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Abstract

The idea about structural break in unit root hypothesis under time
series model had received great amount of attention over many last
decades. The importance of structural break in the mean had been
comprehensively studied by Perron [15], Perron and Vogelsang [17],
Zivot and Andrews [25] etc. This had also studied in considering of
break in variance by Kim et al. [9], Cook [6], Kumar et al. [11] etc.
There is sufficient contribution regarding break in mean and variance
individually but both are equally important and this was little explored
by Bai [1] for panel data and Meligkotsidou et al. [14] for univariate
time series. In present paper, we are extending this on panel data
AR(1) time series model under Bayesian framework. Posterior odds
ratio has been derived for various models with and without break in
mean, variance and both in consideration of unit root hypothesis. A
simulation as well as an empirical analysis is also carried out to get
more generalized view on the model under study.
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1. Introduction
A collection of time dependent set of observations recorded in order to its occurrence

is called time series. Time series data are analyzed to identify the patterns or structure
of data for understanding and modeling to have better prediction. This is not very easy
because each observation is dependent upon previous observation with respect to their
particular time see Box and Jenkins [3]. The structure of time series data is affected
by several reasons and changing the trend of the series. Such type of change are called
structural break.

The problem of structural breaks in any level such as mean/slope shifting of a se-
ries has established significant attention in association with unit root hypothesis. Yao
[23] studied the estimation and testing the number of shifts in the mean variable using
Bayesian information criterion. Perron and Vogelsang [17] and Perron [16] proposed a
class of test statistics for two different forms of structural break which allow the changes
in both level and trend. However, relative to the classical literature on unit root against
structural break determination, structural breaks are less explored under Bayesian ap-
proach in comparison to classical approach. Chib [5] had developed a general approach for
estimation multiple change points via Monte Carlo Markov Chain (MCMC) algorithm.
Chaturvedi and Kumar [4] proposed posterior odds ratio for unit root hypothesis under
the condition in which break are present in mean and trend component for AR(1) time
series model and it is further extended for multiple structural breaks. Shao and Zhang
[20] proposed a self-normalization (SN) based Kolmogorov-Smirnov test for testing the
mean shift in univariate time series and extended for multiple change points.

Sometimes variance associated with the error term is also affect the structure of model
and if not taken into account then give misleading conclusion. Inclan [7] suggested a
method to find the break point in variance using Bayesian method. Wang and Zivot [22]
started with a deterministically trending dynamic time series model in which multiple
structural changes in level, trend, and error variance are modeled and then estimated
the parameter using Gibbs sampling. Bai [1] obtained the consistency on estimated
common break point in panel data and used least squares method for estimating breaks in
mean and the quasi-maximum likelihood (QML) method to estimate break in both mean
and variance. Using Bayesian approach, Meligkotsidou et al. [14] considered structural
change in level, error variance and autoregressive coefficient at unknown break point
and estimation the model parameters by using marginal likelihood. Kumar et al. [11]
investigated the impact of structural break in error variance using Bayesian framework
and applied on export data of selected ASEAN countries for AR(1) time series model .

Recently work had been done in time series and econometric in reference of panel data
time series model considering structural break by few researcher. Li et al. [13] introduced
a penalized principal component (PPC) estimation procedure to detecting the multiple
structural breaks in the panel data models with unobservable interactive fixed effects and
show that unobservable and unknown number of structural breaks can be consistently
estimated. Qian and Su [18] studied the estimation technique and inference of common
breaks in panel data models with and without interactive fixed effects using LASSO-
type methods. Baltagi et al. [2] worked on common correlated effects (CCE) estimators
for large heterogeneous panels with a general multi factor error structure with unknown
structural breaks and Monte Carlo simulations was used to verify the consistency of
change point for correlated effects model. Kim et al. [10] discussed the wild bootstrap
method and apply Leybourne-Kim-Newbold unit root test in the presence of single or
multiple breaks in variance.

There are sufficient works on unit root hypothesis for a panel data time series model
but it is less explored in case of structural break specially considering break in both.
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The present paper dealt structural break in both mean and variance under Bayesian
framework and explored various hypothesis under different setup such as break in both
mean and variance, break in variance, break in mean, no break in association with unit
root hypothesis. Thus, one can be tested or analyze one versus other hypothesis by
using posterior odds ratio i.e. different combination of null (H0) against alternative (Ha)
hypothesis can be tested. The proposed analysis is verified by the simulation as well as
empirical study and gets sufficient scope to justify the present study.

