Generalizations of 2 -absorbing and 2 -absorbing primary submodules

Hojjat Mostafanasab ${ }^{1}$ (D) Ünsal Tekir ${ }^{2}$ (D), Ece Yetkin Çelikel ${ }^{3}$ (©),
Emel A. Uğurlu ${ }^{2}$ © , Gülşen Ulucak ${ }^{* 4}$ (©), Ahmad Yousifean Darani ${ }^{1}$ (D)
${ }^{1}$ Department of Mathematics and Applications, University of Mohaghegh Ardabili, P. O. Box 179, Ardabil, Iran
${ }^{2}$ Department of Mathematics, Marmara University, Ziverbey, Goztepe, Istanbul 34722, Turkey
${ }^{3}$ Department of Mathematics, Gaziantep University, Gaziantep, Turkey
${ }^{4}$ Department of Mathematics, Gebze Technical University, Gebze, Kocaeli

Abstract

In this study, we introduce ϕ-2-absorbing and ϕ-2-absorbing primary submodules of modules over commutative rings generalizing the concepts of 2 -absorbing and 2 -absorbing primary submodules. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function where $S(M)$ denotes the set of all submodules of M and N a proper submodule of an R-module M. We will say that N is a ϕ-2-absorbing submodule of M if whenever $a, b \in R, m \in M$ with $a b m \in N$ and $a b m \notin \phi(N)$, then $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)$ and N is said to be a ϕ-2-absorbing primary submodule of M whenever if $a, b \in R, m \in M$ with $a b m \in N$ and $a b m \notin \phi(N)$, then $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$. We investigate many properties of these new types of submodules and establish some characterizations for ϕ-2-absorbing and ϕ-2-absorbing primary submodules of multiplication modules.

Mathematics Subject Classification (2010). 13A15, 13F05, 13G05
Keywords. ϕ-prime submodule, ϕ-primary submodule, 2 -absorbing primary submodule, weakly 2 -absorbing primary submodule, ϕ-2-absorbing submodule, ϕ-2-absorbing primary submodule

1. Introduction

Throughout this paper, R is a commutative ring with a nonzero identity and M denotes a unitary R-module. We will denote by $\left(N:_{R} M\right)$ the residual of N by M, that is, the set of all $r \in R$ such that $r M \subseteq N$. The annihilator of M which is denoted by $A n n_{R}(M)$ is $\left(0:_{R} M\right)$. A prime (resp. primary) submodule is a proper submodule N of M with the property that for $a \in R$ and $m \in M, a m \in N$ implies that $m \in N$ or $a \in\left(N:_{R} M\right)$ (resp. $m \in N$ or $\left.a \in \sqrt{\left(N:_{R} M\right)}\right)$. As prime ideals (submodules) have an important role in ring (module) theory, several authors generalized these concepts in different ways (see [3-10, 12], [14-26]). Weakly prime submodules were introduced by Ebrahimi et. al. in [8].

[^0]A proper submodule N of M is weakly prime if for $a \in R$ and $m \in M$ with $0 \neq a m \in N$, either $m \in N$ or $a \in\left(N:_{R} M\right)$. Behboodi and Koohi in [15] defined weakly prime submodules in a different way. In their paper, a proper submodule N of an R-module M is said to be weakly prime when $a b m \in N$ for $a, b \in R$ and $m \in M$ implies that $a m \in N$ or $b m \in N$. The concepts of ϕ-prime and ϕ-primary ideals are introduced in [4], [16], and the generalizations of these concepts are studied in [14]. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function where $S(M)$ is the set of all submodules of M. A proper submodule N of an R-module M is called ϕ-prime (resp. ϕ-primary) if $a \in R, m \in M$ with $a m \in N$ and $a m \notin \phi(N)$, then $a \in\left(N:_{R} M\right)$ or $m \in N\left(\right.$ resp. $a \in \sqrt{\left(N:_{R} M\right)}$ or $\left.m \in N\right)$.

The concept of 2 -absorbing ideal (resp. weakly 2 -absorbing ideal) is introduced by Badawi in [9] (resp. Badawi and Darani in [10]) as a different generalization of prime ideal (resp. weakly prime ideal). According to [9] and [10], a nonzero proper ideal I of R is a 2-absorbing ideal (resp. weakly 2-absorbing ideal) of R if whenever $a, b, c \in R$ and $a b c \in I$ (resp. $0 \neq a b c \in I$), then $a b \in I$ or $a c \in I$ or $b c \in I$. Then introducing 2-absorbing submodules (resp. weakly 2-absorbing submodules) of a module, Darani [17] generalized the concept of 2 -absorbing ideals (resp. weakly 2 -absorbing ideals) to submodules of a module over a commutative ring as following: Let N be a proper submodule of an R module $M . N$ is said to be a 2 -absorbing submodule (resp. weakly 2 -absorbing submodule) of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in N$ (resp. $0 \neq a b m \in N$), then $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$. Badawi et. al. [12] introduced the concept of 2-absorbing primary ideals, where a proper ideal I of R is called 2-absorbing primary if whenever $a, b, c \in R$ with $a b c \in I$, then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. Then ϕ-2-absorbing primary ideals of a commutative ring which are a generalization of 2 -absorbing primary ideals are presented in [11]. Let $\phi: S(R) \rightarrow S(R) \cup\{\emptyset\}$ be a function where $S(R)$ is the set of all ideals of R. According to [11], a nonzero proper ideal I of R is called a ϕ-2-absorbing primary ideal of R if whenever $a, b, c \in R$ with $a b c \in I$ and $a b c \notin \phi(I)$ then $a b \in I$ or $a c \in \sqrt{I}$ or $b c \in \sqrt{I}$. The concept of 2-absorbing primary submodules is studied in [23] as a generalization of 2 -absorbing primary ideals. A proper submodule N is said to be a 2-absorbing primary submodule (resp. weakly 2 -absorbing primary submodule) of M if whenever $a, b \in R$ and $m \in M$ with $a b m \in N$ (resp. $0 \neq a b m \in N$), then $a b \in\left(N:_{R} M\right)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$.

An R-module M is called a multiplication module if every submodule N of M has the form $I M$ for some ideal I of R. In fact $I=\left(N:_{R} M\right)$ which is called a presentation ideal of N. Let N and K be submodules of a multiplication R-module M with $N=I_{1} M$ and $K=I_{2} M$ for some ideals I_{1} and I_{2} of R. The product of N and K denoted by $N K$ is defined by $N K=I_{1} I_{2} M$, see [13]. Then by [2, Theorem 3.4], the product of N and K is independent of presentations of N and K. Moreover, for $a, b \in M$, by $a b$, we mean the product of $R a$ and $R b$. Clearly, $N K$ is a submodule of M and $N K \subseteq N \cap K$ (see [2]). Let N be a proper submodule of an R-module M. Then the M-radical of N, denoted by $M-\operatorname{rad}(N)$, is defined to be the intersection of all prime submodules of M containing N. If M has no prime submodule containing N, then we say $M-\operatorname{rad}(N)=M$. It is shown in [20, Theorem 2.12] that if N is a proper submodule of a multiplication R-module M, then $M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M$.

In this work, our aim is to extend the concept of 2 -absorbing submodules to ϕ-2absorbing submodules in completely different way from [21] and also to extend 2-absorbing primary submodules to ϕ-2-absorbing primary submodules of modules over commutative rings. We discuss on the relations among the concepts which are defined above and $\phi-2-$ absorbing primary submodules, and investigate some characterizations of them in some special multiplication modules. We prove that a submodule N of an R-module M is a ϕ-2-absorbing (resp. ϕ-2-absorbing primary) submodule of M if and only if $N / \phi(N)$ is a weakly 2-absorbing (resp. weakly 2-absorbing primary) submodule of $M / \phi(N)$. Let M_{1} be
an R_{1}-module, M_{2} be an R_{2}-module, and let $M=M_{1} \times M_{2}$. Let $\psi_{i}: S\left(M_{i}\right) \rightarrow S\left(M_{i}\right) \cup\{\emptyset\}$ ($i=1,2$) be function, and let $\phi=\psi_{1} \times \psi_{2}$. Suppose that $N=N_{1} \times M_{2}$ for some proper submodule N_{1} of M_{1}. Then we show that the following conditions hold:
(1) If $\psi_{2}\left(M_{2}\right)=M_{2}$, then N is a $\phi-2$-absorbing submodule of M if and only if N_{1} is a $\psi_{1}-2$-absorbing submodule of M_{1}.
(2) If $\psi_{2}\left(M_{2}\right) \neq M_{2}$, then N is a ϕ-2-absorbing submodule of M if and only if N_{1} is a 2-absorbing submodule of M_{1}.

Also, it is shown that if N is a ϕ-2-absorbing primary submodule of an R-module M that is not 2 -absorbing primary, then $\left(N:_{R} M\right)^{2} N \subseteq \phi(N)$. Moreover, if M is multiplication, then $N^{3} \subseteq \phi(N)$. Finally, we find conditions under which N is a ϕ-2-absorbing primary submodule of M if and only if $I J K \subseteq N$ and $I J K$ nsubseteq $\phi(N)$ for some ideals I, J of R and a submodule K of M implies that either $I J \subseteq\left(N:_{R} M\right)$ or $I K \subseteq M-\operatorname{rad}(N)$ or $J K \subseteq M-\operatorname{rad}(N)$.

2. ϕ-2-absorbing and ϕ-2-absorbing primary submodules

Definition 2.1. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function where $S(M)$ is the set of all submodules of M. Let N be a proper submodule of M.
(1) N is called a ϕ-2-absorbing submodule of M if whenever $a, b \in R, m \in M$ with $a b m \in N$ and $a b m \notin \phi(N)$, then $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)$.
(2) N is called a ϕ-2-absorbing primary submodule of M if whenever $a, b \in R, m \in M$ with $a b m \in N$ and $a b m \notin \phi(N)$, then $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$.
We can define the following special functions ϕ_{α} as follows: Let N be a ϕ_{α}-primary submodule of a multiplication R-module M. Then

$$
\begin{array}{ll}
\phi_{\emptyset}(N)=\emptyset & \text { primary submodule } \\
\phi_{0}(N)=0 & \text { weakly primary submodule } \\
\phi_{2}(N)=N^{2} & \text { almost primary submodule } \\
\ldots & n \text {-almost primary submodule } \\
\phi_{n}(N)=N^{n} & \omega \text {-primary submodule. } \\
\phi_{\omega}(N)=\bigcap_{n=1}^{\infty} N^{n} &
\end{array}
$$

Moreover, let N be a $\phi_{\alpha}-2$-absorbing (resp. $\phi_{\alpha}-2$-absorbing primary) submodule of a multiplication R-module M. Then
$\phi_{\emptyset}(N)=\emptyset \quad$ 2-absorbing (resp. 2-absorbing primary) submodule
$\phi_{0}(N)=0 \quad$ weakly 2 -absorbing (resp.weakly 2 -absorbing primary) submodule
$\phi_{2}(N)=N^{2} \quad$ almost 2-absorbing (resp. almost 2-absorbing primary) submodule
...
$\phi_{n}(N)=N^{n} \quad n$-almost 2-absorbing (resp. 2-absorbing primary) submodule
$\phi_{\omega}(N)=\bigcap_{n=1}^{\infty} N^{n} \quad \omega$-2-absorbing (resp. ω-2-absorbing primary) submodule
Throughout this paper, ϕ denotes a function from $S(M)$ to $S(M) \cup\{\emptyset\}$. Since $N-$ $\phi(N)=N-(N \cap \phi(N))$ for any submodule N of M, without loss generality throughout assume that $\phi(N) \subseteq N$. For any two functions $\psi_{1}, \psi_{2}: S(M) \rightarrow S(M) \cup\{\emptyset\}$, we say $\psi_{1} \leq \psi_{2}$ if $\psi_{1}(N) \subseteq \psi_{2}(N)$ for each $N \in S(M)$. Thus clearly we have the following order: $\phi_{\emptyset} \leq \phi_{0} \leq \phi_{\omega} \leq \ldots \leq \phi_{n+1} \leq \phi_{n} \leq \ldots \leq \phi_{2} \leq \phi_{1}$.

