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Abstract
The main goal in the present paper is to provide a technique that con-
siders the stochastic comparison approach for investigating monotonic-
ity and comparability of an M1,M2/G1, G2/1 retrial queues with two
way communication. This approach is developed for comparing a non
Markov process to Markov process with many possible stochastic order-
ings. Particularly, we show the monotonicity of the transition operator
of the embedded Markov chain relative to the strong stochastic order-
ing and convex ordering, as well as the comparability of two transition
operators. Bounds are also obtained for the stationary distribution of
the number of customers at departure epochs. Additionally, the perfor-
mance measures of the system considered can be estimated by those of
an M1,M2/M1,M2/1 retrial queue with two way communication when
the service time distribution is NBUE (respectively NWUE). Finally,
we validate stochastic comparison results by presenting a numerical
example illustrating the interest of the approach.
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1. Introduction
Retrial queues arise from various real life situations as well as telecommunication

and networks systems, especially in the cognitive radio network and the manufacturing
systems [23]. In most publications on retrial queues, the server provides service to the
ingoing arrivals made by regular customers [2, 24]. However, there are real-life situations,
such as call center, where an operator not only serves incoming calls but it also makes
outgoing calls to the outside when the server is free [1]. This type of model is known as
retrial queues with two way communication [3, 4, 18].

Given the complexity of this type of model, it becomes difficult to perform quantitative
analysis. In fact, using approximation methods is essential to deal with the complexity
of these systems. Sakurai and Phung-Duc [18] used a mathematical method based on
generating function approach to obtain explicit expressions for the joint stationary dis-
tribution of the number of calls in the orbit and the state of the server of a two way
communication retrial queues with multiple types of outgoing calls whose durations fol-
low distinct exponential distributions. Ouazine and Abbas [17] proposed a numerical
approach based on Taylor series expansion with a statistical aspect for analyzing the
stationary performances of the M1,M2/G1, G2/1 retrial queues with two way communi-
cation with one type of outgoing calls, while our work is focused on the application of
stochastic comparisons of Markov chains, in order to derive bounds for the performance
indices of the same model based on results achieved by Boualem [5], Boualem et al.
[6, 7, 8, 9, 10, 11, 12, 13], Khalil et Falin [14], Liang [15], Liang and Kulkarni [16] and
Stoyan [21].

Qualitative properties of stochastic models constitute an important theoretical basis
for approximation methods. Monotonicity properties of performance measures are useful
for understanding and solving optimization problems of queueing systems. Concerning
the monotonicity properties, few results were derived. This is due to the mathematical
complexities of such problems. Liang and Kulkarni [16] studied the monotonicity proper-
ties of retrial queues to show how the retrial time distribution affects the behavior of the
system. They assume that retrials have a phase type distributions and show that systems
with longer retrial times, with respect to the K-dominance create more customers in the
system and in orbit. From these results, they obtained the monotonicity properties of
several performance measures. Falin and Khalil [14] investigated the monotonicity prop-
erties of an M/G/1 retrial queue with exponential retrial times and linear retrial rate
relatively to stochastic, convex and Laplace orderings. Shin [20] dealt with several multi-
server queueing models with exponential retrial times like AX/G/c/K retrial queue, two
nodes tandem retrial queue AX/G/c1/K1 → ./G/c2/K2, MAP1, MAP2/M/c retrial
queue and M/M/c/c retrial queue with negative arrivals. He showed that the transition
operator is monotone if the retrial rates in one system are bounded by the retrial rates in
the second one. The monotonicity of results are applied to show the convergence of gen-
eralized truncated systems to the original one. Boualem et al. [11] considered an M/G/1
retrial queue with vacations and derived several stochastic comparison properties in the
sense of strong stochastic ordering and convex ordering. Taleb and Aissani [22] analyzed
the monotonicity of the major performance measures with respect to strong stochastic
ordering and increasing convex ordering. They discussed the conditions under which the
comparison of two unreliable M/G/1 retrial queues is performed. The model is compared
with a simpler counterpart of unreliable M/M/1 retrial queue, while Boualem et al. [12]
used this method to get some qualitative approximations for the M/G/1 retrial queue
with Bernoulli feedback. The stochastic inequalities provide simple insensitive bounds for
the arrival rate, service time distributions and retrial parameter and used it in Boualem
et al. [13] to investigate various monotonicity properties of a single server retrial queue
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with First Come First Served (FCFS) orbit and general retrial times. Boualem [5] inves-
tigated monotonicity properties of the single server retrial queue with no waiting room
and server subject to active breakdowns. These two last works focused mainly on the
stochastic bounds for the stationary distribution of the embedded Markov chain related
to the model under study.

