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Abstract
We prove several numerical radius inequalities involving positive semidefinite matrices via
the Hadamard product and Kwong functions. Among other inequalities, it is shown that
if X is an arbitrary n × n matrix and A, B are positive semidefinite, then

ω(Hf,g(A)) ≤ k ω(AX + XA),
which is equivalent to

ω
(
Hf,g(A, B) ± Hf,g(B, A)

)
≤ k′ {ω((A + B)X + X(A + B)) + ω((A − B)X − X(A − B))} ,

where f and g are two continuous functions on (0, ∞) such that h(t) = f(t)
g(t) is Kwong,

k = max
{

f(λ)g(λ)
λ : λ ∈ σ(A)

}
and k′ = max

{
f(λ)g(λ)

λ : λ ∈ σ(A) ∪ σ(B)
}

.
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1. Introduction
Let Mn be the C∗-algebra of all n × n complex matrices and ⟨ · , · ⟩ be the standard

scalar product in Cn. A capital letter means an n × n matrix in Mn. For Hermitian
matrices A and B, we write A ≥ 0 if A is positive semidefinite, A > 0 if A is positive
definite, and A ≥ B if A − B ≥ 0. The numerical radius of A ∈ Mn is defined by

ω(A) := sup{| ⟨Ax, x⟩ |: x ∈ Cn, ∥ x ∥= 1}.

It is well known that ω( · ) defines a norm on Mn, which is equivalent to the usual operator
norm ∥ · ∥. In fact, for any A ∈ Mn, 1

2∥A∥ ≤ ω(A) ≤ ∥A∥; see [11]. For further information
about numerical radius inequalities we refer the reader to [4, 11, 15, 16] and references
therein. We use the notation J for the matrix whose entries are equal to one.

The Hadamard product (Schur product) of two matrices A, B ∈ Mn is the matrix A◦B
whose (i, j) entry is aijbij (1 ≤ i, j ≤ n). The Schur multiplier operator SA on Mn is
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defined by SA(X) = A ◦ X (X ∈ Mn). The induced norm of SA with respect to the
numerical radius norm will be denoted by

∥SA∥ω = sup
X ̸=0

ω(SA(X))
ω(X)

= sup
X ̸=0

ω(A ◦ X)
ω(X)

.

A continuous real valued function f on an interval (a, b) ⊆ R is called operator monotone
if A ≤ B implies f(A) ≤ f(B) for all Hermitian matrices A, B ∈ Mn with spectra in (a, b).
Following [3], a continuous real-valued function f defined on an interval (a, b) with a > 0 is
called a Kwong function if the matrix Kf =

(
f(λi)+f(λj)

λi+λj

)
i,j=1,2,··· ,n

is positive semidefinite
for any (distinct) λ1, · · · , λn in (a, b). It is easy to see that if f is a nonzero Kwong function,
then f is positive and 1

f is Kwong. Kwong [13] showed that the set of all Kwong functions
on (0, ∞) is a closed cone and includes all non-negative operator monotone functions on
(0, ∞). Also, Audenaert [3] gave a characterization of Kwong functions by showing that,
for given 0 ≤ a < b, a function f on an interval (a, b) is Kwong if and only if the function
g(x) =

√
xf(

√
x) is operator monotone on (a2, b2).

The Heinz means are defined as Hν(a, b) = a1−νbν+aνb1−ν

2 for a, b > 0 and 0 ≤ ν ≤ 1.
These interesting means interpolate between the geometric and arithmetic means. In fact,
the Heinz inequalities assert that

√
ab ≤ Hν(a, b) ≤ a+b

2 , where a, b > 0 and 0 ≤ ν ≤ 1.
There have been obtained several Heinz type inequalities for Hilbert space operators and
matrices; see [5] and references therein.
For two continuous functions f and g on (0, ∞) we denote

