
Hacettepe Journal of
Mathematics & Statistics

Hacet. J. Math. Stat.
Volume 48 (4) (2019), 1057 – 1078

DOI : 10.15672/HJMS.2018.559

Research Article

Numerical simulation of unsteady mixed
convection of nanofluid in a lid-driven square

cavity
Nagehan Alsoy-Akgün

Department of Mathematics, Yüzüncü Yıl University, Van, Turkey

Abstract
The behavior of unsteady mixed convection flow of Cu−water based nanofluids is investi-
gated numerically inside a square lid-driven partially heated flow below. Dual Reciprocity
Boundary Element Method is used to solve stream function-vorticity form of the governing
equations of the problem. The need of time integration scheme is eliminated by trans-
forming the vorticity transport and energy equations to modified Helmholtz equations.
This procedure also diminishes the stability problems. The numerical results are given for
several values of Reynolds number (Re), Rayleigh number (Ra), heat source location (D),
heat source length (B) and solid volume fraction (ϕ). The steady-state results are in good
agreement with the results available in the literature.
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1. Introduction
Nanofluids are suspension of a base fluid (e.g. water, ethylene glycol and mineral oil etc.)

with nano-sized particles (dia< 100nm) (e.g. copper (Cu), aluminium oxide (Al2O3), sil-
ver (Ag), titanium dioxide (TiO2)). Adding nanoparticles into conventional heat transfer
fluids with low thermal conductivity, their heat transfer performance and thermophysical
properties can be enhanced. Due to the ability of high thermal conductivity, they are
preferred in many engineering area such as cooling of electronics, cooling of diesel elec-
tric generators, cooling and heating in buildings etc. to increase the performance of the
devices. A comprehensive literature review about nanofluid has been done in [12], [22],
[27]-[30]. The important published articles on the enhancement of the forced convection
heat transfer with nanofluids have been summarized in [12], applications and challenges
of nanofluids have been compiled and reviewed in [22], recent research on theoretical and
numerical investigations of various thermal properties and applications of nanofluids have
been summarized in [27], fluid flow and heat transfer characteristics of nanofluids in forced
and free convection flows and potential applications of nanofluids have been covered in
[28], a critical review of research on heat transfer applications of nanofluids with the aim
of identifying the limiting factors has been presented in [29] and a detailed literature
review and an assessment of results of the research and development work forming the
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current status of nanofluid technology for heat transfer applications have been presented
and discussed in [30].

There are many studies about the mixed convection problem in a lid-driven cavity in the
literature. In these studies, the effect of the parameters such as Reynolds number, Rayleigh
number, and nanoparticle volume fraction on the flow are investigated using different
geometry and changing the shape, length and location of the heater. Chamkha and Abu-
Nada [7] numerically studied steady mixed convection flow in single and double-lid square
cavities filled with a water-Al2O3 nanofluid using a second-order accurate finite-volume
method. Another two numerical studies for steady mixed convection flow is investigated
in lid-driven triangular enclosure filled with a water-Al2O3 by Ghasemi and Aminossadati
in [9] using the power law profile approximation and SIMPLE algorithm and in lid-driven
rectangular enclosure filled with a water-Al2O3 by Mahmoodi in [14] using the finite
volume approach and SIMPLER algorithm. On the other hand, steady mixed convection
flow in lid-driven rectangular and square cavities filled with a Cu-water nanofluid are
studied by Muthtamilselvan et al. [16], Rahman et al. [20] and Talebi et al. [25] using the
finite volume technique with SIMPLE algorithm, finite element method based on Galerkin-
weighted residuals and finite volume method, respectively. A finite difference method are
used in the work of Sheremet and Pop [24] for the solution of steady mixed convection
in side a two sided lid-driven cavity filled with water based nanofluid. A numerical study
is given for nanofluid with several nanoparticles such as Cu, CuO, Al2O3 in a lid-driven
square cavity by Nemati et al. in [18] using the Lattice Boltzmann method.

The mixed convection in a partially heated square cavity filled with nanofluid is nu-
merically analyzed in many works. Mansour et al. [15] and Salari et al. [23] are used
finite difference method and finite volume computational procedure with SIMPLE algo-
rithm, respectively, to investigate the effect of heat source by changing its location, size
and shape using various nanoparticles such as Cu, Ag, Al2O3 and TiO2. Also, Tivari and
Das [26] presented an unsteady problem in two sided lid driven square cavity using finite
volume approach with SIMPLE algorithm. Lid-driven mixed convection with water-Al2O3
nanofluid inside a square enclosure with a hot rectangular obstacle at bottom is numer-
ically studied by Esfe et al. in [8] using finite volume method. Another computational
study for heat source with different geometry is done by Kalteh et al. in [13] using finite
difference method. In this study, a triangular heat source is placed in the middle of the
square cavity and Al2O3, T iO3, Ag and CuO are used as nanoparticles.