The remainder of this paper is organized as follows. Section 2 presents the mathe-
matical model formulation. Some useful preliminary results are elaborated in Section
3. Section 4 investigates the monotonicity properties of the embedded Markov chain.
Section 5 shows the comparability conditions of stationary distributions of the number of
customers in the system. A numerical example illustrating the interest of the approach
is provided in Section 6. Finally, a conclusion is presented in the last Section.

2. Mathematical model description
We consider a single server queueing system at which primary ingoing customers arrive

according to a Poisson process with rate λ. In addition, the server makes an outgoing call
after an exponentially distributed idle time with rate α. We assume that ingoing calls and
outgoing calls receive different service times. In the sequel B1(x) (B1(0) = 0) represents
the service time distribution of an ingoing call, while B2(x) (B2(0) = 0) denotes the
service time distribution of an outgoing call. An ingoing call that finds the server busy
joins the orbit and it retries to enter the server after an exponentially distributed time
with rate µ, so if (N(t) = j), then the current retrial rate is jµ. Also denote the Laplace-
Stieltjes transform and the kth moment of Bl(x) as βl(s) and βk

l respectively, for l = 1, 2
and k ∈ Z+, where Z+ = {0, 1, 2, ...}. The model under consideration is schematically
represented in Figure 1.

The arrival flows of ingoing and outgoing calls, service times and intervals between
successive repeated attempts are assumed to be mutually independent. The state of the
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Figure 1. Retrial queue with two way communication.

system at time t can be described by the process
Y (t) = (C(t), N(t), ξ(t))t≥0, where:

C(t) =


0, if the server is idle at time t,
1, if the server is busy with an ingoing service at time t,
2, if the server is calling outside at time t.

If C(t) ∈ {1, 2}, then ξ(t) represents the elapsed time of the (ingoing or outgoing) service
in progress. However, the embedded Markov chain Zn = N(ξ+n ) associated with this
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model represents the number of customers in the orbit at the service completion epochs
{ξn, n ∈ N} of either an incoming call or an outgoing call.
(2.1) Zn = Zn−1 −Wn + Vn,

where Vn is the number of incoming arrivals during the nth service time,

Wn =

{
1, if the nth customer in service proceeds from the orbit,
0, otherwise.

We assume that ρ = λβ1
1 < 1 which is the necessary and sufficient condition for the

stability of {Zn, n ∈ Z+} [3].
The one step transition probabilities of the embedded Markov chain are given by:

pn,m =

{
nµ

λ+α+nµ
k1
0, if m = n− 1, n ≥ 1,

λ
λ+α+nµ

k1
m−n + α

λ+α+nµ
k2
m−n + nµ

λ+α+nµ
k1
m−n+1, if 0 ≤ n ≤ m,

where

kl
j =

∞∫
0

e−λx (λx)
j

j!
dBl(x), l = 1, 2, j ∈ Z+,

expresses the probability that there are j incoming calls that arrive during the service
time of an incoming or an outgoing call.

3. Preliminary results
3.1. Definition. Let X and Y be two random variables with distribution function F
and G respectively.

(1) X is said to be smaller than Y with respect to usual stochastic order (written
X ≤st Y or F ≤st G) if and only if F (t) ≥ G(t), for all real t.