Lemma 2.2. Let N be a proper submodule of M and $\psi_{1}, \psi_{2}: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be two functions with $\psi_{1} \leq \psi_{2}$. If N is a ψ_{1}-2-absorbing (resp. ψ_{1}-2-absorbing primary) submodule of M, then N is a ψ_{2}-2-absorbing (resp. ψ_{2}-2-absorbing primary) submodule of M.

Proof. Suppose that N is a ψ_{1}-2-absorbing submodule of M and $a, b \in R, m \in M$ with $a b m \in N$ and $a b m \notin \psi_{2}(N)$. Then $a b m \notin \psi_{1}(N)$. Since N is $\psi_{1}-2$-absorbing (resp. $\psi_{1}-2$ absorbing primary) submodule, we are done.
Theorem 2.3. Let N be a proper submodule of M. Then, the followings hold.
(1) N is a ϕ-prime submodule of $M \Rightarrow N$ is a ϕ-2-absorbing submodule of $M \Rightarrow N$ is a ϕ-2-absorbing primary submodule of M.
(2) If M is multiplication and N is a ϕ-primary submodule of M, then N is a $\phi-2$ absorbing primary submodule of M.
(3) Let M be a multiplication R-module. N is a 2 -absorbing submodule of $M \Rightarrow N$ is a weakly 2 -absorbing submodule of $M \Rightarrow N$ is a ω-2-absorbing submodule of $M \Rightarrow N$ is an $(n+1)$-almost 2-absorbing submodule of $M \Rightarrow N$ is an n-almost 2absorbing submodule of M for all $n \geq 2 \Rightarrow N$ is an almost 2-absorbing submodule of M.
(4) Let M be a multiplication R-module. N is a 2 -absorbing primary submodule of $M \Rightarrow N$ is a weakly 2 -absorbing primary submodule of $M \Rightarrow N$ is a ω - 2 -absorbing primary submodule of $M \Rightarrow N$ is an ($n+1$)-almost 2-absorbing primary submodule of $M \Rightarrow N$ is an n-almost 2-absorbing primary submodule of M for all $n \geq 2 \Rightarrow$ N is an almost 2-absorbing primary submodule of M.
(5) Let $M-\operatorname{rad}(N)=N$. Then N is a $\phi-2$-absorbing primary submodule of M if and only if N is a ϕ-2-absorbing submodule of M.
(6) If N is an idempotent submodule of a multiplication R-module M, then N is a ω-2-absorbing submodule of M, and N is an n-almost 2-absorbing submodule of M for every $n \geq 2$.
(7) Let M be a multiplication R-module. Then N is an n-almost 2 -absorbing (resp. n-almost 2 -absorbing primary) submodule of M for all $n \geq 2$ if and only if N is a ω-2-absorbing (resp. ω-2-absorbing primary) submodule of M.

Proof. (1) It is obvious from Definition 2.1.
(2) Let $a b m \in N \backslash \phi(N)$ for some $a, b \in R$ and some $m \in M$. Assume that $b m \notin M$ $\operatorname{rad}(N)$. Then $b m \notin N$ and so $a \in \sqrt{\left(N:_{R} M\right)}$ as N is a ϕ-primary submodule. Therefore $a m \in \sqrt{\left(N:_{R} M\right)} M=M-\operatorname{rad}(N)$. Consequently, N is ϕ-2-absorbing primary.
(3) and (4) are clear from Lemma 2.2.
(5) The claim is clear.
(6) Suppose that N is an idempotent submodule of M. Then $N=N^{n}$ for all $n>0$, and so $\phi_{\omega}(N)=\cap_{n=1}^{\infty} N^{n}=N$. Thus N is an ω-2-absorbing submodule of M. By (3), we conclude that N is an n-almost 2-absorbing submodule of M for all $n \geq 2$.
(7) Suppose that N is an n-almost 2 -absorbing (resp. n-almost 2 -absorbing primary) submodule of M for all $n \geq 2$. Let $a, b \in R$ and $m \in M$ with $a b m \in N$ but $a b m \notin \cap_{n=1}^{\infty} N^{n}$. Hence $a b m \notin N^{n}$ for some $n \geq 2$. Since N is n-almost 2 -absorbing (resp. n-almost 2absorbing primary) for all $n \geq 2$, this implies either $a b \in\left(N:_{R} M\right)$ or $b m \in N$ or $a m \in N$ (resp. $a b \in\left(N:_{R} M\right)$ or $b m \in M-\operatorname{rad}(N)$ or $\left.a m \in M-\operatorname{rad}(N)\right)$, we are done. The converse is clear from (3) (resp. from (4)).
Theorem 2.4. Let N be a proper submodule of M. Then
(1) N is a ϕ-2-absorbing submodule of M if and only if $N / \phi(N)$ is a weakly 2-absorbing submodule of $M / \phi(N)$.
(2) N is a ϕ-2-absorbing primary submodule of M if and only if $N / \phi(N)$ is a weakly 2-absorbing primary submodule of $M / \phi(N)$.
(3) N is a ϕ-prime submodule of M if and only if $N / \phi(N)$ is a weakly prime submodule of $M / \phi(N)$.
(4) N is a ϕ-primary submodule of M if and only if $N / \phi(N)$ is a weakly primary submodule of $M / \phi(N)$.

Proof. (1) If $\phi(N)=\emptyset$, then there is nothing to prove. Assume that $\phi(N) \neq \emptyset$. Let $a, b \in R$ and $m \in M$ such that $\phi(N) \neq a b(m+\phi(N))=a b m+\phi(N) \in N / \phi(N)$. Then $a b m \in N$, but $a b m \notin \phi(N)$. Hence either $a b \in\left(N:_{R} M\right)$ or $b m \in N$ or $a m \in N$. So $a b \in(N / \phi(N): M / \phi(N))$ or $b(m+\phi(N)) \in N / \phi(N)$ or $a(m+\phi(N)) \in N / \phi(N)$, so we are done.

Conversely, let $a b m \in N$ and $a b m \notin \phi(N)$ for some $a, b \in R$ and $m \in M$. Then $\phi(N) \neq$ $a b(m+\phi(N)) \in N / \phi(N)$. Hence $a b \in(N / \phi(N): M / \phi(N))$ or $b(m+\phi(N)) \in N / \phi(N)$ or $a(m+\phi(N)) \in N / \phi(N)$. So $a b \in\left(N:_{R} M\right)$ or $b m \in N$ or $a m \in N$. Thus N is a ϕ-2-absorbing submodule of M.
(2) Let $\phi(N) \neq a b(m+\phi(N))=a b m+\phi(N) \in N / \phi(N)$. Then $a b m \in N$, but $a b m \notin$ $\phi(N)$. Hence either $a b \in\left(N:_{R} M\right)$ or $b m \in M-\operatorname{rad}(N)$ or $a m \in M-\operatorname{rad}(N)$. So $a b \in$ $\left(N:_{R} M\right) / \phi(N)$ or $b(m+\phi(N)) \in M-\operatorname{rad}(N) / \phi(N)$ or $a(m+\phi(N)) \in M-\operatorname{rad}(N) / \phi(N)$. Since $M-\operatorname{rad}(N) / \phi(N)=M / \phi(N)-\operatorname{rad}(N / \phi(N))$, we are done. The converse can be easily shown with the previous manner.

Similarly, one can easily prove (3) and (4).
Corollary 2.5. Let N be a proper submodule of a multiplication R-module M and $n \geq 2$. Then
(1) N is a ϕ_{n}-2-absorbing submodule of M if and only if $N / \phi(N)$ is a weakly 2absorbing submodule of M / N^{n}.
(2) N is a ϕ_{n}-2-absorbing primary submodule of M if and only if $N / \phi(N)$ is a weakly 2-absorbing primary submodule of M / N^{n}.
(3) N is a ϕ_{n}-prime submodule of M if and only if $N / \phi(N)$ is a weakly prime submodule of M / N^{n}.
(4) N is a ϕ_{n}-primary submodule of M if and only if $N / \phi(N)$ is a weakly primary submodule of M / N^{n}.
Proof. Since $\phi_{n}(N)=N^{n}$, it is direct results of Theorem 2.4.
Definition 2.6. Let N be a proper submodule of a multplication R-module M and $n \geq 2$.
(1) N is said to be n-potent 2-absorbing whenever if $a, b \in R$ and $m \in M$ with $a b m \in$ N^{n}, then $a b \in\left(N:_{R} M\right)$ or $b m \in N$ or $a m \in N$.
(2) N is said to be n-potent 2-absorbing primary whenever if $a, b \in R$ and $m \in M$ with $a b m \in N^{n}$, then $a b \in\left(N:_{R} M\right)$ or $b m \in M-\operatorname{rad}(N)$ or $a m \in M-\operatorname{rad}(N)$.
Proposition 2.7. Let M be a multiplication R-module. Then the following statements are satisfied:
(1) Let N be an n-almost 2-absorbing primary submodule of M for some $n \geq 2$. If N is k-potent 2 -absorbing primary for some $k \leq n$, then N is a 2 -absorbing primary submodule of M.
(2) Let N be an n-almost 2 -absorbing submodule of M for some $n \geq 2$. If N is k-potent 2 -absorbing for some $k \leq n$, then N is a 2 -absorbing submodule of M.
Proof. (1) Suppose that N is an n-almost 2-absorbing primary submodule. Let $a b m \in$ N for some $a, b \in R, m \in M$. If $a b m \notin N^{k}$, then $a b m \notin N^{n}$. So we are done as N is an n-almost 2 -absorbing primary submodule. So assume that $a b m \in N^{k}$. Hence we get either $a b \in\left(N:_{R} M\right)$ or $b m \in M-\operatorname{rad}(N)$ or $a m \in M-\operatorname{rad}(N)$ as N is a k-potent 2-absorbing primary submodule of M.
(2) The proof can be obtained by a similar argument in (1).

Lemma 2.8 ([22, Corollary 1.3]). Let M and M^{\prime} be R-modules with $f: M \rightarrow M^{\prime}$ an R module epimorphism. If N is a submodule of M containing $\operatorname{Ker}(f)$, then $f(M-\operatorname{rad}(N))=$ $M^{\prime}-\operatorname{rad}(f(N))$.

Theorem 2.9. Let $f: M \rightarrow M^{\prime}$ be an epimorphism of R-modules M and M^{\prime} and let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ and $\phi^{\prime}: S\left(M^{\prime}\right) \rightarrow S\left(M^{\prime}\right) \cup\{\emptyset\}$ be functions. Then the following statements hold:
(1) If N^{\prime} is a $\phi^{\prime}-2$-absorbing primary submodule of M^{\prime} and $\phi\left(f^{-1}\left(N^{\prime}\right)\right)=f^{-1}\left(\phi^{\prime}\left(N^{\prime}\right)\right)$, then $f^{-1}\left(N^{\prime}\right)$ is a $\phi-2$-absorbing primary submodule of M.
(2) If N is a ϕ-2-absorbing primary submodule of M containing $\operatorname{Ker}(f)$ and $\phi^{\prime}(f(N))=$ $f(\phi(N))$, then $f(N)$ is a $\phi^{\prime}-2$-absorbing primary submodule of M^{\prime}.
(3) If N^{\prime} is a $\phi^{\prime}-2$-absorbing submodule of M^{\prime} and $\phi\left(f^{-1}\left(N^{\prime}\right)\right)=f^{-1}\left(\phi^{\prime}\left(N^{\prime}\right)\right)$, then $f^{-1}\left(N^{\prime}\right)$ is a ϕ-2-absorbing submodule of M.
(4) If N is a $\phi-2$-absorbing submodule of M containing $\operatorname{Ker}(f)$ and $\phi^{\prime}(f(N))=$ $f(\phi(N))$, then $f(N)$ is a $\phi^{\prime}-2$-absorbing submodule of M^{\prime}.

