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Abstract
In this paper, we generalize Posner’s second theorem in additively inverse semirings. This
can be regarded as the generalization of Posner’s theorem in semirings.
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Introduction
Let (S, +, .) be a semiring with commutative addition and an absorbing zero 0. A

semiring S is called additively inverse semiring [6] if for every a ∈ S there exists a unique
element á ∈ S such that a + á + a = a and á + a + á = á. Karvellas [6] proved that
for all a, b ∈ S, (a.b)́ = á.b = a.b́ and áb́ = ab. Throughout this paper, S will represent
an additively inverse semiring which satisfies the condition that for every a ∈ S, a + á
is in the center Z(S) of S. This class of semirings is known as MA semiring [5]. In the
last couple of years, MA semirings investigated and studied in the connection with certain
additive maps (see [4,11–15]). By [5], a commutator [., .] in an additively inverse semiring
defines as [x, y] = xy + ýx = xy + yx́. We will make use of the commutator identities
[xy, z] = x[y, z] + [x, z]y, [x, yz] = [x, y]z + y[x, z] and [xy, x] = x[y, x], [x, yx] = [x, y]x (see
[5, 14], for their proof). S is prime if aSb = (0) implies either a = 0 or b = 0. It is easy
to see that if S is prime then the nonzero elements of Z(S) are not zero divisors in S.
An additive mapping d : S → S is called derivation if d(ab) = d(a)b + ad(b), ∀a, b ∈ S.
Following [4], a mapping F : S → S is said to be commuting on S if [F (x), x] = 0 for all
x ∈ S, and F is said to be centralizing on S if [[F (x), x], S] = 0, holds for all x ∈ S.

A well-known theorem of E.C. Posner [10] says that a non-zero centralizing derivation of
a prime ring R forces R to be commutative. This result has the virtue of being an impor-
tant tool in ring theory, especially in the study of centralizing and commuting mappings
and derivations. Posner’s result has been generalized by many authors in several ways
(see for example, [1, 7–9, 16]). Recently, M.Anjum and M.Aslam [4] studied the notion
of commuting mappings in MA semirings. In this paper, we shall attempt to generalize
Posner’s second theorem in additively inverse semirings.
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We begin with the following useful lemma.

Lemma 1 ([14, Lemma 1.1]). Let S be additively inverse semiring and a, b ∈ S. Then
a + b = 0 implies a = b́.

Lemma 2 ([4, Lemma 2.6]). Let d be a derivation of prime additively inverse semiring
S. If ad(x) = 0, x ∈ S then either a = 0 or d = 0.

Proposition 3 ([4, Theorem 2.7]). Let S be prime and 2-torsion free, d be a non-zero
derivation of S. If a ∈ S and [d(x), a] = 0, ∀x ∈ S, then a ∈ Z(S).

We also proved the following lemma in [12].

Lemma 4. Let S be prime and 2-torsion free. If a ∈ S such that [a, [a, s]] = 0, ∀s ∈ S,
then [a, S] = 0.

Proof. Replacing s by st, t ∈ S in [a, [a, s]] = 0, we get, [a, s][a, t] = 0. Replacing t by st
in the last expression, we have, 0 = [a, s]s[a, t]. But S is prime so [a, s] = 0. �

Lemma 5. Let S be 2-torsion free and prime. If d1, d2 are derivations of S such that

d1(a)d2(b) + d2(a)d1(b) = 0, ∀a, b ∈ S, (1)

then one of d1, d2 is zero.

Proof. Replacing a by ad1(c), c ∈ S in (1), we get

d1(a)d1(c)d2(b) + d2(a)d1(c)d1(b) + a(d1
2(c)d2(b) + d2(d1(c))d1(b)) = 0.

Replacing a by d1(c) in (1) and using it in the last expression, we have,

d1(a)d1(c)d2(b) + d2(a)d1(c)d1(b) = 0, ∀a, b, c ∈ S. (2)

Applying Lemma 1 in (1), we have d1(c)d2(b) = d2(c)d1(b)́, from this and (2), we obtain

(d1(a)d2(c)́ + d2(a)d1(c))d1(b) = 0.

By Lemma 2, either d1(a)d2(c)́ + d2(a)d1(c) = 0 or d1 = 0. If d1(a)d2(c)́ + d2(a)d1(c) = 0
then we have 2d2(a)d1(c)́ = 0 or d2(a)d1(c) = 0, ∀a, c ∈ S. Replacing a by d2(a), we have
d2(d2(a))d1(c) = 0. Again by Lemma 2, either d1 = 0 or d2(a) = 0, ∀a ∈ S. This completes
the proof. �

Theorem 6. Let S be prime additively inverse semiring and d be a nonzero derivation of
S such that

[a, d(a)] = 0, ∀a ∈ S. (3)
Then S is commutative.