Hf,g(A, B) = f(A)Xg(B) + g(A)Xf(B)

and

Hf,g(A) = f(A)Xg(A) + g(A)Xf(A),

where A, B, X ∈ Mn such that A, B are positive semidefinite. In particular, for f(t) = tα

and g(t) = t1−α (α ∈ [0, 1]), we get Hα(A, B) = AαXB1−α + A1−αXBα and Hα(A) =
AαXA1−α + A1−αXAα. A norm ||| · ||| on Mn is called unitarily invariant if |||UAV ||| =
|||A||| for all A ∈ Mn and all unitary matrices U, V ∈ Mn. Let A, B, X ∈ Mn such that
A and B are positive semidefinite. In [14] it was conjectured a general norm inequality
of the Heinz inequality |||Hf,g(A, B)||| ≤ |||AX + XB|||, where f and g are two contin-
uous functions on (0, ∞) such that f(t)g(t) ≤ t and the function h(t) = f(t)

g(t) is Kwong.
In particular, if f(t) = tα and g(t) = t1−α (α ∈ [0, 1]), then we state a Heinz type in-
equality |||Hα(A, B)||| ≤ |||AX + XB|||, where A, B, X ∈ Mn such that A, B are positive
semidefinite. For further information, we refer the reader to [5, 6] and references therein.

The numerical radius ω( · ) is a weakly unitarily invariant norm on Mn, that is ω(U∗AU) =
ω(A) for every A ∈ Mn and every unitary U ∈ Mn. In [1], the authors proved a Heinz
type inequality for the numerical radius as follows

ω(Hα(A)) ≤ ω(AX + XA), (1.1)

in which A, X ∈ Mn such that A is positive semidefinite. They also showed that the
inequality ω(Hα(A, B)) ≤ ω(AX + XB) is not true in general.

Our research aim is to show some numerical radius inequalities via the Hadamard
product and Kwong functions. By using some ideas of [8, 10] and [14], we obtain some
extensions and generalizations of inequality (1.1), which are generalizations of a Hienz
type inequality for the numerical radius. For instance, we prove if A, X ∈ Mn such that
A is positive semidefinite, then

ω(Hf,g(A)) ≤ k ω(AX + XA),
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where f and g are two continuous functions on (0, ∞) such that f(t)
g(t) is Kwong and k =

max
{

f(λ)g(λ)
λ : λ ∈ σ(A)

}
.

2. Main results
For our purpose we need the following lemmas.

Lemma 2.1 ([18, Theorem 3.4]). (Spectral Decomposition) Let A ∈ Mn with eigenvalues
λ1, · · · , λn. Then A is normal if and only if there exists a unitary matrix U such that

U∗AU = diag(λ1, · · · , λn).
In particular, A is positive definite if and only if the λj (1 ≤ j ≤ n) are positive.

Lemma 2.2 ([2, Corollary 4]). Let A = [aij ] ∈ Mn be positive semidefinite. Then
∥SA∥ω = max

i
aii.

Lemma 2.3. ( [12]). Let X, Y ∈ Mn. Then

(i) ω

([
X 0
0 Y

])
= max{ω(X), ω(Y )};

(ii) max(ω(X+Y ),ω(X−Y ))
2 ≤ ω

([
0 X
Y 0

])
≤ ω(X+Y )+ω(X−Y )

2 .

Now, we are in position to demonstrate the first result of this section by using some
ideas of [8, 10,14].

Theorem 2.4. Let A, B ∈ Mn be positive semidefinite, X ∈ Mn, and let f , g be two
continuous functions on (0, ∞) such that h(t) = f(t)

g(t) is Kwong. Then

ω(Hf,g(A)) ≤ k ω(AX + XA), (2.1)

where k = maxλ∈σ(A)
{

f(λ)g(λ)
λ

}
.

Moreover, inequality (2.1) is equivalent to the inequality
ω
(
Hf,g(A, B) ± Hf,g(B, A)

)
≤ k′ {ω((A + B)X + X(A + B)) + ω((A − B)X − X(A − B))} , (2.2)

where k′ = maxλ∈σ(A)∪σ(B)
{

f(λ)g(λ)
λ

}
.

Proof. Assume that A is positive definite. Since the numerical radius is weakly unitarily
invariant, we may assume that A is diagonal matrix with positive eigenvalues λ1, · · · , λn.
It follows from f

g is a Kwong function that

Z = [zij ] = Λ
(

f(λi)g−1(λj) + f(λj)g−1(λi)
λi + λj

)
(i,j=1,··· ,n)

Λ

is positive semidefinite, where Λ = diag (g(λ1), · · · , g(λn)). It follows from Lemma 2.2
that

∥SZ∥ω = max
i

zii = max
i

f(λi)g(λi)
λi

≤ k

or equivalently, ω(Z◦X)
ω(X) ≤ k (0 ̸= X ∈ Mn). If we put E = [ 1

λi+λj
] and F = [f(λi)g(λj) +

f(λj)g(λi)] ∈ Mn, then
ω(E ◦ F ◦ X) = ω(Z ◦ X) ≤ k ω(X) (X ∈ Mn).