Many studies about the effects of enclosure inclination angle on the heat transfer char-
acteristics for mixed convection in a lid-driven inclined square enclosure filled with a
nanofluid is presented in the literature. A numerical study about steady mixed convection
flow of Al2O3-water in a lid-driven inclined square enclosure using a second-order accurate
finite-volume method is given by Abu-Nada and Chamkha in [1]. Rahman et al. [21] stud-
ied the behavior of Cu-water nanofluids in an inclined lid-driven triangular enclosure and
Galerkin finite element method is used for numerical computations. Also, the behavior
of water-Al2O3 in a double lid-driven square cavity with various inclination angles and
discrete heat sources is investigated by Arani et al. in [4] and by Hussain et al. in [11]. In
the discretization of unsteady governing equations finite element method in space and the
Crank-Nicolson in time are used while in the discretization of steady governing equations
finite volume computational procedure and the SIMPLE algorithm are used.

The effect of entropy generation due to heat transfer and to viscous effects investigated
numerically for mixed convection flow in a square cavity with a moving lid filled with Cu-
water nanofluid using the Lattice Boltzmann method by Bouchmel et al. in [5]. Another
numerical study of entropy generation is done for mixed convection and heat transfer of
a nanofluid inside a skew enclosure filled with Cu-water nanofluid using the finite volume
based SIMPLEC algorithm by Nayak et al. in [17].
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As in mentioned above studies, mixed convection flow of nanofluids has been studied in
different geometries and using several numerical methods which are the domain discretiza-
tion methods. Discretization of the whole domain of the problem causes very large system
of algebraic equations and needs extra computational effort. Differently, dual reciprocity
boundary element method (DRBEM) needs only the discretization of the boundary of the
domain which is the main advantages of the method. DRBEM is a very suitable method
for the solution of differential equations which contain the Laplace term. The main idea
of the method is to treat all the terms except the Laplace term as a inhomogeneity and to
approximate these inhomogeneities using the radial basis functions. Gümgüm and Tezer-
Sezgin used DRBEM for the solution of the mixed convection of nanofluids in [10]. In this
study, implicit Euler scheme was used for the approximation of the time derivatives and
they discretized the boundary using linear boundary elements which is more complicated
than the constant boundary elements.

In the present work, the influence of buoyancy force, heat source length and location, and
nanoparticles on the fluid behavior is studied numerically. The stream function-vorticity-
temperature (ψ-w-T ) form of the governing equations are solved using DRBEM. First,
before DRBEM is implemented, the vorticity transport and temperature equations are
transformed to the inhomogeneous modified Helmholtz equations. These transformations
are done by approximating the vorticity and temperature variables, which are located in
the Laplace terms, with relaxation parameters and by approximating the time derivatives
using forward difference approximations. Then, DRBEM is applied to the governing equa-
tions using the fundamental solution of Laplace equation for stream function equation, and
using the fundamental solution of modified Helmholtz equations for vorticity transform
and temperature equations. By using this way, more information is used from the original
governing equations. Also, approximating the time derivatives at the beginning of the so-
lution procedure one can eliminate the need of extra time integration scheme in DRBEM
and stability analysis. Selecting appropriate relaxation parameters allows us to use large
time steps, in this way a small number of iteration is enough to obtain good results. The
numerical results are given for all physical parameters using the tables and graphs and
comparing with the studies available in the literature.
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NOMENCLATURE
B heat source length
D heat source location
f, f̃ radial basis functions for Poisson and modified Helmholtz equations
F, F̃ coordinate matrices for Poisson and modified Helmholtz equations
g gravitational acceleration
H,G BEM matrices for Poisson equation
H

′
, G

′
,H

′′
, G

′′ BEM matrices for modified Helmholtz equations
k thermal conductivity
L length of the cavity
NB , NI the number of boundary elements and internal nodes
p pressure
Pr Prandtl number
r distance between source and field points
Ra Rayleigh number
Re Reynolds number
q

′′ heat generation per area
T temperature
Tc cold temperature
u, v components of fluid velocity
u∗, q∗ fundamental solution and its normal derivative
û, q̂ particular solution and its normal derivative
w vorticity

Greek symbols
α1, α2, α3 unknown coefficients
α thermal diffusivity
β thermal expansion coefficient
Γ boundary of the domain
∆T reference temperature difference
∆t time step
θw, θT relaxation parameters
λw, λT wave numbers
ν kinematic viscosity
ρ density
(ρβ) thermal expansion coefficient of nanofluid
(ρCp) heat capacitance of nanofluid
ϕ solid volume fraction
Ω two-dimensional domain

Superscripts
′ dimensional parameters
(m) time level

Subscripts
s solid
f fluid
nf nanofluid
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2. Governing equations

Figure 1. Domain of the problem.