Proof. By linearization of (3), we get

ad(b) + d(b)á + bd(a) + d(a)b́ = 0.

Thus we have,
d(ab) + d(b)á + bd(a) + 2d(a)b́ = 0. (4)

From the given hypothesis, we have, ad(a) + d(a)a + 2d(a)á = 0 thus d(a2) = 2d(a)a, by
using Lemma 1. Replacing b by ax, x ∈ S in (4) and then using the last relation, we obtain

0 = 2d(a)ax + a2d(x) + d(a)xá + ad(x)á + axd(a) + 2d(a)ax́ = a2d(x) + d(a)xá + ad(x)á +
axd(a) + 2d(a)a(x + x́) = a2d(x) + d(a)xá + ad(x)á + axd(a) + 2a(x + x́)d(a). Because
a(x + x́) is an additive idempotent so

a2d(x) + d(a)xá + ad(x)á + axd(a) = 0. (5)
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Replacing b by xa in (4), we arrive at
d(x)a2 + d(a)xa + ad(x)á + ax́d(x) = 0.

By Lemma 1, we have
d(a)xá + axd(x) = d(x)a2 + ad(x)á. (6)

Using (6) in (5), we get
a2d(x) + 2ad(x)á + d(x)a2 = 0.

Thus we obtain, a[a, d(x)] + [a, d(x)]á = 0. Replacing a by a + d(x) in the last equation,
we obtain

d(x)[a, d(x)] + [a, d(x)]d(x)́ + [d(x), d(x)](a + á) = 0.

But [d(x), d(x)](a + á) = d(x)(d(x) + d(x)́)(a + á) = d(x)d(x)(a + á) + d(x)d(x)́(a + á) =
d(x)d(x)́(a + á). Thus we have

d(x)[a, d(x)] + [a, d(x)]d(x)́ + d(x)d(x)́(a + á) = 0.

This implies that

d(x)[a, d(x)] + ad(x)d(x)́ + d(x)ad(x) + d(x)d(x)́(a + á) = 0.

As (a + á) ∈ Z(S) so we have,
d(x)[a, d(x)] + ad(x)d(x)′ + d(x)ad(x) + (a + a′)d(x)d(x)′ = 0.

From this, we arrive at [d(x), [a, d(x)]] = 0. Thus [d(x), S] = 0, by Lemma 4 and therefore,
by Proposition 3, we conclude that S is commutative. �
Theorem 7. Let S be prime and 2-torsion free d be a derivation of S such that

[[a, d(a)], S] = 0, ∀a ∈ S (7)
then if d ̸= 0, S is commutative.

Proof. Linearization of (7) gives
[[a, d(b)] + [b, d(a)], S] = 0. (8)

Replacing b by ax in the above equation, we have
⇒ [[a, ad(x) + d(a)x] + [ax, d(a)], S] = 0.

Thus, we obtain
[a[a, d(x)] + [a, d(a)]x + d(a)[a, x] + a[x, d(a)] + [a, d(a)]x, S] = 0

⇒ [(ad(a) + d(a)a′)x + d(a)xa′ + axd(a), S] + [a2d(x) + ad(x)a′, S] = 0. (9)
Replacing b by xa in (8), we have, [[a, d(xa)] + [xa, d(a)], S] = 0. From this, we get,
[[a, d(x)a] + [a, xd(a)] + x[a, d(a)] + [x, d(a)]a, S] = 0. Thus, we have

[x(ad(a) + d(a)a′) + d(x)a′2 + d(a)xa′ + ad(x)a + axd(a), S] = 0.

From the given hypothesis, we have, [a, d(a)] ∈ Z(S). Thus we obtain
[(ad(a) + d(a)a′)x + d(x)a′2 + d(a)xa′ + ad(x)a + axd(a), S] = 0

⇒ [(ad(a) + d(a)a′)x + d(a)xa′ + axd(a), S] + [d(x)a′2 + ad(x)a, S] = 0.

By Lemma 1, we have
[(ad(a) + d(a)a′)x + d(a)xa′ + axd(a), S] = [d(x)a2 + ad(x)a′, S]. (10)

Combining (9) and (10), we obtain
[a2d(x) + d(x)a2 + 2a′d(x)a, S] = 0.