Let the matrix C be the entrywise inverse of E, i.e., C ◦ E = J . Thus
ω(F ◦ X) ≤ k ω(C ◦ X) (X ∈ Mn)
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or equivalently

ω(Hf,g(A)) = ω(f(A)Xg(A) + g(A)Xf(A)) ≤ k ω(AX + XA). (2.3)

Now, if A is positive semidefinite, we may assume that A =
[

A1 0
0 0

]
, where A1 ∈

Mk (k < n) is a positive definite matrix. Let X =
[

X1 X2
X3 X4

]
, where X1 ∈ Mk and

X4 ∈ Mn−k. Then we have

ω(Hf,g(A)) = ω

([
f(A1)X1g(A1) + g(A1)X1f(A1) 0

0 0

])
(by Lemma 2.3(i))

≤ k ω

([
A1X1 + X1A1 0

0 0

])
(by (2.3))

= k ω(A1X1 + X1A1) (by Lemma 2.3(i))
≤ k ω(AX + XA) (by [7, Lemma 2.1]). (2.4)

Hence, we reach inequality (2.1). Moreover, if we replace A and X by
(

A 0
0 B

)
and(

0 X
X 0

)
in inequality (2.1), respectively, then

ω

([
0 Hf,g(A, B)

Hf,g(B, A) 0

])
≤ k′ ω

([
0 AX + XB

XA + BX 0

])
,

whence

max
{

ω
(
Hf,g(A, B) ± Hf,g(B, A)

)}
≤ 2 ω

([
0 f(A)Xg(B) + g(A)Xf(B)

g(B)Xf(A) + f(B)Xg(A) 0

])
(by Lemma 2.3(ii))

≤ 2k′ ω

([
0 AX + XB

XA + BX 0

])
(by (2.4))

≤ k′ (ω(AX + XB + XA + BX) + ω(AX + XB − XA − BX))
(by Lemma 2.3(ii)).

Thus, we have inequality (2.2). Also, if we put B = A in inequality (2.2), then we reach
inequality (2.1). �

If we take f(t) = tα and g(t) = t1−α in Theorem 2.4 for each 0 ≤ α ≤ 1, then we get
the next result.

Corollary 2.5 ([1, Theorem 2.4]). Let A, B ∈ Mn be positive semidefinite, X ∈ Mn, and
let 0 ≤ α ≤ 1. Then

ω(Hα(A)) ≤ ω(AX + XA). (2.5)

Moreover, inequality (2.5) is equivalent to the inequality

ω
(
Hα(A, B) ± Hα(B, A)

)
≤ ω((A + B)X + X(A + B)) + ω((A − B)X − X(A − B)).
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Corollary 2.6. Let A, B ∈ Mn be positive semidefinite, X ∈ Mn, and let f be a non-
negative operator monotone function on [0, ∞) such that f ′(0) = limx→0+ f ′(x) < ∞ and
f(0) = 0. Then

ω(f(A)X + Xf(A)) ≤ f ′(0) ω(AX + XA). (2.6)

Moreover, inequality (2.6) is equivalent to the inequality

ω(X(f(A) + f(B)) + (f(A) + f(B))X)

≤ f ′(0)
(
ω((A + B)X + X(A + B)) + ω((A − B)X − X(A − B))

)
.

Proof. A function g is non-negative operator increasing on [0, ∞) if and only if t
g(t) is

non-negative operator increasing on [0, ∞); see [9]. Hence t
f(t) is operator increasing.

Then f(t)
t is decreasing. If 0 ≤ x ≤ t, then f(t)

t ≤ f(x)
x . Now, by taking x → 0+ we have

f(t)
t ≤ f ′(0). If we put g(t) = 1 (t ∈ [0, ∞)) in Theorem 2.4, it follows from k = k′ ≤ f ′(0)

that we get the required result. �

We first cite the following lemma due to Fujii et al. [10], which will be needed in the
next theorem.