2. Model with Structural Breaks in Mean and Variance
Let a panel data time series {yit; i = 1, 2, ..., n; t = 1, 2, ..., T} follows the time series

model with structural break where break is present at a single point time TB

(2.1) yit =

{
µi1 + uit for t = 1, 2, ..., TB

µi2 + uit for t = TB + 1, ..., T

where stochastic error term uit follows panel AR(1) process and are i.i.d. random vari-
ables follows N(0, τ−1) as given below

(2.2) uit =

{
ui,t−1 + εit for t = 1, 2, ..., TB

ui,t−1 + λεit for t = TB + 1, ..., T

We may write equation (2.1) by using (2.2)

(2.3) yit =

{
ρyit−1 + (1− ρ)µi1 + εit for t = 1, 2, ..., TB

ρyit−1 + (1− ρ)µi2 + λεit for t = TB + 1, ..., T

The model defined in (2.3) is a panel AR(1) model when structural break occurs on both
mean and variance. Our interest is to test the hypothesis that model is stationary or
not in association with structural break. Model (2.3) can be explored for all possible
particular form of model which are listed below:

(1) Model is trend stationary and break occurs on mean as well as variance in such
case series follows model (2.3) and equivalently hypothesis is H1 : ρ ϵ s, µi1 ̸=
µi2, λ ̸= 1, s = {a : a < ρ < 1; a > −1}

(2) Model is difference stationary and break occurs on both mean (intercept) as well
as variance. However break in mean is not impact in this case. Equivalently,
hypothesis is H2 : ρ = 1, µi1 ̸= µi2, λ ̸= 1 or H3 : ρ = 1, µi1 = µi2, λ ̸= 1 and
model (2.3) reduces to

(2.4) ∆yit =

{
εit for t = 1, 2, ..., TB

λεit for t = TB + 1, ..., T

(3) Model is trend stationary and break occurs only is variance equivalently hypoth-
esis is H4 : ρ ϵ s, µi1 = µi2 = µi(say), λ ̸= 1, s = {a : a < ρ < 1; a > −1} is
similar hypothesis given by (Kumar et al. 2012) for univariate case and model
follows:

(2.5) yit =

{
ρyit−1 + (1− ρ)µi + εit for t = 1, 2, ..., TB

ρyit−1 + (1− ρ)µi + λεit for t = TB + 1, ..., T

(4) Model is trend stationary and break occurs only with mean i.e. intercept which is
similar hypothesis as (Perron 1990). Equivalently hypothesis is H5 : ρ ϵ s, µi1 ̸=
µi2, λ = 1, s = {a : a < ρ < 1; a > −1} and (2.3) reduces in the form

(2.6) yit =

{
ρyit−1 + (1− ρ)µi1 + εit for t = 1, 2, ..., TB

ρyit−1 + (1− ρ)µi2 + εit for t = TB + 1, ..., T
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(5) Model is difference stationary and break occurs only with mean i.e. intercept
but in case of difference stationary mean term is vanishes, therefore model is free
from the impact of break in mean. This is similar null hypothesis taken by (Levin
et al. 2002). Equivalently hypothesis is consider H6 : ρ = 1, µi1 ̸= µi2, λ = 1 or
H7 : ρ = 1, µi1 = µi2, λ = 1 and model (2.3) is reduces to

(2.7) ∆yit = εit for t = 1, 2, ..., T

(6) Series is trend stationary and no break occurs, this model is initially explored for
the unit root hypothesis consider by (Levin et al. 2002). Equivalently hypothesis
is H8 : ρ ϵ s, µi1 = µi2 = µi(say), λ = 1, s = {a : a < ρ < 1; a > −1} and the
model come out is

(2.8) yit = ρyit−1 + (1− ρ)µi + εit for t = 1, 2, ..., T

3. Prior Distributions
In Bayesian for making inference need some specify prior distribution for the model

parameters. Here, we considered both informative and non-informative priors for the
unknown parameters. Let us assume the following prior distributions for the parameters
used in the model (Schotman and Van Dijk [19]).