The geometrical representation of the present problem defined in a square cavity with
a heat source which is located on a part of the bottom wall is shown Figure (1). The heat
source length and location are changed taking different values of B and D, respectively.
The length of the heat source takes the shortest value at B = 0.2 whereas it takes the
longest value at B = 0.8. Values of D < 0.5 indicate that the heat source is close to the
left wall while D > 0.5 indicate that the heat source is close to the right wall. The top,
left and right walls are maintained at constant cold temperatures (Tc). The bottom wall
is kept as adiabatic both on the heat source and other parts of the boundary. The no-slip
boundary conditions are imposed on all segments of the boundary with the exception of
the upper wall, which is assumed to move from left to right with constant velocity U0 = 1.
Two-dimensional square cavity is filled with Cu−water nanofluid and the solid spherical
nanoparticles are in the thermal equilibrium. The thermo-physical properties of the base
fluid (water) and nanoparticles (Cu) and nanofluid are given in [14]. The non-dimensional
governing equations for the unsteady, laminar natural convection flow of Newtonian and
incompressible nanofluid can be written velocity (u, v), pressure (p) and temperature (T )
form as [14]

∂u

∂x
+ ∂v

∂y
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= −∂p

∂x
+ 1
Re

ρf

ρnf

1
(1 − ϕ)2.5

[
∂2u

∂x2 + ∂2u

∂y2

]
, (2.2)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
= −∂p

∂y
+ 1
Re

ρf

ρnf

1
(1 − ϕ)2.5

[
∂2v

∂x2 + ∂2v

∂y2

]
+

(ρβ)nf

ρnfβf

RaPr

Re2 T, (2.3)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αnf

αf

1
RePr

[
∂2T

∂x2 + ∂2T

∂y2

]
(2.4)

with the non-dimensional parameters
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x = x
′

L
, y = y

′

L
, u = u

′

U0
, v = v

′

U0
, T = T

′ − Tc

∆T
, p = p

′

ρnfU0
2 ,

∆T = q
′′
L

kf
, Ra = gβfL

3∆T
νfαf

, Re = ρfU0L

µf
, P r = νf

αf

(2.5)

where L, g, ∆T, q′′ and ν are the length of the cavity, gravitational acceleration, reference
temperature difference, heat generation per area and kinematic viscosity, respectively. The
parameters with primes represent the dimensional parameters. Also, Re is the Reynolds
number, Ra is the Rayleigh number and Pr is the Prandtl number. The Reynolds number
is the ratio of inertia forces to viscous forces which is used to determine whether the
characteristic behavior of fluid is laminar (Re < 2000) or turbulent (Re > 4000). In the
fluids two different heat transfer mechanism can occur which are called convection and
conduction. Rayleigh number is the property of a fluid that determines what kind of heat
transfer occur throughout the fluid. Prandtl number is a fluid property which is the ratio
between the fluid viscosity and thermal diffusivity and it does not contain any length and
velocity scales. So, each fluid has different Prandtl number (Pr << 1 for liquid metals,
Pr < 1 gases, Pr > 1 for light liquids, very large values for oils). The Prandtl number of
water at 19.5◦C is 6.2 and this value is used in all analysis through in this study.

The properties of the base fluid and the solid particles, volume fraction of the solid
particles and particles shape affect the thermo physical properties of the nanofluids. In
equations (2.1)-(2.5), the parameters ρnf , (ρβ)nf and αnf denote the effective density,
thermal expansion coefficient of nanofluid and thermal diffusivity of nanofluid, respectively,
and they can be determined by [14],

ρnf = (1 − ϕ)ρf + ϕρs, (ρβ)nf = (1 − ϕ)(ρβ)f + ϕ(ρβ)s,

knf

kf
= ks + 2kf − 2ϕ(kf − ks)

ks + 2kf + ϕ(kf − ks)
, (ρCp)nf = (1 − ϕ)(ρCp)f + ϕ(ρCp)s,

αnf = knf

(ρCp)nf

(2.6)

where, ρ is the density, ϕ is the solid volume fraction with the definition

ϕ = volume of the particle
total volume of the nanofluid

,

β is the thermal expansion coefficient, (ρCp)nf is the heat capacitance of nanofluid, k is the
thermal conductivity. The ratio for thermal conductivity is called the Maxwell-Garnett’s
model for spherical nanoparticles. The notations ‘s’, ‘f ’ and ‘nf ’ represent the value of
parameters for solid, fluid and nanofluid, respectively.

Using the definitions of velocity components (u and v) and vorticity (w) as

u = ∂ψ

∂y
, v = −∂ψ

∂x
, w = ∂v

∂x
− ∂u

∂y
(2.7)

the governing equations (2.1)-(2.4) can be written as

∇2ψ = −w, (2.8)

1
Re

ρf

ρnf

1
(1 − ϕ)2.5 ∇2w = ∂w

∂t
+ u

∂w

∂x
+ v

∂w

∂y
− RaPr

Re2
(ρβ)nf

ρnfβf

∂T

∂x
, (2.9)

1
PrRe

αnf

αf
∇2T = ∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
. (2.10)
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The time derivatives in Equations (2.9) and (2.10) are approximated with the forward
finite difference approximations

∂w

∂t
= w(m+1) − w(m)

∆t
and

∂T

∂t
= T (m+1) − T (m)

∆t
, (2.11)

where w(m) = w(x, y, tm), T (m) = T (x, y, tm), tm = m∆t and ∆t is the time step. w and T
at the left hand sides of the equations (2.9) and (2.10) are expanded at the two successive
time levels with relaxation parameters θw and θT as

w(m+1) = θww
(m+1) + (1 − θw)w(m) and T (m+1) = θTT

(m+1) + (1 − θT )T (m). (2.12)

