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Abstract
In this manuscript, we study the existence and uniqueness of solution for a class of frac-
tional order boundary value problem (FBVP) for implicit fractional differential equations
with Riemann-Liouville derivative. Furthermore, we investigate different kinds of Ulam
stability such as Ulam-Hyers stability, generalized Ulam-Hyers stability, Ulam-Hyers-
Rassias stability and generalized Ulam-Hyers-Rassias stability for the proposed problem.
The concerned analysis is carried out through using classical technique of nonlinear func-
tional analysis. The main results are illustrated by providing a couple of examples
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1. Introduction
Fractional order differential equation is a generalization of the integer order differential

equation. The idea of fractional calculus has been introduced at the end of sixteenth
century (1695), when Leibnitz introduced the symbol dp

dtp f(t) to denote the pth order
derivative of a function f . L’ Hospital wrote a letter to Leibnitz, in which he asked a
question about the derivative of order p = 1

2 . This question was the foundation of the
recent fractional calculus. Later on the fractional derivative was introduced by Lacroix
[23]. Moreover, geometrical and physical interpretation for aforementioned area was also a
very big problem for more than 300 years. Because there were not admissible interpretation
for fractional order derivative and integration, like for integer order. In [28], it is evident
that the geometric interpretation of fractional integration is "Shadows on the walls" and
its physical interpretation is "Shadows of the past".

In the past few decades, fractional calculus has got incredible attention from the re-
searchers. Fractional differential equations have been proved to be strong tools in the
modeling of many physical phenomena. It is because, fractional order models are more ac-
curate than integer order models as fractional order models allow more degrees of freedom.
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The aforesaid equations have widespread applications in many areas of science and tech-
nology. Areas which utilized fractional differential equations include diffusion process [24],
electrochemistry [26], biology [31], signal and image processing [33], process of dynamics
[40], systems control theory [42] etc. For more applications of aforementioned equations,
see [5, 6, 12,19,27,28] and references therein.

One of the most preferable research area in the field of fractional order differential
equation, which has got incredible attention from the researchers is devoted to the existence
theory of solutions. This is an expeditiously growing area for analysis. For detail study
about the existence theory, see [2,8,10,18,34–37] and references therein. Since most of the
engineering, physical and dynamical problems are subjected to the boundary conditions.
Therefore researchers have given much attention to the study of considered area: Authors
in [38], investigated a class of nonlinear FBVP of Dirichlet-type given by

Dpu(t) = −f(t, u(t)), t ∈ (0, 1), p ∈ (1, 2],

u(0) = u(1) = 0,
where Dp stands for standard Riemann-Liouville derivative of fractional order and the
function f : [0, 1] × R+ ∪ {0} → R+ ∪ {0} is continuous. Ahmad and Nieto [1], studied
the existence and uniqueness of the following nonlinear boundary value problem by using
Leray-Schauder fixed point theorem

Dpu(t) = f(t, u(t)), t ∈ [0, T ], T > 0, p ∈ (1, 2],

Dp−2u(0+) = γDp−2u(T−),
Dp−1u(0+) = βDp−1u(T−),

where the function f : [0, 1] × R × R → R is continuous and β, γ ̸= 1.
Since, in most of the situations to find the exact solutions of nonlinear problems is

quite difficult task. Therefore, different approximation techniques were developed to find
numerical solution. From the numerical and optimization point of view, stability is very
important. So various kinds of stability have been investigated such as Exponential, Lya-
punov and Asymptotic stability etc. Stability is a very prominent branch of the qualitative
theory of differential equations. Here in this manuscript, we will discuss Ulam-Hyers sta-
bility. The mentioned stability was first pointed out by Ulam [41], in 1940. In the following
year, Hyers [13] gave a partial favorable answer to the question of Ulam in the context
of Banach spaces. Furthermore, Rassias [29] improved the answer of Hyers. Later on
the aforesaid stability was greatly discussed for functional equations (see [14, 30]). Lat-
terly, the results were generalized and extended by many researchers, readers may see
[17, 20–22, 25, 39, 45–47] and references therein. The mentioned stability is rarely studied
for fractional differential equations and especially for FBVPs. Very few papers in this
region can be found in literature, see [3, 4, 7, 16,43,44] and references therein.

Influenced from the aforesaid discussion, in this manuscript, we are investigating the
existence, uniqueness as well as four types of Ulam stability for the considered FBVP
of implicit fractional order differential equation. The proposed implicit boundary value
problem, involving Riemann-Liouville fractional derivative, is given by

Dpu(t) = f(t, u(t), Dpu(t)), t ∈ I = [0, T ], T > 0, p ∈ (1, 2], (1.1)
with the boundary conditions of fractional order

Dp−2u(0+) = γDp−2u(T−), (1.2)
Dp−1u(0+) = βDp−1u(T−), (1.3)

where β, γ ̸= 1. We establish some adequate conditions for the existence and uniqueness
of solutions to the given FBVP (1.1)−(1.3) through using fixed point theorems of Schaefer
and Banach contraction type. Then by using standard functional analysis technique, we
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will establish applicable results under which the solution of the considered boundary value
problem satisfies the conditions of different kinds of Ulam stabilities. The established
results are demonstrated by couple of suitable examples.

2. Background materials and auxiliary results
In this portion, we recall some basic definitions, notations and preliminary results, which

will be used throughout in the manuscript.

Definition 2.1. [1] The Riemann-Liouville fractional integral of order p > 0 for a contin-
uous function u : R+ → R is defined as

Ipu(t) = 1
Γ(p)

∫ t

0
(t− ζ)p−1u(ζ)dζ,

provided that integral on right is pointwise defined on (0,∞). Here

Γ(p) =
∫ ∞

0
tp−1e−tdt, p > 0.