µij ∼ N

(
yi0,

1

τ(1− ρ2)

)
; j = 1, 2

p(τ) ∝ 1

τ
; 0 < τ < ∞

p(λ) ∝ 1

λ
; 0 < λ < ∞

p(ρ) ∝ 1

1− a
; a < ρ < 1, a > −1

O(H0) =
θ

1− θ

The joint prior distribution is given by

π(Θ) = π(µi1)π(µi2)π(τ)π(λ)π(ρ)

=
τn−1(1− ρ2)n

(2π)n(1− a)λ
exp

[
−τ(1− ρ2)

2

n∑
i=1

{
(µi1 − yi0)

2 + (µi2 − yi0)
2}]

where Θ = {µi1, µi2, τ, λ, ρ}. The posterior probability under each hypothesis can be
define by its likelihood function and prior information of the parameters under consider-
ation.

4. Posterior Probability
Main motive behind the present study is to test the unit root hypothesis in consid-

eration of break in mean and variance or both. For testing the hypothesis, we have
derived posterior odds ratio using posterior probabilities for all possible models under
various hypothesis which are listed in section (2) under the equations from (2.3) to (2.8).
The posterior probabilities are presented by theorems 4.1 to 4.6, for which we use the
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following notations are given below:

M(ρ) = TB(1− ρ)2 + (1− ρ2)

K(ρ) = (1− ρ)

TB∑
t=1

(yit − ρyi,t−1) + (1− ρ2)yi0

G(ρ, λ) =

(
T − TB

λ

)
(1− ρ)2 + (1− ρ2)

H(ρ, λ) =

(
1− ρ

λ

) T∑
t=TB+1

(yit − ρyi,t−1) + (1− ρ2)yi0

I(ρ, λ) =

n∑
i=1

TB∑
t=1

(yit − ρyi,t−1)
2 +

1

λ

n∑
i=1

T∑
t=TB+1

(yit − ρyi,t−1)
2

+2(1− ρ2)
n∑

i=1

y2
i0 −

n∑
i=1

[K(ρ)]2

M(ρ)
−

n∑
i=1

[H(ρ, λ)]2

G(ρ, λ)

S(λ) =

n∑
i=1

TB∑
t=1

(yit − yi,t−1)
2 +

1

λ

n∑
i=1

T∑
t=TB+1

(yit − yi,t−1)
2

A(ρ, λ) = TB(1− ρ)2 +

(
T − TB

λ

)
(1− ρ)2 + (1− ρ2)

B(ρ, λ) = (1− ρ)

TB∑
t=1

(yit − ρyi,t−1) +

(
1− ρ

λ

) T∑
t=TB+1

(yit − ρyi,t−1)

+(1− ρ2)yi0

C(ρ, λ) =

n∑
i=1

TB∑
t=1

(yit − ρyi,t−1)
2 +

1

λ

n∑
i=1

T∑
t=TB+1

(yit − ρyi,t−1)
2

+(1− ρ2)

n∑
i=1

y2
i0 −

n∑
i=1

[B(ρ, λ)]2

A(ρ, λ)

N(ρ) = (T − TB)(1− ρ)2 + (1− ρ2)

L(ρ) = (1− ρ)

T∑
t=TB+1

(yit − ρyi,t−1) + (1− ρ2)yi0

O(ρ) =

n∑
i=1

[
T∑

t=1

(yit − ρyi,t−1)
2 + 2(1− ρ2)y2

i0 −
[K(ρ)]2

M(ρ)
− [L(ρ)]2

N(ρ)

]

P (ρ) = T (1− ρ)2 + (1− ρ2)

Q(ρ) = (1− ρ)

T∑
t=1

(yit − ρyi,t−1) + (1− ρ2)yi0

R(ρ) =

n∑
i=1

T∑
t=1

(yit − ρyi,t−1)
2 + (1− ρ2)

n∑
i=1

y2
i0 −

n∑
i=1

[Q(ρ)]2

P (ρ)
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4.1. Theorem. The posterior probability under H1, model is stationary with break in
mean and variance at same and known point of time TB, is given by

(4.1) P
(
y|H1) =

1∫
a

∞∫
0

(
1− ρ2

)n
Γ
(
nT
2

)
(π)

nT
2 (1− a)λ [M (ρ)]

n
2 [G (ρ, λ)]

n
2 [I (ρ, λ)]

nT
2

dλdρ

Proof. Proof is given in Appendix A1. �

4.2. Theorem. The posterior probability under H2 or H3, in which model is difference
stationary with known break in mean and variance, is given by

(4.2) P
(
y|H2) = P

(
y|H3) =

∞∫
0

Γ
(
nT
2

)
(π)

nT
2 λ [S (λ)]

nT
2

dλ

Proof. Proof is given in Appendix A2. �

4.3. Theorem. The posterior probability under H4, when model is stationary with single
known break in variance, is given by