Lemma 2.7 ([10, Lemma 3.1]). Let λ1, · · · , λn be any positive real numbers and −2 <

t ≤ 2. If f and g are two continuous functions on (0, ∞) such that f(t)
g(t) is Kwong, then

the n × n matrix

Y =
(

f(λi)g−1(λj) + f(λj)g−1(λi)
λ2

i + tλiλj + λ2
j

)
i,j=1,··· ,n

is positive semidefinite.

Theorem 2.8. Let A, B ∈ Mn be positive semidefinite, X ∈ Mn, f , g be two continuous
functions on (0, ∞) such that f(t)

g(t) is Kwong, and let −2 < t ≤ 2. Then

ω
(
A

1
2
(
Hf,g(A)

)
A

1
2
)

≤ 2k

t + 2
ω
(
A2X + tAXA + XA2), (2.7)

where k = maxλ∈σ(A)
{

f(λ)g(λ)
λ

}
.

Moreover, inequality (2.7) is equivalent to the inequality

ω
(
A

1
2
(
Hf,g(A, B)

)
B

1
2
)

≤ 4k′

t + 2
ω
(
A2X + tAXB + XB2), (2.8)

where k′ = maxλ∈σ(A)∪σ(B)
{

f(λ)g(λ)
λ

}
.

Proof. First, we show inequality (2.7). It is enough to show the inequality in the
case A is positive definite. Since the numerical radius is weakly unitarily invariant,
we may assume that A is diagonal matrix with positive eigenvalues λ1, · · · , λn. Let
Σ = diag

(
λ

1
2
1 g(λ1), · · · , λ

1
2
n g(λn)

)
. It follows from Lemma 2.7 that

Z = [zij ] = Σ
((t + 2)

(
f(λi)g−1(λj) + f(λj)g−1(λj)

)
2(λ2

i + tλiλj + λ2
j )

)
i,j=1,··· ,n

Σ

is positive semidefinite for −2 < t ≤ 2. In addition, all diagonal entries of Z are no more
than k. Therefore,

∥SZ∥ω = max
i

zii = max
i

f(λi)g(λi)
λi

≤ k,
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whence ω(Z◦X)
ω(X) ≤ k (0 ̸= X ∈ Mn). Now, let M =

[
1

λ2
i +tλiλj+λ2

j

]
i,j=1,··· ,n

and

P =
[

t+2
2 λ

1
2
i f(λi)g(λj) + f(λj)g(λi)λ

1
2
j

]
i,j=1,··· ,n

. Then

ω(M ◦ P ◦ X) = ω(Z ◦ X) ≤ k ω(X) (0 ̸= X ∈ Mn).
Let the matrix N be the entrywise inverse of M , i.e., M ◦ N = J . Hence

ω(P ◦ X) ≤ k ω(N ◦ X) (0 ̸= X ∈ Mn)
or equivalently

ω(A
1
2 (Hf,g(A)) A

1
2 ) ≤ 2k

t + 2
ω(A2X + tAXA + XA2),

where X ∈ Mn, −2 < t ≤ 2 and k = max
{

f(λ)g(λ)
λ : λ ∈ σ(A)

}
. Hence we have inequality

(2.7).

Now, if we replace A and X by
(

A 0
0 B

)
and

(
0 X
0 0

)
inequality (2.7), respectively,

then

ω

([
0 A

1
2 (Hf,g(A, B)) B

1
2

0 0

])
≤ 2k′

t + 2 ω

([
0 A2X + tAXB + XB2

0 0

])
.

Hence
1
2

ω
(
A

1
2
(
Hf,g(A, B)

)
B

1
2
)

≤ ω

([
0 A

1
2
(
Hf,g(A, B)

)
B

1
2

0 0

])
(by Lemma 2.3)

≤ 2k′

t + 2
ω

([
0 A2X + tAXB + XB2

0 0

])
≤ 2k′

t + 2
ω
(
A2X + tAXB + XB2)

(by Lemma 2.3).
Thus, we reach inequality (2.8). Also, if we put B = A in inequality (2.7), then we get
inequality (2.8). �
Corollary 2.9. Let A ∈ Mn be positive semidefinite. If f is a positive operator monotone
function on (0, ∞), then

ω
(
A

1
2 f(A)Xf(A)−1A

3
2 + A

3
2 f(A)−1Xf(A)A

1
2
)

≤ 4
t + 2

ω
(
A2X + tAXA + XA2),

where X ∈ Mn and −2 < t ≤ 2.