Proof. (1) Since f is epimorphism, $f^{-1}\left(N^{\prime}\right)$ is a proper submodule of M. Let $a, b \in R$ and $m \in M$ such that $a b m \in f^{-1}\left(N^{\prime}\right)$ and $a b m \notin f^{-1}\left(\phi^{\prime}\left(N^{\prime}\right)\right)$. Since $a b m \in f^{-1}\left(N^{\prime}\right)$, $a b f(m) \in N^{\prime}$. Also, $\phi\left(f^{-1}\left(N^{\prime}\right)\right)=f^{-1}\left(\phi^{\prime}\left(N^{\prime}\right)\right)$ implies that $a b f(m) \notin \phi^{\prime}\left(N^{\prime}\right)$. Thus $a b f(m) \in N^{\prime} \backslash \phi^{\prime}\left(N^{\prime}\right)$. Then $a b \in\left(N^{\prime}:_{R} M^{\prime}\right)$ or $a f(m) \in M^{\prime}-\operatorname{rad}\left(N^{\prime}\right)$ or $b f(m) \in M^{\prime}-$ $\operatorname{rad}\left(N^{\prime}\right)$. Thus $a b \in\left(f^{-1}\left(N^{\prime}\right):_{R} M\right)$ or $a m \in f^{-1}\left(M^{\prime}-\operatorname{rad}\left(N^{\prime}\right)\right)$ or $b m \in f^{-1}\left(M^{\prime}-\operatorname{rad}\left(N^{\prime}\right)\right)$. Since $f^{-1}\left(M^{\prime}-\operatorname{rad}\left(N^{\prime}\right)\right) \subseteq M-\operatorname{rad}\left(f^{-1}\left(N^{\prime}\right)\right)$, we conclude that $f^{-1}\left(N^{\prime}\right)$ is a ϕ-2-absorbing primary submodule of M.
(2) Let $a, b \in R$ and $m^{\prime} \in M^{\prime}$ such that $a b m^{\prime} \in f(N) \backslash \phi^{\prime}(f(N))$. Since f is epimorphism, there exists $m \in M$ such that $m^{\prime}=f(m)$. Therefore $f(a b m) \in f(N)$ and so $a b m \in N$ as $\operatorname{Ker}(f) \subseteq N$. Since $\phi^{\prime}(f(N))=f(\phi(N))$, we have $a b m \notin \phi(N)$. Hence $a b m \in N \backslash \phi(N)$. It implies that $a b \in\left(N:_{R} M\right)$ or $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$. Thus $a b \in\left(f(N):_{R}\right.$ $\left.M^{\prime}\right)$ or $a m^{\prime} \in f(M-\operatorname{rad}(N))$ or $b m^{\prime} \in f(M-\operatorname{rad}(N))$. From Lemma 2.8, we are done.
$(3),(4)$ can be easily obtained similar to (1) and (2).
Corollary 2.10. Let K, N be submodules of a multiplication R-module M with $K \subseteq N$ and $n \geq 2$.
(1) If N is a ϕ_{n}-2-absorbing primary submodule of M, then N / K is a $\phi_{n}-2$-absorbing primary submodule of M / K.
(2) If N is a ϕ_{n}-2-absorbing submodule of M, then N / K is a ϕ_{n}-2-absorbing submodule of M / K.
(3) If N is a $\phi_{\omega}-2$-absorbing primary submodule of M, then N / K is a ϕ_{ω}-2-absorbing primary submodule of M / K.
(4) If N is a $\phi_{\omega}-2$-absorbing submodule of M, then N / K is a $\phi_{\omega}-2$-absorbing submodule of M / K.

Proof. Since the canonical epimorphism $f: M \rightarrow M / K$ satisfies the equalities $\phi_{n}(f(N))=$ $\phi_{n}(N / K)=(N / K)^{n}=N^{n} / K=\phi_{n}(N) / K=f\left(\phi_{n}(N)\right)$, and $\phi_{\omega}(f(N))=\cap_{n=1}^{\infty}(N / K)^{n}=$ $\left(\cap_{n=1}^{\infty} N^{n}\right) / K=f\left(\phi_{\omega}(N)\right)$, we are done.

Let \mathcal{S} be a multiplicatively closed subset of R. It is well-known that each submodule of $\mathcal{S}^{-1} M$ is of the form $\mathcal{S}^{-1} N$ for some submodule N of M. Let $\phi: S(M) \rightarrow S(M) \cup\{\emptyset\}$ be a function and define $\phi_{\mathcal{S}}: S\left(\mathcal{S}^{-1} M\right) \rightarrow S\left(\mathcal{S}^{-1} M\right) \cup\{\emptyset\}$ by $\phi_{\mathcal{S}}\left(\mathcal{S}^{-1} N\right)=\mathcal{S}^{-1} \phi(N)$ (and $\phi_{\mathcal{S}}\left(\mathcal{S}^{-1} N\right)=\emptyset$ when $\phi(N)=\emptyset$) for every submodule N of M. We also know that if N is a 2-absorbing primary submodule of M, then $\mathcal{S}^{-1} N$ is a 2-absorbing primary submodule of $\mathcal{S}^{-1} M$ by Theorem 2.11 of [23]. In the next theorem, we want to generalize this fact to $\phi-2$-absorbing primary submodules of M.

Theorem 2.11. Let \mathcal{S} be a multiplicatively closed subset of R.
(1) If N is a ϕ-2-absorbing primary submodule of M and $\mathcal{S}^{-1} N \neq \mathcal{S}^{-1} M$, then $\mathcal{S}^{-1} N$ is a $\phi_{\mathcal{S}}$-2-absorbing primary submodule of $\mathcal{S}^{-1} M$.
(2) If N is a ϕ-2-absorbing submodule of M and $\mathcal{S}^{-1} N \neq \mathcal{S}^{-1} M$, then $\mathcal{S}^{-1} N$ is a $\phi \delta^{-}$-2-absorbing submodule of $\mathcal{S}^{-1} M$.
Proof. (1) Let $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \frac{m}{s} \in \mathcal{S}^{-1} N$ and $\frac{a_{1}}{s_{1}} \frac{a_{2}}{s_{2}} \frac{m}{s} \notin \phi_{\mathcal{S}}\left(\mathcal{S}^{-1} N\right)$. Since $\phi_{S}\left(\mathcal{S}^{-1} N\right)=\mathcal{S}^{-1} \phi(N)$, we have $u a_{1} a_{2} m \in N$ and $u a_{1} a_{2} m \notin \phi(N)$ for some $u \in \mathcal{S}$. Hence $u a_{1} m \in M-\operatorname{rad}(N)$ or $u a_{2} m \in M-\operatorname{rad}(N)$ or $a_{1} a_{2} \in\left(N:_{R} M\right)$, so we conclude that $\frac{a_{1}}{s_{1}} \frac{m}{s}=\frac{u a_{1 m}}{u s_{1} s} \in \mathcal{S}^{-1}(M-$ $\operatorname{rad}(N)) \subseteq \mathcal{S}^{-1} M-\operatorname{rad}\left(\mathcal{S}^{-1} N\right)$ or $\frac{a_{2}}{s_{2}} \frac{m}{s}=\frac{u a_{2} m}{u s_{2} s} \in \mathcal{S}^{-1} M-\operatorname{rad}\left(\mathcal{S}^{-1} N\right)$ or $\frac{a_{1}}{s_{1} \frac{a_{2}}{s_{2}}}=\frac{a_{1} a_{2}}{s_{1} s_{2}} \in$ $\mathcal{S}^{-1}\left(N:_{R} M\right) \subseteq\left(\mathcal{S}^{-1} N: S_{\mathcal{S}^{-1} R} \mathcal{S}^{-1} M\right)$.
(2) Similar to (1), it is easily obtained.

Definition 2.12. Let N be a proper submodule of M and $a, b \in R, m \in M$.
(1) If N is a ϕ-2-absorbing submodule, $a b m \in \phi(N), a b \notin\left(N:_{R} M\right), a m \notin N$ and $b m \notin N$, then (a, b, m) is called a ϕ-triple-zero of N.
(2) If N is a ϕ-2-absorbing primary submodule, $a b m \in \phi(N), a b \notin\left(N:_{R} M\right), a m \notin M$ $\operatorname{rad}(N)$ and $b m \notin M-\operatorname{rad}(N)$, then (a, b, m) is called a ϕ-primary triple-zero of N.
Remark 2.13. Note that if N is a $\phi-2$-absorbing (resp. ϕ-2-absorbing primary) submodule of M which is not 2-absorbing (resp. 2-absorbing primary), then there exists (a, b, m) a ϕ-triple-zero (resp. ϕ-primary triple-zero) of N for some $a, b \in R, m \in M$.
Proposition 2.14. Let N be a ϕ-2-absorbing submodule of M and $a, b \in R, m \in M$. Then (a, b, m) is a ϕ-triple-zero of N if and only if $(a, b, m+\phi(N))$ is a triple-zero of $N / \phi(N)$.
Proof. Suppose that (a, b, m) is a ϕ-triple-zero of N. Hence $a b m \in \phi(N)$ but $a b \notin\left(N:_{R}\right.$ $M), a m \notin N$ and $b m \notin N$. It implies that $a b \notin\left(N / \phi(N):_{R} M / \phi(N)\right), a(m+\phi(N)) \notin$ $N / \phi(N)$ and $b(m+\phi(N)) \notin N / \phi(N)$. Since $N / \phi(N)$ is a weakly 2 -absorbing primary submodule of M by Theorem 2.4, so we conclude that $a b(m+\phi(N))=\phi(N)$. Thus $(a, b, m+\phi(N))$ is a triple-zero of $N / \phi(N)$. The converse part is easily obtained by the same argument.
Proposition 2.15. Let N be a ϕ-2-absorbing primary submodule of M and $a, b \in R$, $m \in M$. Then (a, b, m) is a ϕ-primary triple-zero of N if and only if $(a, b, m+\phi(N))$ is a triple-zero of $N / \phi(N)$.
Proof. One can easily verify similar to the proof of Proposition 2.14.
Theorem 2.16. Let M_{1} be an R_{1}-module, M_{2} be an R_{2}-module, and let $M=M_{1} \times M_{2}$. Let $\psi_{i}: S\left(M_{i}\right) \rightarrow S\left(M_{i}\right) \cup\{\emptyset\}(i=1,2)$ be function, and let $\phi=\psi_{1} \times \psi_{2}$. Suppose that $N=N_{1} \times M_{2}$ for some proper submodule N_{1} of M_{1}.
(1) If $\psi_{2}\left(M_{2}\right)=M_{2}$, then N is a ϕ-2-absorbing submodule of M if and only if N_{1} is a ψ_{1}-2-absorbing submodule of M_{1}.
(2) If $\psi_{2}\left(M_{2}\right) \neq M_{2}$, then N is a ϕ-2-absorbing submodule of M if and only if N_{1} is a 2-absorbing submodule of M_{1}.