Inserting the approximations (2.11) and (2.12) into the Equations (2.9) and (2.10) the
iterative form of the governing equations are constructed as

∇2ψ(m+1) = −w(m),

∇2w(m+1) −λ2
ww

(m+1) = (θw − 1)
θw

∇2w(m) − λ2
ww

(m)

+Reρnf (1 − ϕ)2.5

ρfθw

(
∂ψ(m+1)

∂y

∂w(m)

∂x
− ∂ψ(m+1)

∂x

∂w(m)

∂y

)

−RaPr

Re

(ρβ)nf (1 − ϕ)2.5

βfρfθw

∂T (m)

∂x
,

∇2T (m+1) −λ2
TT

(m+1) = (θT − 1)
θT

∇2T (m) − λ2
TT

(m)

+PrRe αf

αnfθT

(
∂ψ(m+1)

∂y

∂T (m)

∂x
− ∂ψ(m+1)

∂x

∂T (m)

∂y

)

(2.13)

where λ2
w = Re

ρnf (1 − ϕ)2.5

ρf ∆tθw
and λ2

T = PrRe
αf

αnf ∆tθT
, and m indicates iteration number.

3. DRBEM formulation
The aim of this section to find a simple way to solve the governing equations (2.13)

without computing any domain integral. Therefore, the governing equations (2.13) of
the problem are transformed into boundary integral equations using the DRBEM. In the
solution procedure, all the terms except the Laplace and modified Helmholtz equations
are considered as inhomogeneity [19], [2]. Let, ûi,’s (i = 1, 2, 3) be particular solutions
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which satisfy the following equations

∇2û1 = −w(m),

∇2û2 − λ2
wû2 = (θw − 1)

θw
∇2w(m) − λ2

ww
(m)

+Reρnf (1 − ϕ)2.5

ρfθw

(
∂ψ(m+1)

∂y

∂w(m)

∂x
− ∂ψ(m+1)

∂x

∂w(m)

∂y

)

−RaPr

Re

(ρβ)nf (1 − ϕ)2.5

βfρfθw

∂T (m)

∂x
,

∇2û3 − λ2
T û3 = (θT − 1)

θT
∇2T (m) − λ2

TT
(m)

+PrRe αf

αnfθT

(
∂ψ(m+1)

∂y

∂T (m)

∂x
− ∂ψ(m+1)

∂x

∂T (m)

∂y

)
.

(3.1)

In the DRBEM idea, a series of particular solutions ûi,j ’s (i = 1, 2, 3) are used instead of
a single ûi, (i = 1, 2, 3) function and inhomogeneities are approximated using the radial
basis functions fj ’s (fj = 1 + rj) and f̃j ’s (f̃j = rj

2 log rj) as

NB+NI∑
j=1

α1jfj(x, y) = −w(m),

NB+NI∑
j=1

α2j(t)f̃j(x, y) = (θw − 1)
θw

∇2w(m) − λ2
ww

(m)

+Reρnf (1 − ϕ)2.5

ρfθw

(
∂ψ(m+1)

∂y

∂w(m)

∂x
− ∂ψ(m+1)

∂x

∂w(m)

∂y

)

−RaPr

Re

(ρβ)nf (1 − ϕ)2.5

βfρfθw

∂T (m)

∂x
,

NB+NI∑
j=1

α3j(t)f̃j(x, y) = (θT − 1)
θT

∇2T (m) − λ2
TT

(m)

+PrRe αf

αnfθT

(
∂ψ(m+1)

∂y

∂T (m)

∂x
− ∂ψ(m+1)

∂x

∂T (m)

∂y

)

(3.2)

where NB is the number of the constant boundary elements and NI is the number of
interior points. fj ’s are linked with the particular solutions û1j to the equations ∇2û1j =
fj , and f̃j ’s are linked with the particular solutions û2j and û3j to the equations (∇2 −
λw

2)û2j = f̃j and (∇2 − λT
2)û3j = f̃j , respectively. The coefficients α1j are unknown

constants whereas α2j and α3j are initially unknown time dependent coefficients.
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After substituting the approximations for fj and f̃j into the equation (3.2) new approx-
imations are obtained as

NB+NI∑
j=1

α1j∇2û1j = −w(m),

NB+NI∑
j=1

α2j(t)(∇2 − λw
2)û2j = (θw − 1)

θw
∇2w(m) − λ2

ww
(m)

+Reρnf (1 − ϕ)2.5

ρfθw

(
∂ψ(m+1)

∂y

∂w(m)

∂x
− ∂ψ(m+1)

∂x

∂w(m)

∂y

)

−RaPr

Re

(ρβ)nf (1 − ϕ)2.5

βfρfθw

∂T (m)

∂x
,

NB+NI∑
j=1

α3j((∇2 − λT
2)û3jt) = (θT − 1)

θT
∇2T (m) − λ2

TT
(m)

+PrRe αf

αnfθT

(
∂ψ(m+1)

∂y

∂T (m)

∂x
− ∂ψ(m+1)

∂x

∂T (m)

∂y

)
.