(2) X is less than Y in convex order (written X ≤v Y or F ≤v G)) if and only if
+∞∫
x

(1− F (t))dt ≤
+∞∫
x

(1−G(t))dt, for all real t.

(3) If X and Y are discret random variables taking values in N, with distributions
pi = P (X = i) and qi = P (Y = i), i ∈ N, then

• X ≤st Y if and only if pi ≤ qi, for all i ∈ N,
• X ≤v Y if and only if pi ≤ qi, for all i ∈ N,

where pi =
∑
j≥i

pj and pi =
∑
j≥i

pj .

(4) F is NBUE (New Better than Used in Expectation) (respectively, NWUE- New
Worse than Used in Expectation) if and only if Fe ≤st F (respectively, Fe ≥st F ),

where Fe(x) =
1
m

x∫
0

F (t)dt, x ≥ 0.

For a comprehensive discussion on stochastic orders and their applications, one may
refer to [19, 21] and references therein.

Now, we consider two M1,M2/G1, G2/1 retrial queues with two way communication
Σ1 and Σ2 with parameters λ(i), µ(i), α(i), B(i)

1 (x), B(i)
2 (x), k(i)

n , and π
(i)
n (the stationary

distribution of the number of customers in the orbit in Σi), i = 1, 2.
The following Lemma gives the conditions under which the probabilities of the num-

ber of incoming arrivals during the service of an incoming or outgoing call of two
M1,M2/G1, G2/1 retrial queues with two way communication {k(i)

n , i = 1, 2 and n ∈ N}
are comparable relatively to stochastic and convex ordering.

3.2. Lemma. Let Σ1 and Σ2 be two M1,M2/G1, G2/1 retrial queues with two way
communication.
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(1) If λ(1) ≤ λ(2) and B
(1)
l ≤st B

(2)
l , l = 1, 2, then {k(1)

n } ≤st {k(2)
n }.

(2) If λ(1) ≤ λ(2) and B
(1)
l ≤v B

(2)
l , l = 1, 2, then {k(1)

n } ≤v {k(2)
n }.

Where,

k
(i)
j =

+∞∫
0

(λ(i)x)j

j!
e−λ(i)xdB

(i)
l (x), i = 1, 2, l = 1, 2.

Proof. Suppose that λ(1) ≤ λ(2) and B
(1)
l ≤st B

(2)
l , l = 1, 2. By definition, we have

k
(i)
n =

+∞∑
j=n

k
(i)
j =

+∞∫
0

+∞∑
j=n

(λ(i)x)j

j!
exp{−λ(i)x}dB(i)

l (x)

=

+∞∫
0

fn(x, λ)dB
(i)
l (x), l = 1, 2.

The function fn(x, λ) =
+∞∑
j=n

(λ(i)x)j

j!
exp{−λ(i)x} is increasing with respect to λ and x.

In fact,

∂

∂x
fn(x, λ) = λ

(λx)n−1

(n− 1)!
exp{−λx} > 0, ∀ x ≥ 0.

∂

∂λ
fn(x, λ) = x exp{−λx} (λx)

n−1

(n− 1)!
> 0.

Since B
(1)
l ≤st B

(2)
l (l = 1, 2) and λ(1) ≤ λ(2), then

+∞∫
0

fn(x, λ(1))dB
(1)
l (x) ≤

+∞∫
0

fn(x, λ(1))dB
(2)
l (x) ≤

+∞∫
0

fn(x, λ(2))dB
(2)
l (x).

In other words, to prove that {k(1)
n } ≤v {k(2)

n }, we have to establish the usual numerical
inequality

k
(1)

n =

+∞∑
m=n

k
(1)
m ≤

+∞∑
m=n

k
(2)
m = k

(2)

n .