Definition 2.2. For a function u : R+ → R, the Riemann-Liouville derivative of fractional
order p > 0, n = [p] + 1 is defined as

Dpu(t) = 1
Γ(n− p)

(
d

dt

)n ∫ t

0
(t− ζ)n−p−1u(ζ)dζ =

(
d

dt

)n

In−pu(t),

provided it exists. Here [p] denotes the integer part of the real number p. For more
properties of Riemann-Liouville derivative, reader may see [1]

Lemma 2.3. [1] The solution of the differential equation
Dpu(t) = θ(t), p > 0,

will be in the following form
IpDpu(t) = Ipθ(t) + k1t

p−1 + k2t
p−2 + · · · + kn−1t

p−n−1 + knt
p−n,

where ki, i = 1, 2, . . . , n, are arbitrary real constants and n = [p] + 1.

Lemma 2.4. The space X = C1(I,R), is a Banach space endowed with a norm, defined
by

∥u∥X = max
t∈I

{
∣∣u(t)

∣∣ : t ∈ I}.

Definition 2.5. [32] The FBVP (1.1)-(1.3) is said to be Ulam-Hyers stable if there exists
K0 ∈ R+ such that for every ϵ > 0 and for every solution u ∈ C1(I,R) of the inequality∣∣Dpu(t) − f(t, u(t), Dpu(t))

∣∣ ≤ ϵ, t ∈ I, (2.1)

there exists a unique solution v ∈ C1(I,R) of the considered problem (1.1)-(1.3),such that∣∣u(t) − v(t)
∣∣ ≤ K0ϵ, t ∈ I.

Definition 2.6. [32] The FBVP (1.1)-(1.3) is said to be generalized Ulam-Hyers stable if
there exists φ ∈ C(R+,R+), φ(0) = 0, such that for every solution u ∈ C1(I,R+) of the
inequality (2.1), there exists a unique solution v ∈ C1(I,R+) of the considered problem
(1.1)-(1.3), such that ∣∣u(t) − v(t)

∣∣ ≤ φ(ϵ), t ∈ I.

Definition 2.7. [32] The FBVP (1.1)-(1.3) is said to be Ulam-Hyers-Rassias stable with
respect to ϕ ∈ C(I,R+), if there exists a non zero positive real number Kϕ, such that for
every ϵ > 0 and for every solution u ∈ C1(I,R) of the inequality∣∣Dpu(t) − f(t, u(t), Dpu(t))

∣∣ ≤ ϵϕ(t), t ∈ I, (2.2)
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there exists a unique solution v ∈ C1(I,R) of the considered problem (1.1)-(1.3), such that∣∣u(t) − v(t)
∣∣ ≤ Kϕϵϕ(t), t ∈ I.

Definition 2.8. [32] The FBVP (1.1)-(1.3) is said to be generalized Ulam-Hyers-Rassias
stable with respect to ϕ ∈ C(I,R), if there exists Kϕ ∈ R+, such that for every solution
u ∈ C1(I,R) of the inequality∣∣Dpu(t) − f(t, u(t), Dpu(t))

∣∣ ≤ ϕ(t), t ∈ I, (2.3)

there exists a unique solution v ∈ C1(I,R) of the considered problem (1.1)-(1.3), such that∣∣u(t) − v(t)
∣∣ ≤ Kϕϕ(t), t ∈ I.

Remark 2.9. Clearly,
(i) Definition 2.5 =⇒ Definition 2.6.

(ii) Definition 2.7 =⇒ Definition 2.8.

Remark 2.10. A function u ∈ C1(I,R) is a solution of the inequality (2.1) if there exists
a function ψ ∈ C(I,R) (dependent on u), such that

(I) Dpu(t) = f(t, u(t), Dpu(t)) + ψ(t), t ∈ I;
(II)

∣∣ψ(t)
∣∣ ≤ ϵ, for all t ∈ I.

Theorem 2.11. (Arzela-Ascoli’s theorem)[15] Let B ⊂ C(I,R) is relatively compact
and if
(1) B is uniformly bounded set such that there exists ρ > 0 with

∥f∥ = sup
y∈I

∣∣f(y)
∣∣ < ρ for every f ∈ B.

(2) B is equicontinuous set, i.e for every ϵ > 0, there exists δ > 0, such that for any
y, ȳ ∈ I,

∣∣y − ȳ
∣∣ ≤ δ ⇒

∣∣f(y) − f(ȳ)
∣∣ ≤ ϵ, for every f ∈ B.

Theorem 2.12. (Banach fixed point theorem)[11] Let B be a non-empty closed subset
of a Banach space X. Then any contraction mapping S from X into itself has a unique
fixed point.

Theorem 2.13. (Schaefer’s fixed point theorem)[11] Let X be a Banach space. Sup-
pose that the operator S : X → X be a continuous compact mapping (or completely contin-
uous). Moreover, suppose

B = {u ∈ X|u = ηSu, 0 < η < 1}
be a bounded set. Then S has at least one fixed point in X.

3. Existence and uniqueness results
In this portion, we are establish adequate conditions for the existence and uniqueness

of solutions to the considered FBVP (1.1)-(1.3).