(3.3)

Substituting the equation (3.3) into (2.13)

∇2ψ(m+1) =
NB+NI∑

j=1
α1j∇2û1j ,

∇2w(m+1) − λ2
ww

(m+1) =
NB+NI∑

j=1
α2j(t)(∇2û2j − λw

2û2j),

∇2T (m+1) − λ2
TT

(m+1) =
NB+NI∑

j=1
α3j(t)(∇2û3j − λT

2û3j).

(3.4)

Thus, Laplace and modified Helmholtz operators occur to be in both sides. Then, equa-
tions are weighted with the corresponding fundamental solutions and are integrated over
the domain as in [19], [2]

∫
Ω

(∇2ψ(m+1))u∗
1dΩ =

NB+NI∑
j=1

α1j

∫
Ω

(∇2û1j)u∗
1dΩ,

∫
Ω

(∇2w(m+1) − λ2
ww

(m+1))u∗
2dΩ =

NB+NI∑
j=1

α2j(t)
∫

Ω
(∇2û2j − λw

2û2j)u∗
2dΩ,

∫
Ω

(∇2T (m+1) − λ2
TT

(m+1))u∗
3dΩ =

NB+NI∑
j=1

α3j(t)
∫

Ω
(∇2û3j − λT

2û3j)u∗
3dΩ,

(3.5)

where u∗
1 = 1

2π
ln(r) (fundamental solution of Laplace equation), u∗

2 = 1
2π
K0(λwr) and

u∗
3 = 1

2π
K0(λT r) (fundamental solutions of modified Helmholtz equations). K0(λwr) and

K0(λT r) are second kind modified Bessel functions of order zero where r is the distance
between the source and the field points. Then, after applying Green’s second identity
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following integral equations can be obtained for each source point i

ciψ
(m+1)
i +

∫
Γ

(
q∗

1ψ
(m+1) − u∗

1
∂ψ(m+1)

∂n

)
dΓ =

NB+NI∑
j=1

α1j

[
ciû1ji

∫
Γ

(
q∗

1û1j − u∗
1
∂û1j

∂n

)
dΓ
]
,

ciw
(m+1)
i +

∫
Γ

(
q∗

2w
(m+1) − u∗

2
∂w(m+1)

∂n

)
dΓ =

NB+NI∑
j=1

α2j(t)
[
ciû2ji

∫
Γ

(
q∗

2û2j − u∗
2
∂û2j

∂n

)
dΓ
]
,

ciT
(m+1)
i +

∫
Γ

(
q∗

3T
(m+1) − u∗

3
∂T (m+1)

∂n

)
dΓ =

NB+NI∑
j=1

α3j(t)
[
ciû3ji

∫
Γ

(
q∗

3û3j − u∗
3
∂û3j

∂n

)
dΓ
]

(3.6)

where q∗
1 = ∂u∗

1
∂n

, q∗
2 = ∂u∗

2
∂n

, q∗
3 = ∂u∗

3
∂n

, and the constant ci is ci = γi/2π, γi is the internal
angle at the point i, Γ is the boundary of the domain Ω. The derivation of particular
solutions and their normal derivatives is given in [2] and [19]. After discretizing the
boundary using NB constant elements and taking the NI interior nodes for the solution
of unknowns ψ, w, T and their normal derivatives we get the matrix-vector form of the
governing equations as

Hψ(m+1) −G∂ψ
(m+1)

∂n
=
(
HÛ −GQ̂

)
α1,

H
′
w(m+1) +G′ ∂w(m+1)

∂n
) =

(
H

′
Û

′

+G′
Q̂

′
)
α2,

H
′′
T (m+1) +G′′ ∂T (m+1)

∂n
=
(
H

′′
Û

′′

+G′′
Q̂

′′
)
α3

(3.7)

where
α1 = F−1

{
−w(m)

}
,

α2 = F̃
−1 (θw − 1)

θw
∇2w(m) − λ2

ww
(m)

+Reρnf (1 − ϕ)2.5

ρfθw

(
∂ψ(m+1)

∂y

∂w(m)

∂x
− ∂ψ(m+1)

∂x

∂w(m)

∂y

)

−RaPr

Re

(ρβ)nf (1 − ϕ)2.5

βfρfθw

∂T (m)

∂x
,

α3 = (θT − 1)
θT

∇2T (m) − λ2
TT

(m)

+PrRe αf

αnfθT

(
∂ψ(m+1)

∂y

∂T (m)

∂x
− ∂ψ(m+1)

∂x

∂T (m)

∂y

)
.