Proof. (1) Suppose that N is a ϕ-2-absorbing submodule of M. First we show that N_{1} is a ψ_{1}-2-absorbing submodule of M_{1} independently whether $\psi_{2}\left(M_{2}\right)=M_{2}$ or $\psi_{2}\left(M_{2}\right) \neq M_{2}$. Let $a_{1} b_{1} m_{1} \in N_{1} \psi_{1}\left(N_{1}\right)$ for some $a_{1}, b_{1} \in R_{1}$ and $m_{1} \in M_{1}$. Then $\left(a_{1}, 1\right)\left(b_{1}, 1\right)\left(m_{1}, m\right) \in$ $\left(N_{1} \times M_{2}\right) \backslash\left(\psi_{1}\left(N_{1}\right) \times \psi_{2}\left(M_{2}\right)\right)=N \backslash \phi(N)$ for any $m \in M_{2}$. Since N is a ϕ-2-absorbing submodule of M, we get either $\left(a_{1}, 1\right)\left(b_{1}, 1\right) \in\left(\left(N_{1} \times M_{2}\right): M_{1} \times M_{2}\right)$ or $\left(a_{1}, 1\right)\left(m_{1}, m\right) \in$ $\left(N_{1} \times M_{2}\right)$ or $\left(b_{1}, 1\right)\left(m_{1}, m\right) \in\left(N_{1} \times M_{2}\right)$. So clearly we conclude that $a_{1} b_{1} \in\left(N_{1}: M_{1}\right)$ or $a_{1} m_{1} \in N_{1}$ or $b_{1} m_{1} \in N_{1}$. Therefore, N_{1} is obtained as a $\psi_{1}-2$-absorbing submodule of M_{1}. Conversely, suppose that N_{1} is ψ_{1}-2-absorbing submodule and $\psi_{2}\left(M_{2}\right)=M_{2}$. Let $a=\left(a_{1}, a_{2}\right), b=\left(b_{1}, b_{2}\right) \in R_{1} \times R_{2}$ and $m=\left(m_{1}, m_{2}\right) \in M$ such that abm $\in N \backslash \phi(N)$. Since $\psi_{2}\left(M_{2}\right)=M_{2}$, we get $a_{1} b_{1} m_{1} \in N_{1} \backslash \psi_{1}\left(N_{1}\right)$ and this implies that either $a_{1} b_{1} \in\left(N_{1}\right.$: $\left.M_{1}\right)$ or $a_{1} m_{1} \in N_{1}$ or $b_{1} m_{1} \in N_{1}$. Thus either $a b \in\left(N:_{R} M\right)$ or $a m \in N$ or $b m \in N$.
(2) Suppose that $\psi_{2}\left(M_{2}\right) \neq M_{2}$ and N is a $\phi-2$-absorbing submodule of M. Then there is an element $m_{2} \in M_{2} \backslash \psi_{2}\left(M_{2}\right)$. Assume that N_{1} is not a 2 -absorbing submodule of M_{1}. As it is shown in part (1), N_{1} is a $\psi_{1}-2$-absorbing submodule of M_{1}. Hence there is a ψ_{1}-triple-zero (a_{1}, b_{1}, m_{1}) for some $a_{1}, b_{1} \in R_{1}$ and $m_{1} \in M_{1}$ by Remark 2.13. So $\left(a_{1}, 1\right)\left(b_{1}, 1\right)\left(m_{1}, m_{2}\right) \in\left(N_{1} \times M_{2}\right) \backslash\left(\psi_{1}\left(N_{1}\right) \times \psi_{2}\left(M_{2}\right)\right)=\left(N_{1} \times M_{2}\right) \backslash \phi\left(N_{1} \times M_{2}\right)$ which clearly implies $a_{1} b_{1} \in\left(N_{1}: M_{1}\right)$ or $a_{1} m_{1} \in N_{1}$ or $b_{1} m_{1} \in N_{1}$, a contradiction. Thus N_{1} is a 2-absorbing submodule of M_{1}. Conversely, if N_{1} is a 2-absorbing submodule of M_{1}, then $N=N_{1} \times M_{2}$ is a 2-absorbing submodule of M. Hence N is a ϕ-2-absorbing submodule of M for any ϕ.
Theorem 2.17. Let M_{1} be an R_{1}-module, M_{2} be an R_{2}-module, and let $M=M_{1} \times M_{2}$. Let $\psi_{i}: S\left(M_{i}\right) \rightarrow S\left(M_{i}\right) \cup\{\emptyset\}(i=1,2)$ be function, and let $\phi=\psi_{1} \times \psi_{2}$. Suppose that $N=N_{1} \times M_{2}$ for any proper submodule N_{1} of M_{1}.
(1) If $\psi_{2}\left(M_{2}\right)=M_{2}$, then N is a ϕ-2-absorbing primary submodule of M if and only if N_{1} is a $\psi_{1}-2$-absorbing primary submodule of M_{1}.
(2) If $\psi_{2}\left(M_{2}\right) \neq M_{2}$, then N is a ϕ-2-absorbing primary submodule of M if and only if N_{1} is a 2-absorbing primary submodule of M_{1}.
Proof. (1) It can be easily shown by using a similar argument in the proof of Theorem 2.16.
(2) Assume that N_{1} is a 2 -absorbing primary submodule of M_{1}. Then $N=N_{1} \times M_{2}$ is a 2-absorbing primary submodule of M by Theorem 2.28 of [23]. Hence N is a ϕ-2-absorbing submodule of M for any ϕ. The remaining of this proof is similar to Theorem 2.16.

Proposition 2.18. Let M be a multiplication R-module and let a be an element of R such that $a M \neq M$. Suppose that $\left(0:_{M} a\right) \subseteq a M$. Then $a M$ is an almost 2 -absorbing primary submodule of M if and only if it is a 2-absorbing primary submodule of M.
Proof. Assume that $a M$ is an almost 2-absorbing primary submodule of M. Let $x, y \in R$ and $m \in M$ such that $x y m \in a M$. We show that $x m \in M-\operatorname{rad}(a M)$ or $y m \in M-\operatorname{rad}(a M)$ or $x y \in\left(a M:_{R} M\right)$. If $x y m \notin a^{2} M$, then there is nothing to prove since $a M$ is almost 2absorbing primary. So assume that $x y m \in a^{2} M$. Note that $(x+a) y m \in a M$. If $(x+a) y m \notin$ $a^{2} M$, then $(x+a) m \in M-\operatorname{rad}(a M)$ or $y m \in M-\operatorname{rad}(a M)$ or $(x+a) y \in\left(a M:_{R} M\right)$. Hence $x m \in M-\operatorname{rad}(a M)$ or $y m \in M-\operatorname{rad}(a M)$ or $x y \in\left(a M:_{R} M\right)$. Therefore,assume that $(x+a) y m \in a^{2} M$. Hence $x y m \in a^{2} M$ gives aym $\in a^{2} M$. Then, there exists $m^{\prime} \in M$ such that $a y m=a^{2} m^{\prime}$, and so $a m^{\prime}-y m \in\left(0:_{M} a\right) \subseteq a M$. Consequently, $y m \in a M$ which shows that $a M$ is 2 -absorbing primary.
A commutative ring R is called a von Neumann regular ring (or an absolutely flat ring) if for any $a \in R$ there exists an $x \in R$ with $a^{2} x=a$, equivalently, $I=I^{2}$ for every ideal I of R.

Proposition 2.19. Let R be a von Neumann regular ring, M an R-module and N be a submodule of M.
(1) N is a ϕ-2-absorbing primary submodule of M if and only if $e_{1} e_{2} m \in N \backslash \phi(N)$ for some idempotent elements $e_{1}, e_{2} \in R$ and some $m \in M$ implies that either $e_{1} m \in M-\operatorname{rad}(N)$ or $e_{2} m \in M-\operatorname{rad}(N)$ or $e_{1} e_{2} \in\left(N:_{R} M\right)$.
(2) If M is multiplication, then N is a ω-2-absorbing (ω-2-absorbing primary) submodule of M.

Proof. (1) Notice the fact that any principal (finitely generated) ideal of a von Neumann regular ring R is generated by an idempotent element. On the other hand N is 2 -absorbing primary if and only if $(R a)(R b) m \subseteq N$ for some $a, b \in R$ and $m \in M$ implies that $(R a) m \subseteq M-\operatorname{rad}(N)$ or $(R b) m \subseteq M-\operatorname{rad}(N)$ or $(R a)(R b) \subseteq\left(N:_{R} M\right)$.
(2) It is clear that N is idempotent, now see Theorem 2.3(6).

If N is ϕ-primary submodule, $a m \in \phi(N), a \notin \sqrt{\left(N:_{R} M\right)}$ and $m \notin N$, then (a, m) is called a ϕ-primary twin-zero of N.

Theorem 2.20. Let N be a ϕ-primary submodule of M and suppose that (a, m) is a ϕ-primary twin-zero of N for some $a \in R, m \in M$. Then
(1) $a N \subseteq \phi(N)$.
(2) $\left(N:_{R} M\right) m \subseteq \phi(N)$.
(3) $\left(N:_{R} M\right) N \subseteq \phi(N)$.
(4) $\sqrt{\left(N:_{R} M\right)}=\sqrt{\left(\phi(N):_{R} M\right)}$.

Proof. (1) Assume that $a N \nsubseteq \phi(N)$. Then there exists $n \in N$ with an $\notin \phi(N)$. Hence $a(m+n) \notin \phi(N)$. Since $a(m+n) \in N$ and $a \notin \sqrt{\left(N:_{R} M\right)}$, we deduce that $m+n \in N$ as N is a ϕ-primary submodule of M. So $m \in N$, which contradicts our hypothesis. Thus $a N \subseteq \phi(N)$.
(2) Let $x m \notin \phi(N)$ for some $x \in\left(N:_{R} M\right)$. Then $(a+x) m \notin \phi(N)$ as $a m \in \phi(N)$. Since $x m \in N$, we get $(a+x) m \in N$. Since $m \notin N$, we have that $a+x \in \sqrt{\left(N:_{R} M\right)}$. Hence $a \in \sqrt{\left(N:_{R} M\right)}$ which contradicts the assumption that (a, m) is ϕ-primary twin-zero.
(3) Assume that $\left(N:_{R} M\right) N \nsubseteq \phi(N)$. Hence there are $x \in\left(N:_{R} M\right)$ and $n \in N$ such that $x n \notin \phi(N)$. By parts (1) and (2), $(a+x)(m+n) \in N \backslash \phi(N)$. So either $a+x \in \sqrt{\left(N:_{R} M\right)}$ or $m+n \in N$. Thus we have either $a \in \sqrt{\left(N:_{R} M\right)}$ or $m \in N$, a contradiction.
(4) By part (3) we have

$$
\left(N:_{R} M\right)\left(N:_{R} M\right) \subseteq\left(\left(N:_{R} M\right) N:_{R} M\right) \subseteq\left(\phi(N):_{R} M\right) .
$$

Therefore $\sqrt{\left(N:_{R} M\right)}=\sqrt{\left(\phi(N):_{R} M\right)}$.
Corollary 2.21. Let M be a multiplication R-module. If N is a ϕ-primary submodule of M that is not primary, then the following statements hold:
(1) $N^{2} \subseteq \phi(N)$.
(2) $M-\operatorname{rad}(N)=M-\operatorname{rad}(\phi(N))$.

Proof. (1) It is a direct consequence of Theorem 2.20(3).
(2) By Theorem 2.20(4), we have that

$$
M-\operatorname{rad}(N)=\sqrt{\left(N:_{R} M\right)} M=\sqrt{\left(\phi(N):_{R} M\right)} M=M-\operatorname{rad}(\phi(N)) .
$$

A submodule N of an R-module M is called a nilpotent submodule if $\left(N:_{R} M\right)^{k} N=0$ for some positive integer k (see [1]), and we say that $m \in M$ is nilpotent if $R m$ is a nilpotent submodule of M.

Corollary 2.22. Let N be a weakly primary submodule of an R-module M that is not primary. Then
(1) N is nilpotent.
(2) $\sqrt{\left(N:_{R} M\right)}=\sqrt{A n n_{R}(M)}$.

Assume that $\operatorname{Nil}(M)$ is the set of nilpotent elements of M. If M is faithful, then $\operatorname{Nil}(M)$ is a submodule of M and if M is faithful multiplication, then $\operatorname{Nil}(M)=\operatorname{Nil}(R) M=\cap Q$, where the intersection runs over all prime submodules of M, [1, Theorem 6].

