxy-
gen production due to phytoplankton photosynthesis is
an important phenomenon. But, there are only few stud-
ies concerned with the dynamics of the oxygen-plankton
system. So, in this study by assuming oxygen variable
as a constant, the dynamical behaviour of phytoplankton-
zooplankton system is detailed under the effect of system
other parameters. Distribution of phytoplankton and zoo-
plankton may be driven by system parameters here these
are chosen as intraspecific competition of phytoplankton
and maximal growth rate of zooplankton. The mathemati-
cal model consists of two differential equations. Nonspa-
tial version of the model is considered initially with the
assumption of well-mixed spatially uniform distribution
of the species. The properties of the system is revealed
by analytical and numerical way. It is shown that the exis-
tence of coexistence state need some conditions which is
detailed in Section 2.

Then spatially extended version of the model is consid-
ered by taking into account turbulent diffusion to explain
the movement of plankton species. Note that, in order the
keep in line with the use of dimensionless variables, see
the beginning part of Section 2, x is changed to dimen-
sionless coordinate as x′ = x

√
1/DT . It means, for the

dimensionless system choosing turbulent diffusion DT = 1
is not a particular choice of turbulent diffusion, but it is just
a technical consequence of the change in variables. In this
case the model is described by two reaction-diffusion type
partial differential equations. Again in the same manner as
in nonspatial case, the system has rich dynamical structure
including travelling wave, population oscillation.

In this paper, it is shown that phytoplankton as prey and
zooplankton as its main predator, that a nonspatial and
spatial system has rich dynamical structure under the in-
fluence of the changes in system parameters. Remarkably,
similar patterns - i.e. population oscillations in the wake,
travelling wave - are observed in oxygen-plankton model
system [28] and prey-predator system [1].

By means of numerical simulations, system parameters
effect on species distribution is revealed. The revealed
structure shows how the system affects the formation of
dynamical structure. Note that, the results are restricted
to in one-dimension, but it can be enhanced to its two-
dimensions and in this case, the horizontal distribution can
be seen clearly.

In conclusion, the most interesting part of the system
is observed when the zooplankton maximum growth rate
increase (Fig. 6), the peaks leave the domain by one by
and these peaks are produced by irregular pattern. But the
irregular structure is not invaded the whole domain when
all the peaks are gone (see the similar succession in [28],
but for the invasion is successful). These irregular structure
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produce oscillating population where the species has their
peaks at the wake of extinction point.
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