Theorem 3.1. Let θ ∈ C(I,R), then the equivalent Fredholm integral equation of the
following boundary value problem

Dpu(t) = θ(t), p ∈ (1, 2], t ∈ I,

with boundary conditions
Dp−2u(0+) = γDp−2u(T−), (3.1)
Dp−1u(0+) = βDp−1u(T−), (3.2)

is given by

u(t) =
∫ T

0
G(t, ζ)θ(ζ)dζ,
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where G(t, ζ) is the Green’s function, in the following form

G(t, ζ) =


1

Γ(p)(t− ζ)p−1 + βtp−1

(1−β)Γ(p) + γtp−2[T −(1−β)ζ]
(1−β)(1−γ)Γ(p−1) , 0 ≤ ζ ≤ t ≤ T,

βtp−1

(1−β)Γ(p) + γtp−2[T −(1−β)ζ]
(1−β)(1−γ)Γ(p−1) , 0 ≤ t ≤ ζ ≤ T.

(3.3)

Proof. Let us consider a linear boundary value problem given by
Dpu(t) = θ(t), p ∈ (1, 2], t ∈ I.

By Lemma 2.3, we have
u(t) = k1t

p−1 + k2t
p−2 + Ipθ(t). (3.4)

Using boundary condition (3.1), we get

k2 = γ

(1 − γ)Γ(p− 1)

[
k1Γ(p)T +

∫ T

0
(T − ζ)θ(ζ)dζ

]
. (3.5)

And now by using boundary condition (3.2), we obtain

k1 = β

(1 − β)Γ(p)

∫ T

0
θ(ζ)dζ.

Put the value of k1 in (3.5), it becomes

k2 = γ

(1 − γ)Γ(p− 1)

[
T

β

1 − β

∫ T

0
θ(ζ)dζ +

∫ T

0
(T − ζ)θ(ζ)dζ

]
.

Plugging the value of k1 and k2 in (3.4), we have

u(t) = 1
Γ(p)

∫ t

0
(t− ζ)p−1θ(ζ)dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
θ(ζ)dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0
[T − (1 − β)ζ]θ(ζ)dζ. (3.6)

Thus,

u(t) =
∫ T

0
G(t, ζ)θ(ζ)dζ,

here G(t, ζ) is the given Green’s function. �
Therefore in view of Theorem 3.1, the solution of FBVP (1.1)-(1.3) is equivalent to the

integral equation given by

u(t) =
∫ T

0
G(t, ζ)f(s, u(ζ), Dpu(ζ))dζ, t ∈ I. (3.7)

Here we point out that for β, γ = −1, the boundary conditions (1.2) and (1.3) reduce
to the boundary conditions of anti-periodic type:

Dp−2u(0) = −Dp−2u(T ), Dp−1u(0) = −Dp−1u(T ).

In this case the Green’s function (3.3), takes the form

G(t, ζ) =


1

Γ(p)(t− ζ)p−1 − tp−1

2Γ(p) + tp−2(2ζ−T )
4Γ(p−1) , 0 ≤ ζ ≤ t ≤ T,

−tp−1

2Γ(p) + tp−2(2ζ−T )
4Γ(p−1) , 0 ≤ t ≤ ζ ≤ T.

(3.8)

Lemma 3.2. The Green’s function G(t, ζ), which is obtained in the Theorem 3.1, will
satisfy the following properties:

(A1) G(t, ζ) ≥ 0 for all t, ζ ∈ I;
(A2) G(t, ζ) is continuous over I × I;
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(A3) maxt∈I

∫ T
0

∣∣G(t, ζ)
∣∣ds ≤

(
T 2

Γ(p+1) +
∣∣ βT 2

(1−β)Γ(p)
∣∣ +

∣∣ γ(1+|β|)T 2

2(1−β)(1−γ)Γ(p−1)
∣∣).

Proof. It is very easy to prove (A1) and (A2), so we leave it.
(A3) : Since the Green’s function of the considered problem in the following form∫ T

0

∣∣G(t, ζ)
∣∣dζ =

∣∣∣∣ 1
Γ(p)

∫ t

0
(t− ζ)p−1dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0
[T − (1 − β)ζ]dζ

∣∣∣∣,
so, we get

max
t∈I

∫ T

0

∣∣G(t, ζ)
∣∣ ≤

(
T 2

Γ(p+ 1)
+

∣∣∣∣ βT 2

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)T 2

2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣).
Hence this is complete the proof of (A3). �

Let the space X = C(I,R) be a Banach space with the following defined norm

∥u∥X = maxt∈I{|u(t)| : t ∈ I}.

If u is the solution of FBVP (1.1)-(1.3), then

u(t) = 1
Γ(p)

∫ t

0
(t− ζ)p−1f(ζ, u(ζ), y(ζ))dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
f(ζ, u(ζ), y(ζ))dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]
f(ζ, u(ζ), y(ζ))dζ, t ∈ I,

where
y(t) = Dpu(t).

Define an operator S : X → X as

Su(t) = 1
Γ(p)

∫ t

0
(t− ζ)p−1y(ζ)dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
y(ζ)dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]
y(ζ)dζ, t ∈ I, (3.9)

where y ∈ C(I,R), such that
y(t) = f(t, u(t), y(t)).

For further analysis, the following hypothesis need to be hold.
(H1) f : I × R × R → R is continuous;
(H2) For t ∈ I, there exist constants 0 < L < 1 and K > 0, such that∣∣f(t, v, x) − f(t, v̄, x̄)

∣∣ ≤ K
∣∣v − v̄

∣∣ + L
∣∣x− x̄

∣∣ for any v, v̄, x, x̄ ∈ R;

(H3) For t ∈ I, there exist a, b, c ∈ C(I,R+), such that∣∣f(t, u(t), w(t))
∣∣ ≤ a(t) + b(t)

∣∣u(t)
∣∣ + c(t)

∣∣w(t)
∣∣ for u,w ∈ R,

with a∗ = supt∈I a(t), b∗ = supt∈I b(t) and c∗ = supt∈I c(t) < 1.