Corollary 2.23. Let N be a weakly primary submodule of a multiplication R-module M. If N is not primary, then then the following statements hold:
(1) $N^{2}=0$.
(2) $M-\operatorname{rad}(N)=M-\operatorname{rad}(\{0\})$. If in addition M is faithful, then $M-\operatorname{rad}(N)=\operatorname{Nil}(M)$.

Theorem 2.24. Let N be a ϕ-2-absorbing (resp. 2-absorbing primary) submodule of M and suppose that (a, b, m) is a ϕ-triple-zero (resp. ϕ-primary triple-zero) of N for some $a, b \in R, m \in M$. Then
(1) $a b N \subseteq \phi(N)$.
(2) $a\left(N:_{R} M\right) m \subseteq \phi(N)$.
(3) $b\left(N:_{R} M\right) m \subseteq \phi(N)$.
(4) $\left(N:_{R} M\right)^{2} m \subseteq \phi(N)$.

Proof. (1) Suppose that N is a ϕ-2-absorbing (resp. 2-absorbing primary) submodule of M and $a b N \nsubseteq \phi(N)$. Then there exists $n \in N$ with $a b n \notin \phi(N)$. Hence $a b(m+n) \notin \phi(N)$. Since $a b(m+n)=a b m+a b n \in N$ and $a b \notin\left(N:_{R} M\right)$, we conclude that $a(m+n) \in N$ or $b(m+n) \in N($ resp. $a(m+n) \in M-\operatorname{rad}(N)$ or $b(m+n) \in M-\operatorname{rad}(N))$. So $a m \in N$ or $b m \in N$ (resp. (resp. $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N))$, which contradicts our hypothesis. Thus $a b N \subseteq \phi(N)$.
(2) Let $a x m \notin \phi(N)$ for some $x \in\left(N:_{R} M\right)$. Then $a(b+x) m \notin \phi(N)$ as $a b m \in \phi(N)$. Since $x m \in N$, we obtain $a(b+x) m \in N$. Then $a m \in N$ or $(b+x) m \in N$ or $a(b+x) \in$ $\left(N:_{R} M\right)\left(\right.$ resp. $a m \in M-\operatorname{rad}(N)$ or $(b+x) m \in M-\operatorname{rad}(N)$ or $\left.a(b+x) \in\left(N:_{R} M\right)\right)$. Hence $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)($ resp. $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$) which contradicts the assumption that (a, b, m) is ϕ-triple-zero (resp. ϕ-primary triple-zero).
(3) The proof is similar to part (2).
(4) Assume that $x_{1} x_{2} m \notin \phi(N)$ for some $x_{1}, x_{2} \in\left(N:_{R} M\right)$. Then by parts (2) and (3), $\left(a+x_{1}\right)\left(b+x_{2}\right) m \notin \phi(N)$. Clearly $\left(a+x_{1}\right)\left(b+x_{2}\right) m \in N$. Then $\left(a+x_{1}\right) m \in N$ or $\left(b+x_{2}\right) m \in N$ or $\left(a+x_{1}\right)\left(b+x_{2}\right) \in\left(N:_{R} M\right)$ (resp. $\left(a+x_{1}\right) m \in M$-rad(N) or $\left(b+x_{2}\right) m \in M-\operatorname{rad}(N)$ or $\left(a+x_{1}\right)\left(b+x_{2}\right) \in\left(N:_{R} M\right)$). Therefore $a m \in N$ or $b m \in N$ or $a b \in\left(N:_{R} M\right)\left(\right.$ resp. $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $\left.a b \in\left(N:_{R} M\right)\right)$ which is a contradiction. Consequently, $\left(N:_{R} M\right)^{2} m \subseteq \phi(N)$.
Theorem 2.25. If N is a ϕ-2-absorbing primary submodule of M that is not 2-absorbing primary, then $\left(N:_{R} M\right)^{2} N \subseteq \phi(N)$.
Proof. Suppose that N is a ϕ-2-absorbing primary submodule of M that is not 2absorbing primary. Then there exists a ϕ-primary triple-zero (a, b, m) of N for some $a, b \in R, m \in M$. Assume that $\left(N:_{R} M\right)^{2} N \nsubseteq \phi(N)$. Hence there are $x_{1}, x_{2} \in\left(N:_{R} M\right)$ and $n \in N$ such that $x_{1} x_{2} n \notin \phi(N)$. By Theorem 2.24, we get $\left(a+x_{1}\right)\left(b+x_{2}\right)(m+$ $n) \in N \backslash \phi(N)$. So $\left(a+x_{1}\right)(m+n) \in M-\operatorname{rad}(N)$ or $\left(b+x_{1}\right)(m+n) \in M-\operatorname{rad}(N)$ or $\left(a+x_{1}\right)\left(b+x_{2}\right) \in\left(N:_{R} M\right)$. Therefore $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$, a contradiction.
Corollary 2.26. If N is a ϕ-2-absorbing primary submodule of a multiplication R-module M that is not 2-absorbing primary, then $N^{3} \subseteq \phi(N)$.
Corollary 2.27. Let M be a multiplication R-module. If N is a ϕ-2-absorbing primary submodule of M where $\phi \leq \phi_{3}$, then N is a ω-2-absorbing (ω-2-absorbing primary) submodule of M.

Corollary 2.28. Let N be a weakly 2-absorbing primary submodule of M that is not 2-absorbing primary. Then
(1) N is nilpotent.
(2) If M is a multiplication module, then $N^{3}=0$.

Theorem 2.29. Let N be a ϕ-2-absorbing primary submodule of M. If N is not 2absorbing primary, then
(1) $\sqrt{\left(N:_{R} M\right)}=\sqrt{\left(\phi(N):_{R} M\right)}$.
(2) If M is multiplication, then $M-\operatorname{rad}(N)=M-\operatorname{rad}(\phi(N))$.

Proof. (1) Assume that N is not 2-absorbing primary. By Theorem 2.25, we known $\left(N:_{R}\right.$ $M)^{2} N \subseteq \phi(N)$. Then

$$
\begin{aligned}
\left(N:_{R} M\right)^{3} & =\left(N:_{R} M\right)^{2}\left(N:_{R} M\right) \\
& \subseteq\left(\left(N:_{R} M\right)^{2} N:_{R} M\right) \\
& \subseteq\left(\phi(N):_{R} M\right),
\end{aligned}
$$

and so $\left(N:_{R} M\right) \subseteq \sqrt{\left(\phi(N):_{R} M\right)}$. Hence, we have $\sqrt{\left(N:_{R} M\right)}=\sqrt{\left(\phi(N):_{R} M\right)}$.
(2) It is clera from part (1).

Corollary 2.30. Let N be a weakly 2-absorbing primary submodule of M. If N is not 2-absorbing primary, then
(1) $\sqrt{\left(N:_{R} M\right)}=\sqrt{A n n_{R}(M)}$.
(2) If M is multiplication, then $M-\operatorname{rad}(N)=M-\operatorname{rad}(\{0\})$. Furthermore, if M is faithful, then $M-\operatorname{rad}(N)=\operatorname{Nil}(M)$.
Corollary 2.31. Let M be a finitely generated multiplication R-module and suppose that $M-\operatorname{rad}(\phi(N))$ is a 2-absorbing submodule of M. If N is a ϕ-2-absorbing primary submodule of M, then $M-\operatorname{rad}(N)$ is a 2-absorbing submodule of M.

Proof. Assume that N is a ϕ-2-absorbing primary submodule of M. If N is a 2 -absorbing primary submodule of M, then $M-\operatorname{rad}(N)$ is a 2 -absorbing submodule of M, by [23, Theorem 2.6]. If N is not a 2-absorbing primary submodule of M, then by Theorem 2.29(2) and by our hypothesis, $M-\operatorname{rad}(N)=M-\operatorname{rad}(\phi(N))$ which is a 2 -absorbing submodule.

Theorem 2.32. Let M be a multiplication R-module. Suppose that N is a ϕ-primary submodule of M that is not primary, and K is a submodule of M such that $K \subseteq N$ with $\phi(N) \subseteq \phi(K)$. Then K is a ϕ-2-absorbing primary submodule of M.

Proof. Since N is a ϕ-primary submodule that is not primary we have $M-\operatorname{rad}(N)=M$ $\operatorname{rad}(\phi(N))$ by Corollary $2.21(2)$. Hence $M-\operatorname{rad}(K)=M-\operatorname{rad}(N)=M-\operatorname{rad}(\phi(N))$ since $\phi(N) \subseteq \phi(K)$. Let $a b m \in K \backslash \phi(K)$ for some $a, b \in R$ and $m \in M$ such that $a b \notin\left(K:_{R} M\right)$. Since $K \subseteq N$ and $\phi(N) \subseteq \phi(K)$, we have $a b m \in N \backslash \phi(N)$. Consider two cases.
Case 1. Assume that $b m \notin N$. Since N is ϕ-primary, then $a \in \sqrt{\left(N:_{R} M\right)}$. Hence $a m \in \sqrt{\left(N:_{R} M\right)} M=M-\operatorname{rad}(N)=M-\operatorname{rad}(K)$.
Case 2. Assume that $b m \in N$. Since $a b m \notin \phi(N)$, we have that $b m \in N \backslash \phi(N)$. On the other hand N is a ϕ-primary submodule, so either $m \in N$ or $b \in \sqrt{\left(N:_{R} M\right)}$. By any of these two possibilities we have $b m \in M-\operatorname{rad}(N)=M-\operatorname{rad}(K)$. Consequently, N is a ϕ-2-absorbing primary submodule of M.

Theorem 2.33. Let $\left\{N_{\lambda}\right\}_{\lambda \in \Lambda}$ be a family of submodules of M such that for every $\lambda, \lambda^{\prime} \in \Lambda$, $M-\operatorname{rad}\left(\phi\left(N_{\lambda}\right)\right)=M-\operatorname{rad}\left(\phi\left(N_{\lambda^{\prime}}\right)\right)$ and $\phi\left(N_{\lambda}\right) \subseteq \phi(N)$. If for every $\lambda \in \Lambda, N_{\lambda}$ is a $\phi-2-$ absorbing primary submodule of M that is not 2-absorbing primary, then $N=\bigcap_{\lambda \in \Lambda} N_{\lambda}$ is a ϕ-2-absorbing primary submodule of M.

Proof. Since N_{λ} 's are ϕ-2-absorbing primary but are not 2-absorbing primary, then for every $\lambda \in \Lambda, M-\operatorname{rad}\left(N_{\lambda}\right)=M-\operatorname{rad}\left(\phi\left(N_{\lambda}\right)\right)$, by Theorem $2.29(2)$. On the other hand $\phi\left(N_{\lambda}\right) \subseteq \phi(N)$ for every $\lambda \in \Lambda$, and so $M-\operatorname{rad}\left(\phi\left(N_{\lambda}\right)\right) \subseteq M-\operatorname{rad}(N)$. Hence $M-\operatorname{rad}(N)=$ $M-\operatorname{rad}\left(N_{\lambda}\right)=M-\operatorname{rad}\left(\phi\left(N_{\lambda}\right)\right)$ for every $\lambda \in \Lambda$. Let $a b m \in N \backslash \phi(N)$ for some $a, b \in R, m \in$ M, and let $a b \notin\left(N:_{R} M\right)$. Therefore there is a $\lambda \in \Lambda$ such that $a b \notin\left(N_{\lambda}:_{R} M\right)$. Since N_{λ} is ϕ-2-absorbing primary and $a b m \in N_{\lambda} \backslash \phi\left(N_{\lambda}\right)$, then $a m \in M-\operatorname{rad}\left(N_{\lambda}\right)=M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}\left(N_{\lambda}\right)=M-\operatorname{rad}(N)$. Consequently, N is a $\phi-2$-absorbing primary submodule of M.