On the other hand, we have

{k(1)
n } ≤v {k(2)

n } ⇔ k
(1)

n =

+∞∑
m=n

k
(1)
m ≤

+∞∑
m=n

k
(2)
m = k

(2)

n

⇔
+∞∫
0

+∞∑
m=n

+∞∑
l=m

(λ(1)x)l

l!
exp{−λ(1)x}dB(1)

l (x)

≤
+∞∫
0

+∞∑
m=n

+∞∑
l=m

(λ(2)x)l

l!
exp{−λ(2)x}dB(2)

l (x)(3.1)

⇔
+∞∫
0

+∞∑
m=n

fm(x, λ(1))dB
(1)
l (x)

≤
+∞∫
0

+∞∑
m=n

fm(x, λ(2))dB
(2)
l (x), l = 1, 2,
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with, fm(x, λ(i)) =
+∞∑
l=m

(λ(i)x)l

l!
exp{−λ(i)x}.

The function fn(x, λ) =
+∞∑
m=n

fm(x, λ) is increasing with respect to λ and is increasing

and convex with respect to x. Indeed,

∂2

∂x2
fn(x, λ) = λ

∂

∂x
fn−1(x, λ) = λ2

(
(λx)n−2

(n− 2)!

)
exp{−λx} > 0.

So, with the help of Theorem 1.3.1 given in [21] and by monotonicity of fn(x, λ) with
respect to λ, we obtain the result. �
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Figure 2. Comparison of {k(i)
n , i = 1, 2} with respect to the stochastic

and convex orders.

Figure 2 shows that the probability of the number of incoming arrivals during the
service times of an incoming or outgoing call is stochastically (with respect to the convex
order respectively) decreasing, with increasing service time distribution and increasing
the rate parameter of the incoming call.
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4. Monotonicity properties of the embedded Markov chain
To every distribution p = (pn)n≥0, the transition operator τ of the embedded Markov

chain associates a distribution τp = q = (qm)m≥0 such that

qm =
∑
n≥0

pnpn,m.

The following Theorems give the monotonicity conditions of the transition operator τ of
the embedded Markov chain relatively to stochastic and convex ordering.

4.1. Theorem. Under the condition B2 ≤st B1, the transition operator τ is monotone
with respect to the stochastic order ≤st, i.e. for any two distributions p(1) and p(2), the
inequality p(1) ≤st p

(2) ⇒ τp(1) ≤st τp
(2).

Proof. The operator τ is monotone with respect to ≤st if and only if (see [21])

(4.1) pn−1,m ≤ pn,m =

+∞∑
k=m

pn,k, ∀ n, m,

with,

pn,m =

+∞∑
k=m

[
λ

λ+ α+ nµ
k1
k−n +

α

λ+ α+ nµ
k2
k−n +

nµ

λ+ α+ nµ
k1
k−n+1

]
=

λ

λ+ α+ nµ
k
1
m−n +

α

λ+ α+ nµ
k
2
m−n +

nµ

λ+ α+ nµ
k
1
m−n+1

=
λ+ nµ

λ+ α+ nµ
k
1
m−n +

α

λ+ α+ nµ
k
2
m−n − nµ

λ+ α+ nµ
k1
m−n

=
λ+ nµ

λ+ α+ nµ
k
1
m−n+1 +

α

λ+ α+ nµ
k
2
m−n +

λ

λ+ α+ nµ
k1
m−n,

and,

pn−1,m =
λ+ (n− 1)µ

λ+ α+ (n− 1)µ
k
1
m−n+1 +

α

λ+ α+ (n− 1)µ
k
2
m−n+1

− (n− 1)µ

λ+ α+ (n− 1)µ
k1
m−n+1.

So,

pn,m − pn−1,m =
αµ

(λ+ α+ nµ)(λ+ α+ (n− 1)µ)
[k

1
m−n+1 − k

2
m−n+1]

+
λ

λ+ α+ nµ
k1
m−n +

(n− 1)µ

λ+ α+ (n− 1)µ
k1
m−n+1

+
α

λ+ α+ nµ
k2
m−n ≥ 0.