(3.8)
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Here F−1 and F̃−1 contain the coordinate functions fj and f̃j ’s as columns for i =
1, 2, . . . , NB +NI , respectively. The dimensions of the matrices and vectors are expanded
taking into account NI interior nodes. Therefore, their dimensions in these discretized
systems are (NB +NI) × (NB +NI) and (NB +NI) × 1, respectively. The matrices Û, Û

′
,

Û
′′
, Q̂, Q̂

′
and Q̂

′′
are constructed by taking each of the vectors û1j , û2j , û3j , q̂1j , q̂2j

and q̂3j as columns for i = 1, ..., NB +NI , respectively. The components of the coefficient
matrices are [3, 6]

Hij = ciδij + 1
2π

∫
Γj

∂

∂n

(
ln
(1
r

))
dΓj , Gij = 1

2π

∫
Γj

ln
(1
r

)
dΓj ,

Hij
′ = ciδij + 1

2π

∫
Γj

∂K0(λwri)
∂n

dΓ, Gij
′ = − 1

2π

∫
Γj

K0(λwri)dΓ,

Hij
′′ = ciδij + 1

2π

∫
Γj

∂K0(λT ri)
∂n

dΓ, Gij
′′ = − 1

2π

∫
Γj

K0(λT ri)dΓ.

(3.9)

Here δij , Γj and r are the Kronecker delta function, the boundary of the j-th element and
the length of the distance vector from boundary point i to j.

In the computations, first and second derivatives of all unknowns are approximated
using the DRBEM idea as

∂Z
∂x

= ∂F̃
∂x

F̃−1Z, ∂Z
∂y

= ∂F̃
∂y

F̃−1Z (3.10)

where Z is used for the unknowns ψ(m+1), w(m), T(m),
∂ψ(m+1)

∂x
and ∂ψ(m+1)

∂y
. The

imposed vorticity boundary conditions are also obtained using the DRBEM idea as

w = −
[
∂F̃
∂x

F̃−1
(
∂F̃
∂x

F̃−1
ψ(m+1)

)
+ ∂F̃
∂y

F̃−1
(
∂F̃
∂y

F̃−1
ψ(m+1)

)]
. (3.11)

The solutions can be obtained by solving the system of equations (3.7) and (3.8), itera-
tively, after inserting the initial and boundary conditions.

4. Numerical results
In this part of the study, two-dimensional unsteady mixed convection flow of Cu−water

based nanofluids depicted in Figure (1) is numerically discretized using the DRBEM. In
the stream function-vorticity-temperature form of the equations (2.8)-(2.10) are used as
governing equations. The unknown vorticity boundary conditions are obtained using the
definition of vorticity in (2.7) with the DRBEM coordinate matrix. Due to the no-slip
boundary conditions of velocities, stream function boundary conditions are taken zero at
all sides of the cavity. The dimensionless form of the temperature boundary conditions
are taken as

T = 0, x = 0, 0 ≤ y ≤ 1
T = 0, x = 1, 0 ≤ y ≤ 1
T = 0, y = 1, 0 ≤ x ≤ 1

∂T

∂y
= 0, y = 0, 0 ≤ x ≤ (D − 0.5B)

∂T

∂y
= kf

knf
, y = 0, (D − 0.5B) ≤ x ≤ (D + 0.5B)

∂T

∂y
= 0, y = 0, (D + 0.5B) ≤ x ≤ 1.

(4.1)
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The local Nusselt number of the nanofluid along the heat source surface can be expressed
as

Nus(x) = 1
Ts(x)

(4.2)

where Ts(x) is the temperature of the heat source. The average Nusselt number is calcu-
lated by integrating local Nusselt number over the heat source

Num = 1
B

D+0.5B∫
D−0.5B

Nus(x). (4.3)

Numerical procedure is used to carry out for the physical parameters Ra, Re, ϕ, B and
D to show their influence on the streamlines, vorticity and temperature contourlines. To
obtain steady state results using small number of iterations, the relaxation parameters are
taken θw = θT = 0.9 [3]. The stopping criteria for the iterative procedures is taken as
10−5.

Forward finite difference scheme is the simplest time derivative discretization method.
But, since it is explicit method, the stability problems are usually expected. So, the
choice of ∆t is the important point for the stability of this numerical method. Here, the
choice of ∆t is closely related with the behavior of K0(x) due to its location in the relation

parameters λ2
w = Re

ρnf (1 − ϕ)2.5

ρf ∆tθw
and λ2

T = PrRe
αf

αnf ∆tθT
. The K0(x) → ∞ (as x → ∞)

behavior is prevented by taking not too small time step size. In each analysis the solutions
are kept stable by choosing suitable ∆t depending on the values of other parameters. In
all computations too small step size is not needed and it takes the values between 0.1 to
0.002.

Grid dependency is tested using several number of the boundary elements and the
results are given for Ra = 104, Re = 10, ϕ = 0.1, B = 0.4 and D = 0.5. in Figure (2).
From the figure, NB = 200 constant boundary elements satisfy the grid independence.
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Figure 2. Grid independency analysis for Ra = 104, Re = 10, ϕ = 0.1, B = 0.4
and D = 0.5.
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Figure 3. Code validation for Ra = 104, Re = 10, B = 0.4 and D = 0.5.

Code validation is done using the same parameter with [14] by drawing vertical velocity
component at the mid section of the cavity and Nusselt number along the heat source, and
results are given in Figure (3). In the computations the physical parameters are taken as
Ra = 104, Re = 10, B = 0.4 and D = 0.5 whereas solid volume fraction is taken between
0 to 0.2. Obtained results are in good agreement with the solutions given in the work of
[14].