Proposition 2.34. Let N be a submodule of M and $\phi(N)$ be a 2-absorbing primary submodule of M. If N is a ϕ-2-absorbing primary submodule of M, then N is a 2-absorbing primary submodule of M.

Proof. Let N be a ϕ-2-absorbing primary submodule of M. Assume that $a b m \in N$ for some elements $a, b \in R$ and $m \in M$. If $a b m \in \phi(N)$, then we conclude that $a m \in M$ $\operatorname{rad}(\phi(N)) \subseteq M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(\phi(N)) \subseteq M-\operatorname{rad}(N)$ or $a b \in\left(\phi(N):_{R} M\right) \subseteq$ $\left(N:_{R} M\right)$ since $\phi(N)$ is 2-absorbing primary, and so we are done. If $\operatorname{abm} \notin \phi(N)$, then clearly the result follows.

Definition 2.35. Let N be a ϕ-2-absorbing primary submodule of M and suppose that $I J K \subseteq N$ for some ideals I, J of R and any submodule K of M. We call N as a free ϕ-triple-zero with respect to $I J K$ if (a, b, k) is not a ϕ-triple-zero of N for every $a \in I, b \in J$ and $k \in K$.

Lemma 2.36. Let N be a ϕ-2-absorbing primary submodule of M and suppose that abK \subseteq N, for some $a, b \in R$ and any submodule K of M. Suppose that (a, b, k) is not a ϕ-triplezero of N for every $k \in K$. If $a b \notin\left(N:_{R} M\right)$, then $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$.
Proof. Suppose that $a b \notin\left(N:_{R} M\right)$. Assume that $a K \nsubseteq M-r a d(N)$ and $b K \nsubseteq M$ $\operatorname{rad}(N)$. Then there are $k_{1}, k_{2} \in K$ such that $a k_{1} \notin M-\operatorname{rad}(N)$ and $b k_{2} \notin M-\operatorname{rad}(N)$. If $a b k_{1} \notin \phi(N)$, then we have $b k_{1} \in M-\operatorname{rad}(N)$ as $a b \notin\left(N:_{R} M\right)$ and N is a ϕ-2-absorbing primary submodule of M. If $a b k_{1} \in \phi(N)$, then since $a b k_{1} \in N, a b \notin\left(N:_{R} M\right), a k_{1} \notin M$ $\operatorname{rad}(N)$ and $\left(a, b, k_{1}\right)$ is not a ϕ-triple-zero of N, we conclude again $b k_{1} \in M-\operatorname{rad}(N)$. By the similar argument, if $a b k_{2} \notin \phi(N)$, then we get $a k_{2} \in M-\operatorname{rad}(N)$ as N is a $\phi-2-$ absorbing primary submodule of M. Also if $a b k_{2} \in \phi(N)$, since $a b k_{2} \in N, a b \notin\left(N:_{R} M\right)$, $b k_{2} \notin M-\operatorname{rad}(N)$ and $\left(a, b, k_{2}\right)$ is not a ϕ-triple-zero of N, we have $a k_{2} \in M-\operatorname{rad}(N)$. From our hypothesis, $\left(a, b, k_{1}+k_{2}\right)$ is not a ϕ-triple-zero of N and $a b\left(k_{1}+k_{2}\right) \in N$ and $a b \notin\left(N:_{R} M\right)$. Hence we have either $a\left(k_{1}+k_{2}\right) \in M-\operatorname{rad}(N)$ or $b\left(k_{1}+k_{2}\right) \in M-$ $\operatorname{rad}(N)$. If $a\left(k_{1}+k_{2}\right)=a k_{1}+a k_{2} \in M-\operatorname{rad}(N)$, then since $a k_{2} \in M-\operatorname{rad}(N)$, we have $a k_{1} \in M-\operatorname{rad}(N)$, a contradiction. If $b\left(k_{1}+k_{2}\right)=b k_{1}+b k_{2} \in M-\operatorname{rad}(N)$, then since $b k_{1} \in M-\operatorname{rad}(N)$, we have $b k_{2} \in M-\operatorname{rad}(N)$, a contradiction again. Thus $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$.

Remark 2.37. Let N be a ϕ-2-absorbing primary submodule of M and suppose that $I J K \subseteq N$ for some ideals I, J of R and any submodule K of M such that N is a free ϕ-triple-zero with respect to $I J K$. Then if $a \in I, b \in J$ and $k \in K$, then $a b \in\left(N:_{R} M\right)$ or $a k \in M-\operatorname{rad}(N)$ or $b k \in M-\operatorname{rad}(N)$.

Theorem 2.38. Let N be a ϕ-2-absorbing primary submodule of M and suppose that $I J K \subseteq N, I J K \nsubseteq \phi(N)$ for some ideals I, J of R, any submodule K of M such that N is a free ϕ-triple-zero with respect to $I J K$. Then $I J \subseteq\left(N:_{R} M\right)$ or $I K \subseteq M-\operatorname{rad}(N)$ or $J K \subseteq M-\operatorname{rad}(N)$.

Proof. Suppose that N is a $\phi-2$-absorbing primary submodule of M and $I J K \subseteq N$, $I J K \nsubseteq \phi(N)$ for some ideals I, J of R and any submodule K of M such that N is a free ϕ-triple-zero with respect to $I J K$. Suppose that $I J \nsubseteq\left(N:_{R} M\right)$. We show that $I K \subseteq M-\operatorname{rad}(N)$ or $J K \subseteq M-\operatorname{rad}(N)$.
On the contrary, assume that $I K \nsubseteq M-\operatorname{rad}(N)$ and $J K \nsubseteq M-\operatorname{rad}(N)$. Then there are $a_{1} \in I$ and $b_{1} \in J$ with $a_{1} K \nsubseteq M-\operatorname{rad}(N)$ and $b_{1} K \nsubseteq M-\operatorname{rad}(N)$. Since $a_{1} b_{1} K \subseteq N$, $a_{1} K \nsubseteq M-\operatorname{rad}(N)$ and $b_{1} K \nsubseteq M-\operatorname{rad}(N)$, we have $a_{1} b_{1} \in\left(N:_{R} M\right)$ by Lemma 2.36. Recall that our assumption is $I J \nsubseteq\left(N:_{R} M\right)$. Hence there are $a \in I, b \in J$ such that $a b \notin\left(N:_{R} M\right)$. Since $a b K \subseteq N$ and $a b \notin\left(N:_{R} M\right)$, we have $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$ by Lemma 2.36. In here there are three cases.
Case 1. Suppose that $a K \subseteq M-\operatorname{rad}(N)$, but $b K \nsubseteq M-\operatorname{rad}(N)$. Since $a_{1} b K \subseteq N$, $b K \nsubseteq M-\operatorname{rad}(N)$ and $a_{1} K \nsubseteq M-\operatorname{rad}(N)$, then $a_{1} b \in\left(N:_{R} M\right)$ by Lemma 2.36. Since $\left(a+a_{1}\right) b K \subseteq N$ and $a K \subseteq M-\operatorname{rad}(N)$, but $a_{1} K \nsubseteq M-\operatorname{rad}(N)$, we get $\left(a+a_{1}\right) K \nsubseteq M$ $\operatorname{rad}(N)$. Since $b K \nsubseteq M-\operatorname{rad}(N)$ and $\left(a+a_{1}\right) K \nsubseteq M-\operatorname{rad}(N)$, we have $\left(a+a_{1}\right) b \in\left(N:_{R} M\right)$ by Lemma 2.36. Since $\left(a+a_{1}\right) b=a b+a_{1} b \in\left(N:_{R} M\right)$ and $a_{1} b \in\left(N:_{R} M\right)$, we conclude
that $a b \in\left(N:_{R} M\right)$, a contradiction.
Case 2. Suppose that $b K \subseteq M-\operatorname{rad}(N)$, but $a K \nsubseteq M-\operatorname{rad}(N)$. Since $a b_{1} K \subseteq N, a K \nsubseteq$ $M-\operatorname{rad}(N)$ and $b_{1} K \not \subset M-\operatorname{rad}(N)$, we deduce that $a b_{1} \in\left(N:_{R} M\right)$. Since $a\left(b+b_{1}\right) K \subseteq N$ and $b K \subseteq M-\operatorname{rad}(N)$, but $b_{1} K \nsubseteq M-\operatorname{rad}(N)$, we have $\left(b+b_{1}\right) K \nsubseteq M-\operatorname{rad}(N)$. Since $a K \nsubseteq M-\operatorname{rad}(N)$ and $\left(b+b_{1}\right) K \nsubseteq M-\operatorname{rad}(N)$, we get $a\left(b+b_{1}\right) \in\left(N:_{R} M\right)$ by Lemma 2.36. Since $a\left(b+b_{1}\right)=a b+a b_{1} \in\left(N:_{R} M\right)$ and $a b_{1} \in\left(N:_{R} M\right)$, we get $a b \in\left(N:_{R} M\right)$, a contradiction.
Case 3. Suppose that $a K \subseteq M-\operatorname{rad}(N)$ and $b K \subseteq M-\operatorname{rad}(N)$. Hence $\left(b+b_{1}\right) K \nsubseteq M-$ $\operatorname{rad}(N)$ as $b K \subseteq M-\operatorname{rad}(N)$ and $b_{1} K \nsubseteq M-\operatorname{rad}(N)$. Since $a_{1}\left(b+b_{1}\right) K \subseteq N$ and neither $a_{1} K \subseteq M-\operatorname{rad}(N)$ nor $\left(b+b_{1}\right) K \subseteq M-\operatorname{rad}(N)$, we obtain that $a_{1}\left(b+b_{1}\right)=a_{1} b+a_{1} b_{1} \in$ $\left(N:_{R} M\right)$ by Lemma 2.36. Since $a_{1} b_{1} \in\left(N:_{R} M\right)$ and $a_{1} b+a_{1} b_{1} \in\left(N:_{R} M\right)$, we have $b a_{1} \in\left(N:_{R} M\right)$. Since $a K \subseteq M-\operatorname{rad}(N)$ and $a_{1} K \nsubseteq M-\operatorname{rad}(N)$, we deduce that $\left(a+a_{1}\right) K \nsubseteq M-\operatorname{rad}(N)$. Since $\left(a+a_{1}\right) b_{1} K \subseteq N, b_{1} K \nsubseteq M-\operatorname{rad}(N),\left(a+a_{1}\right) K \nsubseteq M-$ $\operatorname{rad}(N)$, we get $\left(a+a_{1}\right) b_{1}=a b_{1}+a_{1} b_{1} \in\left(N:_{R} M\right)$ by Lemma 2.36. Since $a_{1} b_{1} \in$ $\left(N:_{R} M\right)$ and $a b_{1}+a_{1} b_{1} \in\left(N:_{R} M\right)$, we conclude that $a b_{1} \in\left(N:_{R} M\right)$. Now, since $\left(a+a_{1}\right)\left(b+b_{1}\right) K \subseteq N$ and neither $\left(a+a_{1}\right) K \subseteq M-\operatorname{rad}(N)$ nor $\left(b+b_{1}\right) K \subseteq M-\operatorname{rad}(N)$, it follows $\left(a+a_{1}\right)\left(b+b_{1}\right)=a b+a b_{1}+b a_{1}+a_{1} b_{1} \in\left(N:_{R} M\right)$ by Lemma 2.36. Since $a b_{1}, b a_{1}, a_{1} b_{1} \in\left(N:_{R} M\right)$, we get $a b \in\left(N:_{R} M\right)$, a contradiction. Thus $I K \subseteq M-\operatorname{rad}(N)$ or $J K \subseteq M-\operatorname{rad}(N)$.
Theorem 2.39. Let N be a submodule of M with $\phi(M-\operatorname{rad}(N)) \subseteq \phi(N)$. If $M-\operatorname{rad}(N)$ is a ϕ-prime submodule of M, then N is a ϕ-2-absorbing primary submodule of M.
Proof. Suppose that $M-\operatorname{rad}(N)$ is a ϕ-prime submodule of M. Let $a, b \in R$ and $m \in M$ be such that $a b m \in N \backslash \phi(N)$, am $\notin M-\operatorname{rad}(N)$. Since $M-\operatorname{rad}(N)$ is ϕ-prime submodule and $a b m \in M-\operatorname{rad}(N) \backslash \phi(M-\operatorname{rad}(N))$, then $b \in\left(M-\operatorname{rad}(N):_{R} M\right)$. So $b m \in M-\operatorname{rad}(N)$. Consequently, N is a ϕ-2-absorbing primary submodule of M.