Theorem 3.3. Under the hypothesis (H1) − (H3), the operator S is compact.

Proof. Consider the operator S defined in (3.9). We have to show that the operator S is
compact. The proof of this theorem will be given in several steps.
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Step(1) : Let the operator S be continuous, suppose a sequence {un} such that un → u
in X, then for each t ∈ I, we have∣∣S(un)(t) − S(u)(t)

∣∣ =∣∣∣∣ 1
Γ(p)

∫ t

0
(t− ζ)p−1(yn(ζ) − y(ζ))dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
(yn(ζ) − y(ζ))dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0
[T − (1 − β)ζ](yn(ζ) − y(ζ))dζ

∣∣∣∣
≤ 1

Γ(p)

∫ t

0
(t− ζ)p−1∣∣yn(ζ) − y(ζ)

∣∣dζ + βtp−1

(1 − β)Γ(p)

∫ T

0

∣∣yn(ζ) − y(ζ)
∣∣dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0
[T − (1 − β)ζ]

∣∣yn(ζ) − y(ζ)
∣∣dζ, (3.10)

where yn, y ∈ C(I,R) and
yn = f(t, un(t), yn(t)),

y = f(t, u(t), y(t)).

Now by (H2), we have∣∣yn(t) − y(t)
∣∣ =

∣∣f(t, un(t), yn(t) − f(t, u(t), y(t))
∣∣

≤ K
∣∣un(t) − u(t)

∣∣ + L
∣∣yn(t) − y(t)

∣∣.
So, we get ∣∣yn(t) − y(t)

∣∣ ≤ K
1 − L

∣∣un(t) − u(t)
∣∣.

Since we supposed that un → u, then yn → y as n → ∞ for each t ∈ I. So by Lebesgue
Dominated Convergence Theorem [9], (3.10) implies that∣∣S(un)(t) − S(u)(t)

∣∣ → 0 as n → ∞,

hence
∥S(un) − S(u)∥X → 0 as n → ∞.

As a result, S is continuous.

Step(2) : Now we are to prove that the operator S is bounded in set X. For this we
just to show that for any ξ∗ > 0, there exist ℘ > 0, such that for each

u ∈ E∗ = {u ∈ X : ∥u∥X ≤ ξ∗},

then, we have
∥S(u)∥X ≤ ℘.

Since from (3.9), for each t ∈ I, we have

Su(t) = 1
Γ(p)

∫ t

0
(t− ζ)p−1y(ζ)dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
y(ζ)dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]
y(ζ)dζ, (3.11)

where y ∈ C(I,R), such that
y(t) = f(t, u(t), y(t)).
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Now by (H3), we have ∣∣y(t)
∣∣ =

∣∣f(t, u(t), y(t))
∣∣

≤ a(t) + b(t)
∣∣u(t)

∣∣ + c(t)
∣∣y(t)

∣∣
≤ a(t) + b(t)ξ∗ + c(t)

∣∣y(t)
∣∣

≤ a∗ + b∗ξ∗ + c∗∥y∥X.
Therefore, we get

∥y∥X ≤ a∗ + b∗ξ∗

1 − c∗ = M0. (3.12)

In this way (3.11) becomes∣∣S(u)(t)
∣∣ ≤ M0T

p
( 1

Γ(p+ 1)
+

∣∣∣∣ β

(1 − βΓ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)
2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣),
which implies that

∥S(u)∥X ≤ M0T
2
( 1

Γ(p+ 1)
+

∣∣∣∣ β

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)
2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣) = ℘.

Hence S(E∗) is uniformly bounded.

Step(3): Now we are to show that the operator S is equicontinuous in X. For this let
t1, t2 ∈ I with t1 > t2, since E∗ a bounded set in X, and let u ∈ E∗. Then∣∣S(u)(t1) − S(u)(t2)

∣∣ =∣∣∣∣ 1
Γ(p)

∫ t1

0

[
(t1 − ζ)p−1 − (t2 − ζ)p−1]

y(ζ)dζ − 1
Γ(p)

∫ t2

t1
(t2 − ζ)p−1y(ζ)dζ

+ β(tp−1
1 − tp−1

2 )
(1 − β)Γ(p− 1)

∫ T

0
y(ζ)dζ

∣∣∣∣,
by using (3.12), we get∣∣S(u)(t1) − S(u)(t2)

∣∣ ≤ M0

(∣∣∣∣ 1
Γ(p+ 1)

[
2(t2 − t1)p − (tp2 − tp1)

]∣∣∣∣ +
∣∣∣∣β(tp−1

2 − tp−1
1 )T

(1 − β)Γ(p− 1)

∣∣∣∣).
As t1 → t2, then the right-hand side of the above inequality tends to zero. Hence S(E∗)
is equicontinuous. As a consequence of step (1) to (3) the operator S is completely con-
tinuous. Therefore in view of Arzela-Ascoli theorem, the operator S is compact. �
Theorem 3.4. Let the hypothesis (H3) holds and if N < 1. Then FBVP (1.1)-(1.3) has
at least one solution in X.