Proof. Since f positive operator monotone on (0, ∞), then g(t) = t
f(t) is operator mono-

tone on (0, ∞) and also f(t)
g(t) = tf2(t) is Kwong function [14]. So f and g satisfy the

conditions of Theorem 2.8. Hence we have the desired inequality. �
Example 2.10. The function f(t) = log(1 + t) is operator monotone on (0, ∞); see [9].
If we put g(t) = 1, then f(t)

g(t) = log(1 + t) is Kwong [13]. Using Theorem 2.4 we have

ω
(
A

1
2
(

log(I + A)X + X log(I + A)
)
A

1
2
)

≤ 2
t + 2

ω
(
A2X + tAXA + XA2),

where A, X ∈ Mn such that A is positive semidefinite and −2 < t ≤ 2.
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Now, we infer the following lemma due to Zhan [17], which will be needed in the next
theorem.

Lemma 2.11 ([17, Lemma 5]). Let λ1, · · · , λn be any positive real numbers, r ∈ [−1, 1]
and −2 < t ≤ 2. Then the n × n matrix

L =
(

λr
i + λr

j

λ2
i + tλiλj + λ2

j

)
i,j=1,··· ,n

is positive semidefinite.

Now, we shall show the following result related to [10].

Proposition 2.12. Let A, X ∈ Mn such that A is positive semidefinite, β > 0 and
1 ≤ 2r ≤ 3. Then

ω
(
ArXA2−r + A2−rXAr)

≤ ω

(
2(1 − 2β + 2βr0)AXA + 4β(1 − r0)

t + 2
(A2X + tAXA + XA2)

)
,

where −2 < t ≤ 2β − 2 and r0 = min{1
2 + |1 − r|, 1 − |1 − r|}.

Proof. Since the numerical radius is weakly unitarily invariant, we may assume that A is
diagonal matrix with positive eigenvalues λ1, · · · , λn. Since 1 ≤ 2r ≤ 3, then 1

2 ≤ r0 ≤ 3
4 .

Let t0 = 1−2β+2βr0
2β(1−r0) (t + 2) + t. It follows from −2 < t ≤ 2β − 2 and 1

4 ≤ 1 − r0 ≤ 1
4 , that

t+2
4β(1−r0) > 0 and −2 < t0 ≤ 2, where t0 = t

2β(1−r0) + 1
β(1−r0) − 2. Hence, by using Lemma

2.11, the n × n matrix

W = [wij ] = t + 2
4β(1 − r0)

Λr
( λ2−2r

i + λ2−2r
j

λ2
i + t0λiλj + λ2

j

)
i,j=1,··· ,n

Λr

is positive semidefinite for 1
2 ≤ r ≤ 3

2 , where Λ = diag (λ1, · · · , λn). Therefore,

∥SW ∥ω = max
i

wii = max
i

(t + 2)λr
i (2λ2−2r

i )λr
i

4β(1 − r0)(t0 + 2)λ2
i

= 1,

whence ω(W ◦X)
ω(X) ≤ 1 (0 ̸= X ∈ Mn). Now, let O =

[
λ2

i + t0λiλj + λ2
j

]
i,j=1,··· ,n

and

M =

 1
2(1 − 2β + 2βr0)λiλj + 4β(1−r0)

t+2 (λ2
i X + tλiλj + λ2

j )


i,j=1,··· ,n

.

Then

ω(O ◦ M ◦ X) = ω(W ◦ X) ≤ ω(X) (0 ̸= X ∈ Mn).

Let the matrix N be the entrywise inverse of M , i.e., M ◦ N = J . Hence

ω(O ◦ X) ≤ ω(N ◦ X) (0 ̸= X ∈ Mn)

or equivalently

ω
(
ArXA2−r + A2−rXAr)

≤ ω

(
2(1 − 2β + 2βr0)AXA + 4β(1 − r0)

t + 2
(A2X + tAXA + XA2)

)
,

where −2 < t ≤ 2β − 2 and r0 = min{1
2 + |1 − r|, 1 − |1 − r|}. �
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