In [24], Quartararo et al. said that a commutative ring R is a u-ring provided R has the property that an ideal contained in a finite union of ideals must be contained in one of those ideals; and a $u m$-ring is a ring R with the property that an R-module which is equal to a finite union of submodules must be equal to one of them.
Lemma 2.40. A ring R is a um-ring if and only if $M \subseteq \bigcup_{i=1}^{n} M_{i}$, where M_{i} 's are some R-modules, implies that $M \subseteq M_{i}$ for some $1 \leq i \leq n$.
Proof. (\Leftarrow) It is clear.
(\Rightarrow) Suppose that R is a um-ring. Let $M \subseteq \bigcup_{i=1}^{n} M_{i}$ for some R-modules $M_{1}, M_{2}, \ldots, M_{n}$. Then $M=\bigcup_{i=1}^{n}\left(M_{i} \cap M\right)$ and so $M=M_{i} \cap M$ for some $1 \leq i \leq n$. Therefore $M \subseteq M_{i}$ for some $1 \leq i \stackrel{i=1}{\leq}$.
Theorem 2.41. Let R be a um-ring, M be an R-module and N be a proper submodule of M. Then the following conditions are equivalent:
(1) N is a ϕ-2-absorbing submodule of M.
(2) If $a b \notin\left(N:_{R} M\right)$ for some $a, b \in R$, then

$$
\left(N:_{M} a b\right)=\left(N:_{M} a\right) \cup\left(N:_{M} b\right) \cup\left(\phi(N):_{M} a b\right) .
$$

(3) If $a b \notin\left(N:_{R} M\right)$ for some $a, b \in R$, then $\left(N:_{M} a b\right)=\left(N:_{M} a\right)$ or $\left(N:_{M} a b\right)=$ $\left(N:_{M} b\right)$ or $\left(N:_{M} a b\right)=\left(\phi(N):_{M} a b\right)$.
(4) If $a b K \subseteq N$ and $a b K \nsubseteq \phi(N)$ for some $a, b \in R$ and any submodule K of M, then either $a K \subseteq N$ or $b K \subseteq N$ or $a b \in\left(N:_{R} M\right)$.
(5) If $a K \nsubseteq N$ for some $a \in R$ and some submodule K of M, then $\left(N:_{R} a K\right)=\left(N:_{R}\right.$ $K)$ or $\left(N:_{R} a K\right)=\left(N:_{R} a M\right)$ or $\left(N:_{R} a K\right)=\left(\phi(N):_{R} a K\right)$.
(6) If $a I K \subseteq N$ and $a I K \nsubseteq \phi(N)$ for some $a \in R$, any ideal I of R and any submodule K of M, then either $a K \subseteq N$ or $I K \subseteq N$ or $a I \subseteq\left(N:_{R} M\right)$.
(7) If $I K \nsubseteq N$ for any ideal I of R and any submodule K of M, then $\left(N:_{R} I K\right)=$ $\left(N:_{R} K\right)$ or $\left(N:_{R} I K\right)=\left(N:_{R} I M\right)$ or $\left(N:_{R} I K\right)=\left(\phi(N):_{R} I K\right)$.
(8) If $I J K \subseteq N$ and $I J K \nsubseteq \phi(N)$ for some ideals I, J of R and any submodule K of M, then either $I K \subseteq N$ or $J K \subseteq N$ or $I J \subseteq\left(N:_{R} M\right)$.

Proof. (1) \Rightarrow (2) Suppose that $a, b \in R$ such that $a b \notin\left(N:_{R} M\right)$. Take $m \in\left(N:_{M} a b\right)$. If $a b m \in \phi(N)$, then $m \in\left(\phi(N):_{M} a b\right)$. If $a b m \notin \phi(N)$, then $a m \in N$ or $b m \in N$ since N is a ϕ-2-absorbing submodule of M. Thus we have $m \in\left(N:_{M} a\right)$ or $m \in\left(N:_{M} b\right)$. Consequently, $\left(N:_{M} a b\right) \subseteq\left(N:_{M} a\right) \cup\left(N:_{M} b\right) \cup\left(\phi(N):_{M} a b\right)$. On the other hand $\left(N:_{R} a\right) \subseteq\left(N:_{M} a b\right),\left(N:_{M} b\right) \subseteq\left(N:_{M} a b\right)$ and $\left(\phi(N):_{M} a b\right) \subseteq\left(N:_{M} a b\right)$ are always hold, so we conclude that $\left(N:_{M} a b\right)=\left(N:_{M} a\right) \cup\left(N:_{M} b\right) \cup\left(\phi(N):_{M} a b\right)$.
(2) \Rightarrow (3) Assume that $a b \notin\left(N:_{R} M\right)$ for some $a, b \in R$. By part (2), we have $\left(N:_{M} a b\right)=\left(N:_{M} a\right) \cup\left(N:_{M} b\right) \cup\left(\phi(N):_{M} a b\right)$. Since R is a um-ring, then either $\left(N:_{M} a b\right)=\left(N:_{M} a\right)$ or $\left(N:_{M} a b\right)=\left(N:_{M} b\right)$ or $\left(N:_{M} a b\right)=\left(\phi(N):_{M} a b\right)$.
$(3) \Rightarrow$ (4) Suppose that $a b K \subseteq N$ and $a b K \nsubseteq \phi(N)$ for some $a, b \in R$ and any submodule K of M. Then $K \subseteq\left(N:_{M} a b\right)$. Assume that $a b \notin\left(N:_{R} M\right)$. Then by part (3), we have $\left(N:_{M} a b\right)=\left(N:_{M} a\right)$ or $\left(N:_{M} a b\right)=\left(N:_{M} b\right)$ or $\left(N:_{M} a b\right)=\left(\phi(N):_{M} a b\right)$. Hence $K \subseteq\left(N:_{M} a\right)$ or $K \subseteq\left(N:_{M} b\right)$ or $K \subseteq\left(\phi(N):_{M} a b\right)$. In the first case, we have $a K \subseteq N$, and in the second case, we have $b K \subseteq N$. Notice that the third case can not hold as $a b K \nsubseteq \phi(N)$.
(4) \Rightarrow (5) Let $a K \nsubseteq N$ for some $a \in R$ and some submodule K of M. Assume that $x \in\left(N:_{R} a K\right)$. Then $a x K \subseteq N$. If $a x K \subseteq \phi(N)$, then $x \in\left(\phi(N):_{R} a K\right)$. We may assume that $a x K \nsubseteq \phi(N)$. Then by part (4), we conclude that either $a K \subseteq N$ or $x K \subseteq N$ or $a x \in\left(N:_{R} M\right)$. By assumption, the first case can not happen. Therefore $x \in\left(N:_{R} K\right)$ or $x \in\left(N:_{R} a M\right)$. So $\left(N:_{R} a K\right)=\left(N:_{R} K\right) \cup\left(N:_{R} a M\right) \cup\left(\phi(N):_{R} a K\right)$. Now, since R is a um-ring, then $\left(N:_{R} a K\right)=\left(N:_{R} K\right)$ or $\left(N:_{R} a K\right)=\left(N:_{R} a M\right)$ or $\left(N:_{R} a K\right)=\left(\phi(N):_{R} a K\right)$.
(5) \Rightarrow (6) Let $a I K \subseteq N$ and $a I K \nsubseteq \phi(N)$ for some $a \in R$, any ideal I of R and any submodule K of M. Then $I \subseteq\left(N:_{R} a K\right)$. If $a K \subseteq N$, then we are done. Let $a K \nsubseteq N$. By part (5), $\left(N:_{R} a K\right)=\left(N:_{R} K\right)$ or $\left(N:_{R} a K\right)=\left(N:_{R} a M\right)$ or $\left(N:_{R} a K\right)=\left(\phi(N):_{R} a K\right)$. Since $a I K \subseteq N \backslash \phi(N)$, then $\left(N:_{R} a K\right) \neq\left(\phi(N):_{R} a K\right)$. If $\left(N:_{R} a K\right)=\left(N:_{R} K\right)$, then $I K \subseteq N$. If $\left(N:_{R} a K\right)=\left(N:_{R} a M\right)$, then $a I \subseteq\left(N:_{R} M\right)$.
(6) $\Rightarrow(7),(7) \Rightarrow(8)$ have similar proof to that of the previous implications.
$(8) \Rightarrow(1)$ is trivial.
Theorem 2.42. Let R be a um-ring, N be a proper submodule of an R-module M. Then the following conditions are equivalent:
(1) N is a ϕ-2-absorbing primary submodule of M.
(2) If $a b \notin\left(N:_{R} M\right)$ for some $a, b \in R$, then

$$
\left(N:_{M} a b\right) \subseteq\left(M-\operatorname{rad}(N):_{M} a\right) \cup\left(M-\operatorname{rad}(N):_{M} b\right) \cup\left(\phi(N):_{M} a b\right) .
$$

(3) If $a b \notin\left(N:_{R} M\right)$ for some $a, b \in R$, then $\left(N:_{M} a b\right) \subseteq\left(M-\operatorname{rad}(N):_{M} a\right)$ or $\left(N:_{M} a b\right) \subseteq\left(M-\operatorname{rad}(N):_{M} b\right)$ or $\left(N:_{M} a b\right)=\left(\phi(N):_{M} a b\right)$.
(4) If $a b K \subseteq N$ and $a b K \nsubseteq \phi(N)$ for some $a, b \in R$ and any submodule K of M, then either $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$.
(5) If $a K \nsubseteq M-\operatorname{rad}(N)$ for some $a \in R$ and any submodule K of M, then $\left(N:_{R} a K\right) \subseteq$ $\left(M-r a d(N):_{R} K\right)$ or $\left(N:_{R} a K\right)=\left(N:_{R} a M\right)$ or $\left(N:_{R} a K\right)=\left(\phi(N):_{R} a K\right)$.
(6) If aIK $\subseteq N$ and aIK $\nsubseteq \phi(N)$ for some $a \in R$, any ideal I of R and any submodule K of M, then either $a K \subseteq M-\operatorname{rad}(N)$ or $I K \subseteq M-\operatorname{rad}(N)$ or $a I \subseteq\left(N:_{R} M\right)$.
(7) If IK $\nsubseteq M-\operatorname{rad}(N)$ for any ideal I of R and any submodule K of M, then ($N:_{R}$ $I K) \subseteq\left(M-r a d(N):_{R} K\right)$ or $\left(N:_{R} I K\right)=\left(N:_{R} I M\right)$ or $\left(N:_{R} I K\right)=\left(\phi(N):_{R}\right.$ IK).
(8) If $I J K \subseteq N$ and $I J K \nsubseteq \phi(N)$ for some ideals I, J of R and any submodule K of M, then either $I K \subseteq M-\operatorname{rad}(N)$ or $J K \subseteq M-\operatorname{rad}(N)$ or $I J \subseteq\left(N:_{R} M\right)$.