Proof. For the proof of this theorem, we are considering a set B ⊂ X, which is defined in
the following form

B = {u ∈ X : u = ηSu, 0 < η < 1}.
We have to show that the set B is bounded. Let u ∈ B, such that

u(t) = ηSu(t), where η ∈ (0, 1).
Then for each t ∈ I, we have∣∣u(t)

∣∣ =
∣∣∣∣η( 1

Γ(p)

∫ t

0
(t− ζ)p−1y(ζ)dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
y(ζ)dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]
y(ζ)dζ

)∣∣∣∣,
≤ T p

Γ(p+ 1)
|y(ζ)| +

∣∣∣∣ βT p

(1 − β)Γ(p)

∣∣∣∣|y(ζ)| +
∣∣∣∣ γT p(1 + |β|)
2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣|y(ζ)|. (3.13)



1100 Z. Ali, A. Zada, K. Shah

Now by (H3) for each t ∈ I,∣∣y(t)
∣∣ =

∣∣f(t, u(t), y(t))
∣∣

≤ a(t) + b(t)
∣∣u(t)

∣∣ + c(t)
∣∣y(t)

∣∣
≤ a∗ + b∗∣∣u(t)

∣∣ + c∗∣∣y(t)
∣∣.

So, we get ∣∣y(t)
∣∣ ≤ 1

1 − c∗ (a∗ + b∗∣∣u(t)
∣∣). (3.14)

Plugging (3.14) in (3.13), so it becomes

∣∣u(t)
∣∣ ≤

T p( 1
1−c∗ (a∗ + b∗∣∣u(t)

∣∣))
Γ(p+ 1)

+
βT p( 1

1−c∗ (a∗ + b∗∣∣u(t)
∣∣))

(1 − β)Γ(p)

+
γT p(1 + β)( 1

1−c∗ (a∗ + b∗∣∣u(t)
∣∣))

2(1 − β)(1 − γ)Γ(p− 1)
.

Taking maximum on both sides, we get

∥u∥X ≤
T 2( 1

1−c∗ (a∗ + b∗∥u∥X))
Γ(p+ 1)

+
βT 2( 1

1−c∗ (a∗ + b∗∥u∥X))
(1 − β)Γ(p)

+
γT 2(1 + β)( 1

1−c∗ (a∗ + b∗∥u∥X))
2(1 − β)(1 − γ)Γ(p− 1)

. (3.15)

For simplicity, let say

W = T 2a∗

(1 − c∗)Γ(p+ 1)
+ T 2a∗β

(1 − β)(1 − c∗)Γ(p)
+ T 2a∗γ(1 + |β|)

2(1 − β)(1 − γ)(1 − c∗)Γ(p− 1)
and

N = T 2b∗

(1 − c∗)Γ(p+ 1)
+ T 2b∗β

(1 − β)(1 − c∗)Γ(p)
+ T 2b∗γ(1 + |β|)

2(1 − β)(1 − γ)(1 − c∗)Γ(p− 1)
.

So (3.15) becomes
∥u∥X ≤ N∥u∥X +W.

We get

∥u∥X ≤ W

1 −N
.

This shows that the set B is bounded. So by Theorem 3.3 and Theorem 2.13, we get that
the operator S has at least one fixed point. Therefore, the considered FBVP (1.1)-(1.3)
has at least one solution in X. �

Theorem 3.5. Suppose that the hypothesis (H1) and (H2) hold. Then the FBVP (1.1)-
(1.3) has a unique solution in X. If

KT 2

1 − L

( 1
Γ(p+ 1)

+
∣∣∣∣ β

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)
2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣) < 1. (3.16)

Proof. Since the operator S : X → X defined in (3.9) is

Su(t) = 1
Γ(p)

∫ t

0
(t− ζ)p−1y(ζ)dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
y(ζ)dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]
y(ζ)dζ, t ∈ I,

where y ∈ C(I,R), such that
y(t) = f(t, u(t), y(t)).
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Here we shall use Banach contraction principle to prove the operator S has unique fixed
point, which will be the unique solution of the FBVP (1.1)-(1.3).
Let u, ū ∈ X and for t ∈ I, we have∣∣S(u)(t) − S(ū)(t)

∣∣ ≤
1

Γ(p)

∫ t

0
(t− ζ)p−1∣∣y(ζ) − g(ζ)

∣∣dζ + βtp−1

(1 − β)Γ(p)

∫ T

0

∣∣y(ζ) − g(ζ)
∣∣dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]∣∣y(ζ) − g(ζ)
∣∣dζ, (3.17)

where y, g ∈ C(I,R), such that

y(t) = f(t, u(t), y(t))

and
g(t) = f(t, ū(t), g(t)).

Now by (H2), we have

|y(t) − g(t)| =
∣∣f(t, u(t), y(t)) − f(t, ū(t), g(t))

∣∣
≤ K|u(t) − ū(t)| + L|y(t) − g(t)|.

Thus

|y(t) − g(t)| ≤ K
1 − L

∣∣u(t) − ū(t)
∣∣.

So (??) becomes∣∣S(u)(t) − S(ū)(t)
∣∣ ≤

K
1 − L

( 1
Γ(p)

∫ t

0
(t− ζ)p−1∣∣u(ζ) − ū(ζ)

∣∣dζ + βtp−1

(1 − β)Γ(p)

∫ T

0

∣∣u(ζ) − ū(ζ)
∣∣dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]∣∣u(ζ) − ū(ζ)
∣∣dζ)

.

Now taking maximum on both sides, we get

∥S(u) − S(ū)∥X ≤ KT 2

1 − L

( 1
Γ(p+ 1)

+
∣∣∣∣ β

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)
2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)∥u− ū∥X.

Hence the operator S is a contraction. Thus, by Banach contraction principle, we get that
S has a unique fixed point, which is a unique solution of the FBVP (1.1)-(1.3). �

4. Ulam stability analysis
In this portion, we are developing some sufficient conditions under which the proposed

FBVP (1.1)-(1.3) will satisfy the hypothesis of various kinds of Ulam stability.