Consequently, since B2 ≤st B1, then inequality (4.1) is verified. Finally, the operator
τ is monotone with respect to the stochastic order (≤st). �

4.2. Theorem. Under the condition B1 ≡v B2, the transition operator τ is monotone
with respect to the convex order ≤v, i.e. for any two distributions p(1) and p(2), the
following inequality holds

p(1) ≤v p(2) ⇒ τp(1) ≤v τp(2).
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Proof. The operator τ is monotone with respect to the convex order if and only if (see
[21]):

(4.2) 2pn,m ≤ pn−1,m + pn+1,m, ∀ n, m,

where

pn,m =

+∞∑
k=m

pn,k.

In other words, we obtain

pn,m =

+∞∑
k=m

[
λ

λ+ α+ nµ
k
1
k−n +

α

λ+ α+ nµ
k
2
k−n +

nµ

λ+ α+ nµ
k1
k−n+1

]
=

λ

λ+ α+ nµ
k
1

m−n +
α

λ+ α+ nµ
k
2

m−n +
nµ

λ+ α+ nµ
k
1

m−n+1

=
λ+ nµ

λ+ α+ nµ
k
1

m−n +
α

λ+ α+ nµ
k
2

m−n − nµ

λ+ α+ nµ
k
1
m−n

=
λ+ nµ

λ+ α+ nµ
k
1

m−n+1 +
α

λ+ α+ nµ
k
2

m−n +
λ

λ+ α+ nµ
k
1
m−n,

pn−1,m =
λ+ (n− 1)µ

λ+ α+ (n− 1)µ
k
1

m−n +
α

λ+ α+ (n− 1)µ
k
2

m−n

−
(

λ+ (n− 1)µ

λ+ α+ (n− 1)µ

)
k
1
m−n +

(n− 1)µ

λ+ α+ (n− 1)µ
k1
m−n

− α

λ+ α+ (n+ 1)µ
k
2
m−n,

and

pn+1,m =
λ+ (n+ 1)µ

λ+ α+ (n+ 1)µ
k
1

m−n +
α

λ+ α+ (n+ 1)µ
k
2

m−n

+
λ

λ+ α+ (n+ 1)µ
k
1
m−n +

α

λ+ α+ (n+ 1)µ
k
2
m−n

+
λ

λ+ α+ nµ
k1
m−n−1 +

α

λ+ α+ (n+ 1)µ
k2
m−n−1.

After some algebraic manipulation, we obtain

pn−1,m + pn+1,m − 2pn,m =

=
2αµ2

(λ+ α+ (n+ 1)µ)(λ+ α+ nµ)(λ+ α+ (n− 1)µ)

[
k
2

m−n+1 − k
1

m−n+1

]
+

2αµ2

(λ+ α+ (n+ 1)µ)(λ+ α+ nµ)(λ+ α+ (n− 1)µ)

[
k
2
m−n − k

1
m−n

]
+

2αµ(λ+ α+ nµ)

(λ+ α+ (n+ 1)µ)(λ+ α+ (n− 1)µ)(λ+ α+ nµ)

[
k
1
m−n − k

2
m−n

]
+

2µ2(λ+ α)

(λ+ α+ (n+ 1)µ)(λ+ α+ nµ)
k
1
m−n +

(n− 1)µ

λ+ α+ (n− 1)µ
k1
m−n

+
λ

λ+ α+ (n+ 1)µ
k1
m−n−1 +

α

λ+ α+ (n+ 1)µ
k2
m−n−1 ≥ 0.

Finally, we find that for an M1,M2/G1, G2/1 retrial queue with two way communica-
tion, the transition operator τ is monotone with respect to the convex order (≤v) under
the condition B1 ≡v B2. �
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In the following Theorems, we give comparability conditions of two transition opera-
tors relatively to stochastic order (≤st) and convex order (≤v).

4.3. Theorem. Let τ (1), τ (2) be the transition operators of the embedded Markov chains
added to each model Σ1 and Σ2. If λ(1) ≤ λ(2), µ(1) ≥ µ(2), α(1) ≤ α(2), B

(1)
1 ≤st B

(2)
1

and B
(1)
2 ≤st B

(2)
2 , then τ (1) ≤st τ

(2), i.e. for any distribution p, we have τ (1)p ≤st τ
(2)p.