Proof. (1) \Rightarrow (2) Suppose that $a, b \in R$ such that $a b \notin\left(N:_{R} M\right)$ and take $m \in\left(N:_{M} a b\right)$. Then $a b m \in N$. If $a b m \notin \phi(N)$, then $a m \in M-\operatorname{rad}(N)$ or $b m \in M-\operatorname{rad}(N)$ as N is a ϕ-2-absorbing primary submodule of M. Therefore $m \in\left(M-\operatorname{rad}(N):_{M} a\right)$ or $m \in(M-$ $\left.\operatorname{rad}(N):_{M} b\right)$. If $a b m \in \phi(N)$, then $m \in\left(\phi(N):_{M} a b\right)$. Thus $\left(N:_{M} a b\right) \subseteq\left(M-\operatorname{rad}(N):_{M}\right.$ $a) \cup\left(M-\operatorname{rad}(N):_{M} b\right) \cup\left(\phi(N):_{M} a b\right)$.
$(2) \Rightarrow(3)$ Assume that $a b \notin\left(N:_{R} M\right)$ for some $a, b \in R$. Hence we have $\left(N:_{M} a b\right) \subseteq$ $\left(M-\operatorname{rad}(N):_{M} a\right) \cup\left(M-\operatorname{rad}(N):_{M} b\right) \cup\left(\phi(N):_{M} a b\right)$ by part (2). Since R is a um-ring, and $\left(\phi(N):_{M} a b\right) \subseteq\left(N:_{M} a b\right)$ is always satisfied, we conclude that either $\left(N:_{M} a b\right) \subseteq(M-$ $\left.\operatorname{rad}(N):_{M} a\right)$ or $\left(N:_{M} a b\right) \subseteq\left(M-\operatorname{rad}(N):_{M} b\right)$ or $\left(N:_{M} a b\right)=\left(\phi(N):_{M} a b\right)$.
(3) \Rightarrow (4) Assume that $a b K \subseteq N$ and $a b K \nsubseteq \phi(N)$ for some $a, b \in R$ and aany submodule K of M. Then $K \subseteq\left(N:_{M} a b\right)$. Suppose that $a b \notin\left(N:_{R} M\right)$. Then by (3) we have $\left(N:_{M} a b\right) \subseteq\left(M-\operatorname{rad}(N):_{M} a\right)$ or $\left(N:_{M} a b\right) \subseteq\left(M-\operatorname{rad}(N):_{M} b\right)$ or $\left(N:_{M} a b\right)=\left(\phi(N):_{M} a b\right)$. Thus $K \subseteq\left(M-\operatorname{rad}(N):_{M} a\right)$ or $K \subseteq\left(M-\operatorname{rad}(N):_{M} b\right)$ or $K \subseteq\left(\phi(N):_{M} a b\right)$. The first case implies that $a K \subseteq M-\operatorname{rad}(N)$, and in the second case, we have $b K \subseteq M-\operatorname{rad}(N)$. The third case can not hold, because $a b K \nsubseteq \phi(N)$.
$(4) \Rightarrow(5)$ Suppose that $a K \nsubseteq M-\operatorname{rad}(N)$ for some $a \in R$ and any submodule K of M. Assume that $b \in\left(N:_{R} a K\right)$. Then $a b K \subseteq N$. If $a b K \subseteq \phi(N)$, then $b \in\left(\phi(N):_{R} a K\right)$. We may assume that $a b K \nsubseteq \phi(N)$. Then by (4), either $a K \subseteq M-\operatorname{rad}(N)$ or $b K \subseteq M$ $\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$. By assumption, the first case can not happen. Therefore $b \in\left(M-\operatorname{rad}(N):_{R} K\right)$ or $b \in\left(N:_{R} a M\right) . S o\left(N:_{R} a K\right) \subseteq\left(M-\operatorname{rad}(N):_{R} K\right) \cup\left(N:_{R}\right.$ $a M) \cup\left(\phi(N):_{R} a K\right)$. Now, since R is a um-ring, then we conclude that $\left(N:_{R} a K\right) \subseteq(M-$ $\left.\operatorname{rad}(N):_{R} K\right)$ or $\left(N:_{R} a K\right)=\left(N:_{R} a M\right)$ or $\left(N:_{R} a K\right)=\left(\phi(N):_{R} a K\right)$.
$(5) \Rightarrow(6)$ Let $a I K \subseteq N$ and $a I K \nsubseteq \phi(N)$ for some $a \in R$, any ideal I of R and any submodule K of M. Then $I \subseteq\left(N:_{R} a K\right)$. If $a K \subseteq M-\operatorname{rad}(N)$, then we are done. Let $a K \nsubseteq M-\operatorname{rad}(N)$. By part (5), $\left(N:_{R} a K\right) \subseteq\left(M-\operatorname{rad}(N):_{R} K\right)$ or $\left(N:_{R}\right.$ $a K)=\left(N:_{R} a M\right)$ or $\left(N:_{R} a K\right)=\left(\phi(N):_{R} a K\right)$. Since $a I K \subseteq N \backslash \phi(N)$, then $\left(N:_{R}\right.$ $a K) \neq\left(\phi(N):_{R} a K\right)$. If $\left(N:_{R} a K\right) \subseteq\left(M-\operatorname{rad}(N):_{R} K\right)$, then $I K \subseteq M-\operatorname{rad}(N)$. If $\left(N:_{R} a K\right)=\left(N:_{R} a M\right)$, then $a I \subseteq\left(N:_{R} M\right)$.

The proofs of $(6) \Rightarrow(7),(7) \Rightarrow(8)$ are similar to the previous implications.
$(8) \Rightarrow(1)$ is obvious.
Theorem 2.43. Let N be a proper submodule of an R-module M. If N is a ϕ-2-absorbing primary submodule of M, then the following statements hold:
(1) If $a b m \notin N$ for $a, b \in R, m \in M$, then $\left(N:_{R} a b m\right)=\left(M-\operatorname{rad}(N):_{R} a m\right) \cup$ $\left(M-\operatorname{rad}(N):_{R} b m\right) \cup\left(\phi(N):_{R} a b m\right)$.
(2) Let R be a u-ring. If abm $\notin N$ for $a, b \in R, m \in M$, then $\left(N:_{R} a b m\right) \subseteq(M-$ $\left.\operatorname{rad}(N):_{R} \operatorname{am}\right)$ or $\left(N:_{R} \operatorname{abm}\right) \subseteq\left(M-\operatorname{rad}(N):_{R} b m\right)$ or $\left(N:_{R} a b m\right)=\left(\phi(N):_{R}\right.$ $a b m)$.

Proof. (1) Suppose that $a b m \notin N$ for some $a, b \in R, m \in M$. Take $r \in\left(N:_{R} a b m\right)$. Then $r a b m \in N$. If $r a b m \in \phi(N)$, then $r \in\left(\phi(N):_{R} a b m\right)$. So assume that $r a b m \notin \phi(N)$. Hence we conclude either $r a m \in M-\operatorname{rad}(N)$ or $r b m \in M-\operatorname{rad}(N)$ or $a b \in\left(N:_{R} M\right)$ as N is a ϕ-2-absorbing primary submodule of M. But $a b \notin\left(N:_{R} M\right)$ since $a b m \notin N$. So $r \in(M-$ $\left.\operatorname{rad}(N):_{R} a m\right)$ or $r \in\left(M-\operatorname{rad}(N):_{R} b m\right)$. Thus $\left(N:_{R} a b m\right)=\left(M-\operatorname{rad}(N):_{R} a m\right) \cup$ $\left(M-\operatorname{rad}(N):_{R} b m\right) \cup\left(\phi(N):_{R} a b m\right)$.
(2) Suppose that R is a u-ring. Then the result is obtained from part (1).

References

[1] M.M. Ali, Idempotent and nilpotent submodules of multiplication modules, Comm. Algebra 36, 4620-4642, 2008.
[2] R. Ameri, On the prime submodules of multiplication modules, Int. J. Math. Math. Sci. 27, 1715-1724, 2003.
[3] D.F. Anderson and A. Badawi, On n-absorbing ideals of commutative rings, Comm. Algebra 39, 1646-1672, 2011.
[4] D.D. Anderson and M. Batanieh, Generalizations of prime ideals, Comm. Algebra 36, 686-696, 2008.
[5] D.D. Anderson and E. Smith, Weakly prime ideals, Houston J. Math. 29, 831-840, 2003.
[6] H. Ansari-Toroghy and F. Farshadifar, Fully idempotent and coidempotent submodules, Bull. Iranian Math. Soc. 38 (4), 987-1005, 2012.
[7] S.E. Atani, F. Callialp and U. Tekir, A Short note on the primary submodules of multiplication modules, Int. J. Algebra 8 (1), 381-384, 2007.
[8] S.E. Atani and F. Farzalipour, On weakly prime submodules, Tamk. J. Math. 38 (3), 247-252, 2007.
[9] A. Badawi, On 2-absorbing ideals of commutative rings, Bull. Austral. Math. Soc. 75, 417-429, 2007.
[10] A. Badawi and A.Y. Darani, On weakly 2-absorbing ideals of commutative rings, Houston J. Math. 39, 441-452, 2013.
[11] A. Badawi, U. Tekir, E.A. Ugurlu, G. Ulucak and E. Yetkin Celikel, Generalizations of 2-absorbing primary ideals of commutative rings, Turk. J. Math. 40, 703-717, 2016.
[12] A. Badawi, U. Tekir and E. Yetkin, On 2-absorbing primary ideals in commutative rings, Bull. Korean Math. Soc. 51 (4), 1163-1173, 2014
[13] A. Barnard, Multiplication modules, J. Algebra, 71, 174-178, 1981.
[14] M. Batanieh and K. Dofa, Generalizations of primary ideals and submodules, Int. J. Contemp. Math. Sciences 6, 811-824, 2011.
[15] M. Behboodi and H. Koohi, Weakly prime modules, Vietnam J. Math. 32 (2), 185-195, 2004.
[16] A.Y. Darani, Generalizations of primary ideals in commutative rings, Novi Sad J. Math. 42, 27-35, 2012.
[17] A.Y. Darani and F. Soheilnia, On 2-absorbing and weakly 2-absorbing submodules, Thai J. Math. 9, 577-584, 2011.
[18] A.Y. Darani and F. Soheilnia, On n-absorbing submodules, Math. Comm. 17, 547-557, 2012.
[19] M. Ebrahimpour and R. Nekooei, On generalizations of prime ideals, Comm. Algebra 40 1268-1279, 2012.
[20] Z.A. El-Bast and P.F. Smith, Multiplication modules, Comm. Algebra 16, 755-779, 1988.
[21] A. Khaksari and A. Jafari, ϕ-prime submodules, Int. J. Algebra 5 (29), 1443-1449, 2011.
[22] R.L. McCasland and M.E. Moore, Radicals of submodules, Comm. Algebra 19, 13271341, 1991.
[23] H. Mostafanasab, E. Yetkin, U. Tekir and A.Y. Darani, On 2-absorbing primary submodules of modules over commutative rings, An. Şt. Univ. "Ovidius" Constanta Ser. Mat. 24 (1), 335-351, 2016.
[24] P. Quartararo and H.S. Butts, Finite unions of ideals and modules, Proc. Amer. Math. Soc. 52, 91-96,1975.
[25] P.F. Smith, Some remarks on multiplication modules, Arch. Math. 50, 223-235, 1988.
[26] N. Zamani, ϕ-prime submodules, Glasgow Math. J., 52 (2), 253-259, 2010.

[^0]: *Corresponding Author.
 Email addresses: h.mostafanasab@uma.ac.ir (H. Mostafanasab), utekir@marmara.edu.tr (Ü. Tekir), yetkinece@gmail.com (E. Yetkin Çelikel), emel.aslankarayigit@marmara.edu.tr (E.A. Uğurlu), gulsenulucak58@gmail.com (G. Ulucak), yousifean@uma.ac.ir (A. Yousifean Darani)
 Received: 15.08.2017; Accepted: 05.02.2018