Lemma 4.1. Let 1 < p ≤ 2, if z ∈ C1(I,R) is the solution of the inequality (2.1), then z
will be the solution of the following integral inequality

|z(t) −m(t)| ≤
(

T p

Γ(p+ 1)
+

∣∣∣∣ βT p

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)T p

2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)ϵ.
Proof. Let z be the solution of inequality (2.1). So in view (I) of Remark (2.10), we have

Dpz(t) = f(t, z(t), Dpz(t)) + ψ(t), t ∈ I,

Dp−2z(0+) = γDp−2z(T−),
Dp−1z(0+) = βDp−1z(T−).

(4.1)
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So, the solution of (4.1) will be in the following form

z(t) = 1
Γ(p)

∫ t

0
(t− ζ)p−1y(ζ)dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
y(ζ)dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]
y(ζ)dζ

+ 1
Γ(p)

∫ t

0
(t− ζ)p−1ψ(ζ)dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
ψ(ζ)dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]
ψ(ζ)dζ.

For simplicity, let us denote the sum of terms free of ψ by m(t), we have

m(t) = 1
Γ(p)

∫ t

0
(t− ζ)p−1y(ζ)dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
y(ζ)dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

]
y(ζ)dζ.

So from above, we have

∣∣z(t) −m(t)
∣∣ ≤ 1

Γ(p)

∫ t

0
(t− ζ)p−1|ψ(ζ)|dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
|ψ(ζ)|dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0
|T − (1 − β)ζ||ψ(ζ)|dζ.

Hence by using (II) of Remark 2.10, we get the following required result

∣∣z(t) −m(t)
∣∣ ≤

(
T p

Γ(p+ 1)
+

∣∣∣∣ βT p

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)T p

2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)ϵ.
�

Theorem 4.2. Let the hypothesis (H1) and (H2) hold along with the condition( KT 2

(1 − L)Γ(p+ 1)
+

∣∣∣∣ βKT 2

(1 − L)(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)KT 2

2(1 − L)(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣) < 1.

Then the FBVP (1.1)-(1.3) will be Ulam-Hyers stable and consequently generalized Ulam-
Hyers stable.

Proof. Suppose z ∈ C1(I,R) be any solution of the inequality (2.1) and v be the unique
solution of the considered FBVP (1.1)-(1.3), then we have

Dpv(t) = f(t, v(t), Dpv(t)), p ∈ (1, 2], t ∈ I,

Dp−2v(0+) = γDp−2v(T−),
Dp−1v(0+) = βDp−1v(T−).

Now ∣∣z(t) − v(t)
∣∣ =

∣∣z(t) −m(t) +m(t) − v(t)
∣∣ ≤

∣∣z(t) −m(t)
∣∣ +

∣∣m(t) − v(t)
∣∣. (4.2)
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By using Lemma 4.1 in (4.2), we have∣∣z(t) − v(t)
∣∣ ≤(

T p

Γ(p+ 1)
+

∣∣∣∣ βT p

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)T p

2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)ϵ
+

∣∣∣∣ 1
Γ(p)

∫ t

0
(t− ζ)p−1(

yz(ζ) − gv(ζ)
)
dζ + βtp−1

(1 − β)Γ(p)

∫ T

0

(
yz(ζ) − gv(ζ)

)
dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0

[
T − (1 − β)ζ

](
yz(ζ) − gv(ζ)

)
dζ

∣∣∣∣.
We get∣∣z(t) − v(t)

∣∣ ≤(
T p

Γ(p+ 1)
+

∣∣∣∣ βT p

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)T p

2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)ϵ
+

(
T p

Γ(p+ 1)
+

∣∣∣∣ βT p

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)T p

2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)∣∣yz(ζ) − gv(ζ)
∣∣. (4.3)

For yz, gv ∈ C(I,R), where
yz(t) = f(t, z(t), yz(t)),

and
gv(t) = f(t, v(t), gv(t)).

Using (H2), then we have∣∣yz(t) − gv(t)
∣∣ =

∣∣f(t, z(t), yz(t)) + f(t, v(t), gv(t))
∣∣

≤ K
∣∣z(t) − v(t)

∣∣ + L
∣∣y(t) − g(t)

∣∣.
So we get ∣∣yz(t) − gv(t)

∣∣ ≤ K
1 − L

∣∣z(t) − v(t)
∣∣. (4.4)

Using (4.4) and for each t ∈ I, (??) implies that

∥z − v∥X ≤
(

T 2

Γ(p+ 1)
+

∣∣∣∣ βT 2

(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)T 2

2(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)ϵ
+

( KT 2

(1 − L)Γ(p+ 1)
+

∣∣∣∣ βKT 2

(1 − L)(1 − β)Γ(p)

∣∣∣∣
+

∣∣∣∣ γ(1 + |β|)KT 2

2(1 − L)(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)∥z − v∥X.

After simplification, we get

∥z − v∥X ≤
( T 2

Γ(p+1) +
∣∣ βT 2

(1−β)Γ(p)
∣∣ +

∣∣ γ(1+|β|)T 2

2(1−β)(1−γ)Γ(p−1)
∣∣

1 −
( KT 2

(1−L)Γ(p+1) +
∣∣ βKT 2

(1−L)(1−β)Γ(p)
∣∣ +

∣∣ γ(1+|β|)KT 2

2(1−L)(1−β)(1−γ)Γ(p−1)
∣∣)

)
ϵ.