In particular, for a ∈ S, we have
[a2d(x) + d(x)a2 + 2a′d(x)a, a] = 0



On Posner’s second theorem in additively inverse semirings 999

⇒ a2d(x)a + d(x)a3 + 2ád(x)a2 + a′3d(x) + a′d(x)a2 + 2a2d(x)a = 0
⇒ 3a2d(x)a + d(x)a3 + a′3d(x) + 3a′d(x)a2 = 0. (11)

Replacing x by a in (11), we have
d(a)a3 + a′3d(a) + 3a(d(a)a′ + ad(a))a = 0.

Thus we get
d(a)a3 + a′3d(a) = 3(d(a)a′ + ad(a))a′2. (12)

Replacing x by ad(x) in (11), we get
3a2d(ad(x))a + d(ad(x))a3 + a′3d(ad(x)) + 3a′d(ad(x))a2 = 0.

So, we have,

3a2d(a)d(x)a + 3a2ad2(x)a + d(a)d(x)a3 + ad2(x)a3 + a′3d(a)d(x)+
a′3ad2(x) + 3a′d(a)d(x)a2 + 3a′ad2(x)a2 = 0.

Thus, we obtain

a(3a′d2(x)a2 + a′3d2(x) + 3a2d2(x)a + d2(x)a3) + 3a2d(a)d(x)a+
d(a)d(x)a3 + a′3d(a)d(x) + 3a′d(a)d(x)a2 = 0.

Replacing x by d(x) in (11) and using it in the last relation, we have
3a2d(a)d(x)a + d(a)d(x)a3 + a′3d(a)d(x) + 3a′d(a)d(x)a2 = 0. (13)

Pre-multiplying (11) by d(a), we have
3d(a)a2d(x)a + d(a)d(x)a3 + d(a)a′3d(x) + 3d(a)a′d(x)a2 = 0.

Applying Lemma 1 in the last equation to find value of d(a)d(x)a3 and then using it in
(13), we get

3a2d(a)d(x)a+3d(a)a2d(x)a′+d(a)a3d(x)+3d(a)ad(x)a2+a′3d(a)d(x)+3a′d(a)d(x)a2 = 0

⇒ 3[a2, d(a)]d(x)a + [d(a), a3]d(x) + 3[d(a), a]d(x)a2 = 0.

In the view of (12), we obtain
3[a2, d(a)]d(x)a + 3[a, d(a)]a′2d(x) + 3[d(a), a]d(x)a2 = 0. (14)

By using the fact that [d(a), a] ∈ Z(S), we have
[a2, d(a)] = a[a, d(a)] + [a, d(a)]a = 2a[a, d(a)].

Thus from (14), we have
3[a, d(a)](2ad(x)a + a′2d(x) + d(x)a′2) = 0.

But S is prime and [a, d(a)] ∈ Z(S), so by using the fact that center of S is free of zero
divisor, we have, either [a, d(a)] = 0 or 2ad(x)a + a′2d(x) + d(x)a′2 = 0. If [a, d(a)] ̸= 0,
for some a then for that a, we have

2ad(x)a + a′2d(x) + d(x)a′2 = 0, x ∈ S. (15)
Replacing x by ax, we obtain

2ad(a)xa + a′2d(a)x + d(a)xa′2 = 0. (16)
Replacing x by a in (15) and then post-multiplying by x we get

2ad(a)ax + a′2d(a)x + d(a)a′2x = 0. (17)
By Lemma 1, (16) and (17), we arrive at

2ad(a)[x, a] + d(a)[x, a′2] = 0. (18)
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Replacing x by ax in (18), we get
2ad(a)a[x, a] + d(a)a[x, a′2] = 0. (19)

Pre-multiplying (18) by a, we get
2a2d(a)[x, a] + ad(a)[x, a′2] = 0. (20)

Combining (19) and (20), we have
[d(a), a](2a[x, a] + [x, a′2]) = 0.

But [d(a), a] ̸= 0, thus we have 2a[x, a] + [x, a′2] = 0. From this, we have 2axa + 2a′2x +
x′a2 + a2x = 0 or 0 = 2axa′ + 2a2x + xa2 + a′2x = 2axa′ + xa2 + (2a2x + a′2x) =
2axa′ + xa2 + a2x = a[a, x] + [a, x]a′ = [a, [a, x]]. Thus [a, [a, x]] = 0 so by Lemma 4,
a ∈ Z(S). However, if [d(a), a] = 0, ∀a ∈ S then the required result follows from Theorem
6. �
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