Beside the adding nanoparticles with high thermal conductivity in a base fluid with low
thermal conductivity, there are many factors to increase the effective thermal conductivity
of nanofluids [12]. One of them is the solid volume fraction which is the ratio of volume of
the particle and total volume of the nanofluid. The effect of solid volume fraction on the
streamlines, vorticity and temperature at Ra = 104, Re = 10, B = 0.4 and D = 0.5 for
Cu−water nanofluid is displayed in Figure (4). It is observed that the streamlines show a
circular behavior and it takes the minimum value in the center of the cavity. This behavior
is caused by the moving lid. The buoyancy forces caused by the temperature difference
also assists this circular behavior. The fluid is heated by heater located at the bottom
wall and other walls of the cavity are cooled. Thus, the density due to the temperature
gradient near the bottom wall and top lid plays an important role in the emergence of the
buoyancy forces. Because the density near the bottom wall is lower than the density near
the top lid. Therefore, the lighter fluid moves from bottom wall towards the top lid and
hence the circular behavior occur in the cavity. From the figure it can be concluded that,
when ϕ increases, the magnitude of the streamlines decreases. Since the increasing value
of solid volume fraction reduces the intensity of the buoyancy force, the flow intensity are
effected, negatively. The vorticity contours are affected very little by the changing values
of solid volume fraction and they show almost the similar profiles for all cases of solid
volume fraction. But, the reduction of the intensity of buoyancy forces can be seen here,
too. In the absence of the nanoparticle (ϕ = 0), two central vortices occur in the center of
the cavity and when solid volume fraction increases to 0.1 one of them is became disappear
and then when it achieves to 0.2 they are vanished, completely. On the other hand, when
ϕ = 0 the temperature contourlines take place in the whole cavity but then an increase in
ϕ to 0.2 leads the reduction of the fluid temperature and contourlines approach towards
to the heater.
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Figure 4. Cu-based nanofluid for several volume fraction when Ra = 104, Re =
10, B = 0.4 and D = 0.5.

Figure (5) displays the effect of heat source length on the fluid flow behavior by using
several values of B. Results are given for heat source length (B = 0.2, 0.4, 0.6, 0.8) at
Ra = 104, Re = 10, ϕ = 0.1 and D = 0.5. The influence of the heat source length
on the variables can be seen very clear. From the figures, it can be concluded that
as the length of the heat source increases, the magnitude of the streamlines increases,
the vorticity contourlines are distributed every side of the channel, and isotherms are
more dense intensifies around the heat source and their intensity increases. All these
behaviors are caused by the increasing value of the fluid temperature and increasing the
flow intensity hence the increasing activity of the fluid motion. In other words, longer
heat source increases the generation rates of the temperature.
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Figure 5. Cu-based nanofluid for several B when Ra = 104, Re = 10, ϕ = 0.1
and D = 0.5.

Another analysis is done to show the effect of the heat source location and results are
given in Figure (6). In the computations, different heat source locations (D = 0.2, 0.4,
0.6, 0.8) are tested by taking Ra = 1.4 × 104, Re = 10, ϕ = 0.05 and B = 0.2. From
the figure it can be said that, the circular behavior of streamline occurs again but in this
case their geometry changes depending on the location of the heat source. When the heat
source is located in the middle of the bottom wall, one clockwise circular cell occur in the
cavity. The same behavior occurs again as the heat source moves towards the left wall
but their intensity decreases. However, when the heat source moves to the right side of
the cavity which is the same direction with the moving lid, two circular vortex occur, one
in the clockwise direction and the other in the opposite direction.
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Figure 6. Cu-based nanofluid for several D when Ra = 1.4 × 104, Re = 10,
ϕ = 0.05 and B = 0.2

Vorticity contour lines show the similar behavior with the streamlines which cover al-
most all parts of the cavity and form two vortex at the center. From the temperature
contourlines, the location of the heat source can be seen easily since they follow the heat
source movement. Although not as clear as the temperature contour lines, the movement
of the heat source can also be monitored from the vorticity contour lines. These results
show there is an important relation between the direction of the lid movement and the
location of the heat source. Different situations create different results for the buoyancy
forces where they may oppose or aid each other. When they moved the same direction the
fluid buoyancy forces act together and hence the flow intensity increases. However, when
they moved the reverse direction buoyancy forces oppose the each other and consequently
the flow intensity decreases.
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Figure 7. Cu-based nanofluid for several Re when Ra = 103, ϕ = 0.1, B = 0.4
and D = 0.5
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Figure 8. Cu-based nanofluid for several Ra when Re = 10, ϕ = 0.1, B = 0.4
and D = 0.5