Proof. We must prove that (see Stoyan [21])

p(1)nm ≤ p(2)nm, ∀ 0 ≤ n ≤ m.

This is equivalent to

λ(1) + nµ(1)

λ(1) + α(1) + nµ(1)
k1

(1)
m−n+1 +

α(1)

λ(1) + α(1) + nµ(1)
k2

(1)
m−n

− nµ(1)

λ(1) + α(1) + nµ(1)
k1(1)

m−n ≤ λ(2) + nµ(2)

λ(2) + α(2) + nµ(2)
k1

(2)
m−n+1

+
α(2)

λ(2) + α(2) + nµ(2)
k2

(2)
m−n − nµ(2)

λ(2) + α(2) + nµ(2)
k1(2)

m−n.

By Lemma 3.2, we have {kl
n
(1)} ≤st {kl

n
(2)}.

As λ(1) ≤ λ(2), α(1) ≤ α(2) and µ(1) ≥ µ(2), we have λ(1)+α(1)

µ(1) ≤ λ(2)+α(2)

µ(2) , and since
the function m

x+m
is decreasing, so

(4.3) nµ(1)

λ(1) + α(1) + nµ(1)
≥ nµ(2)

λ(2) + α(2) + nµ(2)
.

Further, as the function x
x+m

is increasing and λ(1)

µ(1) ≤ λ(2)

µ(2) so,

λ(1)

λ(1) + nµ(1)
≤ λ(2)

λ(2) + nµ(2)
,

hence,
λ(1) + nµ(1) ≥ λ(2) + nµ(2).

Consequently, α(1) ≤ α(2) and λ(1) + nµ(1) ≥ λ(2) + nµ(2) implies that

λ(1) + nµ(1)

α(1)
≥ λ(2) + nµ(2)

α(2)
.

Indeed,

(4.4) λ(1) + nµ(1)

λ(1) + α(1) + nµ(1)
≥ λ(2) + nµ(2)

λ(2) + α(2) + nµ(2)
.

From Lemma 3.2 and inequalities (4.3) and (4.4), we get the following result

λ(1) + nµ(1)

λ(1) + α(1) + nµ(1)
k1

(1)
m−n − nµ(1)

λ(1) + α(1) + nµ(1)
k1(1)

m−n

− λ(2) + nµ(2)

λ(2) + α(2) + nµ(2)
k1

(2)
m−n +

nµ(2)

λ(2) + α(2) + nµ(2)
k1(2)

m−n

≤ λ(1) + nµ(1)

λ(1) + α(1) + nµ(1)
k1

(1)
m−n − nµ(2)

λ(2) + α(2) + nµ(2)
k1(2)

m−n

− λ(1) + nµ(1)

λ(1) + α(1) + nµ(1)
k1

(1)
m−n +

nµ(2)

λ(2) + α(2) + nµ(2)
k1(2)

m−n = 0.
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Furthermore,
λ+ α+ nµ

λ+ α+ nµ
= 1 ⇒ λ+ nµ

λ+ α+ nµ
= 1− α

λ+ α+ nµ
,

so,
λ(1) + nµ(1)

λ(1) + α(1) + nµ(1)
≥ λ(2) + nµ(2)

λ(2) + α(2) + nµ(2)
,

thus

1− α(1)

λ(1) + α(1) + nµ(1)
≥ 1− α(2)

λ(2) + α(2) + nµ(2)
,

which implies

(4.5) α(1)

λ(1) + α(1) + nµ(1)
≤ α(2)

λ(2) + α(2) + nµ(2)
.

Consequently, if B(1)
1 ≤st B

(2)
1 and B

(1)
2 ≤st B

(2)
2 , we obtain the desired result. �

4.4. Theorem. Let τ (1) and τ (2) be the transition operators of the embedded Markov
chains added to each model Σ1 and Σ2, respectively. If we have λ(1) ≤ λ(2), µ(1) ≥ µ(2),
α(1) ≤ α(2), B

(1)
1 ≤v B

(2)
1 and B

(1)
2 ≤v B

(2)
2 , then τ (1) ≤v τ (2), i.e. for any distribution

p we have τ (1)p ≤v τ (2)p.