Thus, we have
|z(t) − v(t)| ≤ K0ϵ,

where

K0 =
T 2

Γ(p+1) +
∣∣ βT 2

(1−β)Γ(p)
∣∣ +

∣∣ γ(1+|β|)T 2

2(1−β)(1−γ)Γ(p−1)
∣∣

1 −
( KT 2

(1−L)Γ(p+1) +
∣∣ βKT 2

(1−L)(1−β)Γ(p)
∣∣ +

∣∣ γ(1+|β|)KT 2

2(1−L)(1−β)(1−γ)Γ(p−1)
∣∣) ,

such that( KT 2

(1 − L)Γ(p+ 1)
+

∣∣∣∣ βKT 2

(1 − L)(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)KT 2

2(1 − L)(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣) < 1. (4.5)
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Thus, the FBVP (1.1)-(1.3) is Ulam-Hyers stable.
Now by putting φ(ϵ) = K0ϵ, φ(0) = 0 yields that the FBVP (1.1)-(1.3) is generalized
Ulam-Hyers stable. This is complete the proof. �

(H4) Suppose a function ϕ ∈ (I,R+), which is increasing. Then there exists µϕ > 0,
such that for each t ∈ I, the following integral inequality

Ipϕ(t) ≤ µϕϕ(t)

holds.

Lemma 4.3. Let the hypothesis (H4) hold and suppose z ∈ C1(I,R) is the solution of the
inequality (2.2), then z is a solution of the following integral inequality∣∣z(t) −m(t)

∣∣ ≤(
µϕ +

∣∣∣∣ βT p−1

(1 − β)Γ(p)

∣∣∣∣µϕ +
∣∣∣∣ γβT p−1

(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣µϕ +
∣∣∣∣ γT p−2

(1 − γ)Γ(p− 1)

∣∣∣∣µϕ

)
ϕ(t)ϵ.

Proof. Since from Lemma 4.1, we have∣∣z(t) −m(t)
∣∣ ≤ 1

Γ(p)

∫ t

0
(t− ζ)p−1|ψ(ζ)|dζ + βtp−1

(1 − β)Γ(p)

∫ T

0
|ψ(ζ)|dζ

+ γtp−2

(1 − β)(1 − γ)Γ(p− 1)

∫ T

0
[T − (1 − β)ζ]|ψ(ζ)|dζ.

After using (II) of Remark 2.10 and (H4), we obtain the following required inequality∣∣z(t) −m(t)
∣∣ ≤(

µϕ +
∣∣∣∣ βT p−1

(1 − β)Γ(p)

∣∣∣∣µϕ +
∣∣∣∣ γβT p−1

(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣µϕ +
∣∣∣∣ γT p−2

(1 − γ)Γ(p− 1)

∣∣∣∣µϕ

)
ϕ(t)ϵ.

�

Theorem 4.4. Let the hypothesis (H1), (H2) and (H4) hold. Then the FBVP (1.1)-(1.3)
is said to be Ulam-Hyers-Rassias stable and generalized Ulam-Hyers-Rassias stable. If

1 −
( KT 2

(1 − L)Γ(p+ 1)
+

∣∣∣∣ βKT 2

(1 − L)(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)KT 2

2(1 − L)(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣) > 0.

Proof. Suppose z ∈ C1(I,R) be any solution of the inequality (2.2) and let v be the
unique solution of the considered FBVP (1.1)-(1.3). Then for each t ∈ I, we have∣∣z(t) − v(t)

∣∣ =
∣∣z(t) −m(t) +m(t) − v(t)

∣∣ ≤
∣∣z(t) −m(t)

∣∣ +
∣∣m(t) − v(t)

∣∣. (4.6)

Using (H2) as a similar way like in Theorem 4.2, we get∣∣m(t) − v(t)
∣∣ ≤

( KT p

(1 − L)Γ(p+ 1)
+

∣∣∣∣ βKT p

(1 − L)(1 − β)Γ(p)

∣∣∣∣
+

∣∣∣∣ γ(1 + |β|)KT p

2(1 − L)(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)∣∣z(ζ) − v(ζ)
∣∣. (4.7)

Now by Lemma 4.3 and by (4.7), (4.6) becomes

∥z − v∥X ≤(
µϕ +

∣∣∣∣ βT

(1 − β)Γ(p)

∣∣∣∣µϕ +
∣∣∣∣ γβT

(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣µϕ +
∣∣∣∣ γ

(1 − γ)Γ(p− 1)

∣∣∣∣µϕ

)
ϕ(t)ϵ

+
( KT 2

(1 − L)Γ(p+ 1)
+

∣∣∣∣ βKT 2

(1 − L)(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)KT 2

2(1 − L)(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣)∥z − v∥X.
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Rearrange the terms, we get

∥z − v∥X ≤
( µϕ +

∣∣ βT
(1−β)Γ(p)

∣∣µϕ +
∣∣ γβT

(1−β)(1−γ)Γ(p−1)
∣∣µϕ +

∣∣ γ
(1−γ)Γ(p−1)

∣∣µϕ

1 −
( KT 2

(1−L)Γ(p+1) +
∣∣ βKT 2

(1−L)(1−β)Γ(p)
∣∣ +

∣∣ γ(1+|β|)KT 2

2(1−L)(1−β)(1−γ)Γ(p−1)
∣∣)

)
ϕ(t)ϵ.

Thus, we have
|z(t) − v(t)| ≤ Kϕϕ(t)ϵ, (4.8)

where

Kϕ =
µϕ +

∣∣ βT
(1−β)Γ(p)

∣∣µϕ +
∣∣ γβT

(1−β)(1−γ)Γ(p−1)
∣∣µϕ +

∣∣ γ
(1−γ)Γ(p−1)

∣∣µϕ

1 −
( KT 2

(1−L)Γ(p+1) +
∣∣ βKT 2

(1−L)(1−β)Γ(p)
∣∣ +

∣∣ γ(1+|β|)KT 2

2(1−L)(1−β)(1−γ)Γ(p−1)
∣∣) ,

and

1 −
( KT 2

(1 − L)Γ(p+ 1)
+

∣∣∣∣ βKT 2

(1 − L)(1 − β)Γ(p)

∣∣∣∣ +
∣∣∣∣ γ(1 + |β|)KT 2

2(1 − L)(1 − β)(1 − γ)Γ(p− 1)

∣∣∣∣) > 0.