In this problem, both natural (due to the temperature difference) and forced (due
to the moving lid as an external force) convection occur in the system so it is called
mixed convection. The fluid behavior of dominating the forced convection can be analyzed
by changing the Reynolds number. The effect of Reynolds number is investigated with
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Ra = 103, ϕ = 0.1, B = 0.4 and D = 0.5 for the values Re < 100 (laminar flow) and
the results are depicted in Figure (7). For lower values of Re there is negligible lid-
driven effect in the system and flow action occurs near the heat source. In this case heat
transfer mechanism is conducted by natural convection. As Reynolds number increases,
forced convection increases and it dominates the system. For Re = 100, the fluid motion
occurs near the top lid by moving together with the lid. Because, as the Re increases
the magnitude of the velocity components increase and turning points get closer to the
top lid. Beside this, buoyancy forces caused by the temperature difference to become less
influential relative to buoyancy forces caused by the moving lid. Hence the effect of the
heat source on the streamlines is negligible. The increase in Reynolds number has similar
effects on vorticity and temperature contours. Although the temperature contourlines are
located central part of the cavity for Re = 1, they are located at the left side of the cavity
as Reynolds number increases. For lower values of Reynolds number vorticity contour
lines can be seen every side of the cavity, however, they move away from the center of the
cavity towards the cavity walls as Re increases.

In the fluids two different heat transfer mechanism can occur which are called convection
and conduction. The value of Rayleigh number determine the reason of heat transfer
convection or conduction. Conduction occurs at low values of the Rayleigh number, Ra <
103, and convection occurs at Rayleigh numbers slightly exceeding the critical value of
Ra = 103. If Ra takes the larger values then convection becomes chaotic. The effect of
Rayleigh number on the fluid is given in Figure (8). In this analysis, the computations are
done by taking Re = 10, ϕ = 0.1, B = 0.4, D = 0.5 and results are given for flows 103 ≤
Ra ≤ 107. When Ra = 103, heat transfer mechanism is dominated by conduction. Also,
there is forced convection caused by the moving lid. So, both natural and forced convection
have effects on variables stream function, vorticity and temperature. From the streamlines
it can be seen that there are two circular vortex occur in the cavity which are called primary
vortex (bigger one at the right side of the cavity) and secondary vortex (small one at the
left bottom corner of the cavity). While the primary vortex takes the negative value and
the secondary vortex takes the positive value. Also they take the minimum and maximum
values at their center. The vorticity action, especially near the upper left and upper right
corners, occurs all part of the cavity. As the Rayleigh number increases, the secondary
vortex of streamline grows and the primary vortex becomes smaller. When the Rayleigh
number achieves to 107 the vortices become equal in size with opposite direction. Behind
this the intensity of streamlines increases as Rayleigh number increases. Similar behavior
is seen in the vorticity by forming two vortices at the left and the right side of the cavity.
Temperature contour lines start near the heater and distribute towards the other walls for
lower values of Rayleigh number but as Rayleigh number increases they concentrate near
the heat source. All these behaviors are expected. Because as Rayleigh number increases,
convection starts to dominate the heat transfer mechanism. Also, when Rayleigh number
takes the higher values, the effect of forced convection disappears completely which is the
reason of symmetric behavior of streamlines and vorticity.

5. Conclusion
In this study, DRBEM solution of mixed convection flow in a square cavity with a

moving lid on the top, partially heated from below and filled with Cu-water nanofluid is
presented by investigating the effect of physical parameters on the flow behavior. DRBEM
is a boundary discretization method and has advantages over the domain discretization
methods. DRBEM does not show any special form like domain discretization methods
and they are full matrices. But because of boundary only discretization, their sizes are
smaller by comparing the domain discretization methods.
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Beside this, in order to obtain the results for large Rayleigh and Reynolds numbers, it
is need to use the smaller time step ∆t. When the fundamental solution of the modified
Helmholtz equation is used instead of the fundamental solution of Laplace equation for
the solution of vorticity transport and temperature equations, it is possible to use the

smaller ∆t due to the behavior of K0(x) → 0 for large x, since λ2
w = Re

ρnf (1 − ϕ)2.5

ρf ∆tθw
and

λ2
T = PrRe

αf

αnf ∆tθT
. Hence, it is enough to use smaller number of boundary elements

by taking smaller ∆t. Therefore, in the computations, DRBEM with the fundamental
solution of modified Helmholtz equation needs considerably less boundary elements and
thus computational cost is noticeably less by comparing the DRBEM with the fundamental
solution of Laplace equation.

Also, the idea of using the modified Helmholtz equation as the governing equations for
the vorticity transport and temperature equations eliminates the need of another time
integration scheme and by using this way the stability problems are eliminated. It is
enough to choose proper ∆t to obtain stable solution. Because, at the beginning of the
process the time derivatives are approximated using forward time discretization method.
When any time integration scheme (forward difference or any other) is used inside of the
DRBEM procedure, we cannot use fundamental solution of modified Helmholtz equation
and so we lose its advantages. This transformations are done at the beginning of the
solution procedure to obtain modified Helmholtz equation. On the other hand, there is
no difference in the DRBEM idea while the discretization of time derivative is done at
the beginning or in the middle of the solution procedure. But, when the time derivative
is approximated inside of the solution procedure, we obtain a linear system. In order to
satisfy the stability of the obtained system the real part of each of the eigenvalues of the
coefficient matrices should be negative. So it requires extra conditions for stability and
this is more complicated than the method mentioned here.

Numerical results are given using graphs and tables comparing with the previously
published papers and they are in good agrement with the results given in [15].
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