Proof. To prove that

p
(1)
nm ≤ p

(2)
nm, ∀ 0 ≤ n ≤ m,

we have to establish the following stochastic inequality

λ(1) + nµ(1)

λ(1) + α(1) + nµ(1)
k1

(1)

m−n+1 +
α(1)

λ(1) + α(1) + nµ(1)
k2

(1)

m−n

− nµ(1)

λ(1) + α(1) + nµ(1)
k1

(1)
m−n ≤ λ(2) + nµ(2)

λ(2) + α(2) + nµ(2)
k1

(2)

m−n+1

+
α(2)

λ(2) + α(2) + nµ(2)
k2

(2)

m−n − nµ(2)

λ(2) + α(2) + nµ(2)
k1

(2)
m−n.

The rest of proof is similar to that of Theorem 4.3. �

5. Stochastic inequalities for the stationary number of customers
in the system

The following Theorems give comparability conditions of stationary distributions of
the number of customers in the orbit for two systems Σ1 and Σ2, with respect to stochastic
and convex orders.

5.1. Theorem. Let π
(1)
n and π

(2)
n be the stationary distributions of the number of cus-

tomers in Σ1 and Σ2. If λ(1) ≤ λ(2),µ(1) ≥ µ(2), α(1) ≤ α(2), B(1)
1 ≤so B

(2)
1 , B(1)

2 ≤so B
(2)
2

and B
(2)
2 ≤st B

(2)
1 (resp. B

(2)
1 ≤v B

(2)
2 ), then {π(1)

n } ≤so {π(2)
n }, where so = (st or v).

Proof. It is well known that the distribution of the number of customers in the system at
steady state coincides with that of the system at departure epoch. The stationary distri-
bution coincides with the limit distribution, since the corresponding embedded Markov
chain {Zn, n ≥ 1} is ergodic. So, using Theorems 4.3 and 4.4, we obtain by induction

(5.1) τ (1)p(1) ≤so τ (2)p(2),

for any two distributions p(1), p(2)

τ (1)p(1)n = P (Z
(1)
k = (C, n)) ≤so P (Z

(2)
k = (C, n)) = τ (2)p(2)n .
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When k −→ ∞, we have {π(1)
n } ≤so {π(2)

n }, so = (st or v). �
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Figure 3. Comparison of the stationary probabilities of two systems
Σ1 and Σ2

From [3], we can exactly compute the stationary probabilities. According to the
conditions cited in Theorem 5.1, Figure 3 presents the exact values of the stationary
distribution of the two queueing systems Σ1 and Σ2. It is well observed that the cuves
become consistent along the increasing of j. Further, while comparing the two stationary
probabilities, we see that π(1)(j) is greater than π(2)(j) with respect to stochastic order
(respectively π(1)(j) is lower than π(2)(j) with respect to convex order).

5.2. Theorem. If the service time distributions of ingoing and outgoing calls are NBUE
(NWUE) in the M1,M2/G1, G2/1 retrial queue with two way communication, and if
B

(1)
1 ≤v B

(2)
1 ≡ B∗

1 , B
(1)
2 ≤v B

(2)
2 ≡ B∗

2 and B
(2)
1 ≤v B

(2)
2 , then (πn) ≤v (π∗

n) (greater
relative to the convex ordering), where (π∗

n) is the stationary distribution of the number
of customers in the orbit for the M1,M2/M1,M2/1 retrial queue with two way commu-
nication.

Proof. Consider an M1,M2/M1,M2/1 retrial queue with two way communication with
the same parameters as in M1,M2/G1, G2/1 retrial queue with two way communication:
arrival rate (ingoing call) λ, retrial rate µ, outgoing call rate α, mean service times β1

1
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and β1
2 , but with exponentially distributed service times, θ1 = 1

β1
1

and θ2 = 1
β1
2

.