Hence, the FBVP (1.1)-(1.3) is Ulam-Hyer-Rassias stable.
Now, if we plug ϵ = 1 in (4.8), then by definition (2.8) the considered problem is generalized
Ulam-Hyers-Rassias stable. This is complete the proof. �

5. Examples
In this portion, we are illustrating the obtained results by couple of examples.

Example 5.1. Suppose the fractional order boundary value problem

D
5
4u(t) = 2 + |u(t)| + |D

5
4u(t)|

70et+12(1 + |u(t)| + |D
5
4u(t)|)

, t ∈ [0, 1],

D
−3
4 u(0+) = 1

2
D

−3
4 u(1−),

D
1
4u(0+) = −D

1
4u(1−).

(5.1)

Where
p = 5

4
, T = 1, γ = 1

2
and β = −1.

Set
f(t, y, z) = (2 + |y| + |z|)

70et+12(1 + |y| + |z|)
, t ∈ [0, 1], y, z ∈ R.

Clearly, the above function f is jointly continuous.
Now for any y, z, ȳ, z̄ ∈ R and t ∈ [0, 1], we have

|f(t, y, z) − f(t, ȳ, z̄)| ≤ 1
70e12 (|y − ȳ| + |z − z̄|).

Thus, (H2) is satisfied with K = L = 1
70e12 .

Also, we have
|f(t, y, z)| ≤ 1

70et+12 (2 + |y| + |z|).

Thus, (H3) satisfied with

m(t) = 1
35et+12 , b(t) = c(t) = 1

70et+12 ,

where a∗ = 1
35e12 and b∗ = c∗ = 1

70e12 .
Now, plug T = 1, β = −1, γ = 1

2 , p = 5
4 and K = L = 1

70e12 in (3.16), we get

1
70e12 − 1

( 1
Γ(9

4)
+ 1

2Γ(5
4)

+ 1
2Γ(1

4)

)
≈ 1.379946 × 10−7 < 1,
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thus condition (3.16) is satisfied. So from Theorem 3.5 the solution of the problem (5.1)
is unique.
Furthermore, K0 > 0 with condition (4.5) is hold and( 1

(70e12 − 1)Γ(9
4)

+ 1
2(70e12 − 1)Γ(5

4)
+ 1

2(70e12 − 1)Γ(1
4)

)
≈ 1.379946 × 10−7 < 1,

so by Theorem 4.2, considered problem (5.1) is Ulam-Hyers stable and hence generalized
Ulam-Hyers stable. Also by checking the condition of Theorem 4.4, it can be easily derived
that the considered problem is Ulam-Hyers-Rassias stable and generalized Ulam-Hyers-
Rassias stable.

Example 5.2. Suppose the fractional order boundary value problem

D
3
2u(t) = 1

90
(t cosu(t) − u(t) sin(t)) + |D

3
2u(t)|

45 + |D
3
2u(t)|

, t ∈ [0, 1],

D
−1
2 u(0+) = 1

2
D

−1
2 u(1−),

D
1
2u(0+) = −D

1
2u(1−).

(5.2)

Where
p = 3

2
, T = 1, γ = 1

2
and β = −1.

Set
f(t, y, z) = 1

90
(t cos y − y sin(t)) + z

45 + z
, t ∈ [0, 1], y, z ∈ R.

Clearly, the above function f is jointly continuous.
Now for any y, z, ȳ, z̄ ∈ R and t ∈ [0, 1], we have

|f(t, y, z) − f(t, ȳ, z̄)| ≤ 1
90

|t|| cos y − cos ȳ| + 1
90

| sin(t)||y − ȳ| + 45|z − z̄|
(45 + z)(45 − z̄)

≤ 1
90

|y − ȳ| + 1
90

|y − ȳ| + 1
45

|z − z̄|

≤ 1
45

|y − ȳ| + 1
45

|z − z̄|

≤ 1
45

(|y − ȳ| + |z − z̄|).

Thus, (H2) is satisfied with K = L = 1
45 .

Also, plug T = 1, γ = 1
2 , β = −1 and K = L = 1

45 in (3.16), we get

1
44

( 4
3
√
π

+ 1√
π

+ 1
2
√
π

)
≈ 0.036323 < 1,

thus condition (3.16) is satisfied. So from Theorem 3.5 the solution of the problem (5.2)
is unique.
Furthermore, K0 > 0 with condition (4.5) is hold and( 1

33
√
π

+ 1
44

√
π

+ 1
88

√
π

)
≈ 0.036323 < 1,

so by Theorem 4.2, considered problem (5.2) is Ulam-Hyers stable and hence generalized
Ulam-Hyers stable. Also by checking the condition of Theorem 4.4, it can be easily seen
that the considered problem (5.2) is Ulam-Hyers-Rassias stable and generalized Ulam-
Hyers-Rassias stable.
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6. Conclusion
We have effectively settled the existence and uniqueness conditions for a class of implicit

FBVP (1.1)-(1.3) by using Schaefer’s fixed point theorem, Banach contraction principle
and Arzela-Ascoli theorem. Further, we additionally built up some proper conditions for
different kinds of Ulam stability. Also, we illustrated our main results by providing couple
of intrusting examples.

Acknowledgment. We are very thankful to the anonymous referee for his/her careful
reading and suggestions which improved the quality of this paper.
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