B∗
1 (x) =

{
1− e

− x
β1
1 , if x ≥ 0,

0, if x < 0.

B∗
2 (x) =

{
1− e

− x
β1
2 , if x ≥ 0,

0, if x < 0.

From Stoyan [21], if Bl(x), l = 1, 2 are NBUE (respectively, NWUE), then

Bl(x) ≤v B∗
l (x), (respectively Bl(x) ≥v B∗

l (x)), l = 1, 2.

Since B
(1)
2 ≤v B

(2)
2 and B∗

1 ≤v B
(2)
2 , then using Theorem 5.1, we deduce that the

stationary distribution of the number of customers in the orbit of M1,M2/G1, G2/1
retrial queue with two way communication is less (resp. greater) than the stationary
distribution of the number of customers in the orbit of an M1,M2/M1,M2/1 retrial
queue with two way communication. �

6. Numerical example
In this section, we give a numerical illustration concerning Theorem 5.2. First,

we developed a simulator, with Matlab environment, describing the behavior of the
M1,M2/G1, G2/1 retrial queue with two way communication. Then, we estimated the
stationary probabilities of this system when the service time distribution is NBUE (re-
spectively NWUE), which we compared to those of the M1,M2/M1,M2/1 retrial queue
with two way communication. Thus, we set the incoming call rate λ = 0.3, the outgoing
call rate α = 0.2, retrial rate µ = 1, the simulation time Tmax = 1000 time units and
n = 100 (the number of replications).

We chose one type of probability distributions NBUE (a Weibull distribution (Wbl(a, b)
with a > 1)), two other laws type NWUE (a Weibull distribution (Wbl(a, b) with a ≤ 1)
and a Gamma distribution (Γ(a, b) with 0 ≤ a < 1)) for service times of incoming and
outgoing call (B1(x), B2(x)) with different parameters (see Table 1).

Table 1. Different distributions with respective parameters

B1(x) B2(x)
(a) (b) (a) (b)

NBUE Wbl(3.11, 2) Wbl(2, 4) Wbl(2.5, 2) Wbl(1.78, 2)

Exp Exp(0.65) Exp(1.00) Exp(0.61) Exp(0.55)

NWUE Wbl(0.5, 0.46) Wbl(0.66, 0.46) Wbl(0.5, 0.3333) Wbl(0.42, 0.3333)
Γ(0.6, 4) Γ(0.56, 4) Γ(0.53, 2) Γ(0.48, 2)
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Figure 4. Comparison of the stationary probabilities with respect to
stochastic order for different laws under the parameter setting specified
in Table 1.
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Figure 5. Comparison of the stationary probabilities with respect to
the convex order for different laws under the parameter setting specified
in Table 1.

Figure 4 and Figure 5, reflecting all the cases studied in Table 1, show that the theo-
retical results obtained are confirmed by the simulation ones (a good agreement between
the analytical results and those of simulation). Consequently, performance measures of
the system considered can be estimated by those of the M1,M2/M1,M2/1 retrial queue
with two way communication.
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7. Conclusion
In this work, we used the general theory of stochastic orderings to investigate the

monotonicity properties of the M1,M2/G1, G2/1 retrial queue with two way communica-
tion. Particularly, the main result of this paper consisted in giving insensitive stochastic
bounds for the stationary distribution of the embedded Markov chain. The proposed ap-
proach is quite different from those given in [3, 17], in the sense that it provides from the
fact that we can come to a compromise between the role of these qualitative bounds and
the complexity of resolution of some complicated systems where some parameters are not
perfectly known. Besides, the obtained bounds (lower and upper) are easy to calculate
and seem to be good approximations for performance measures of the considered system.
Finally, we discussed the conditions under which the comparison of this model with an
M1,M2/M1,M2/1 retrial queue with two way communication is valid, and hence bounds
of performance measures are derived. An illustrative numerical example is presented to
support theoretical results.
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