(4.3) P
(
y|H4) =

1∫
a

∞∫
0

(
1− ρ2

)n
2 Γ

(
nT
2

)
(π)

nT
2 (1− a)λ [A (ρ, λ)]

n
2 [C (ρ, λ)]

nT
2

dλdρ

Proof. Proof is given in Appendix A3. �

4.4. Theorem. Under H5 model is stationary in which we consider the break in mean
only. The posterior probability is given by

(4.4) P
(
y|H5) =

1∫
a

(
1− ρ2

)n
Γ
(
nT
2

)
(π)

nT
2 (1− a) [M (ρ)]

n
2 [N (ρ)]

n
2 [O (ρ)]

nT
2

dρ

Proof. Proof is given in Appendix A4. �

4.5. Theorem. Model is difference stationary equivalently hypothesis is H6 or H7. The
posterior probability is given by

(4.5) P
(
y|H6) = P

(
y|H7) =

Γ
(
nT
2

)
(π)

nT
2

[
n∑

i=1

T∑
t=1

(yit − yi,t−1)
2

]nT
2

Proof. Proof is given in Appendix A5. �

4.6. Theorem. Model is stationary with no structural break and we get the posterior
probability is

(4.6) P
(
y|H8) =

1∫
a

(
1− ρ2

)n
2 Γ

(
nT
2

)
(π)

nT
2 (1− a) [P (ρ)]

n
2 [R (ρ)]

nT
2

dρ

Proof. Proof is given in Appendix A6. �
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5. Posterior Odds Ratio
In Bayesian testing procedure, we use the probability in favor of one statement i.e.

null hypothesis against the other statement i.e. alternative hypothesis. The comparison
of two different hypothesis under Bayesian inference can be made by using posterior odds
ratio (β01) and it is given as (Kass and Raftery [8])

β01 =
P (H0|y)
P (H1|y)

= O(H0)
P (y|H0)

P (y|H1)
=

θ

1− θ

P (y|H0)

P (y|H1)

For comparing models, posterior probabilities of all models can be used as a measure for
testing the hypothesis. Then, one can obtain posterior odds ratio using these posterior
probabilities, under various combinations of null and alternative hypothesis like series
is stationary or difference stationary with break or no break. Using all these posterior
probabilities, we may obtain the posterior odds ratio for all possible combination of null
as well as alternative hypothesis is listed from POR1(β

1
01) to POR14(β

14
01).

POR1: For testing the null hypothesis H2 : ρ = 1, µi1 ̸= µi2, λ ̸= 1 or H3 : ρ =
1, µi1 = µi2, λ ̸= 1 i.e., series is difference stationary with break in variance against the
alternative hypothesis H1 : ρ ϵ s, µi1 ̸= µi2, λ ̸= 1 i.e., series is stationary under the
consideration of break in both mean and variance. Then, POR is given as

(5.1) β1
01 =

θ

1− θ

∞∫
0

1

λ[S(λ)]
nT
2

dλ

1∫
a

∞∫
0

(1−ρ2)n

(1−a)λ[M(ρ)]
n
2 [G(ρ,λ)]

n
2 [I(ρ,λ)]

nT
2

dλdρ

POR2: For testing the null hypothesis H4 : ρ ϵ s, µi1 = µi2, λ ̸= 1, series is trend
stationary with break in variance against the alternative hypothesis H1 : ρ ϵ s, µi1 ̸=
µi2, λ ̸= 1, series is stationary when break occurs on both. Then, POR is given as

(5.2) β2
01 =

θ

1− θ

1∫
a

∞∫
0

(1−ρ2)
n
2

(1−a)λ[A(ρ,λ)]
n
2 [C(ρ,λ)]

nT
2

dλdρ

1∫
a

∞∫
0

(1−ρ2)n

(1−a)λ[M(ρ)]
n
2 [G(ρ,λ)]

n
2 [I(ρ,λ)]

nT
2

dλdρ

POR3: For testing the null hypothesis H5 : ρ ϵ s, µi1 ̸= µi2, λ = 1, series is trend
stationary with break in mean against the alternative hypothesis H1 : ρ ϵ s, µi1 ̸=
µi2, λ ̸= 1, series is stationary under consideration of break occurs in mean as well as
variance. Then, POR is given as

(5.3) β3
01 =

θ

1− θ

1∫
a

(1−ρ2)n

(1−a)[M(ρ)]
n
2 [N(ρ)]

n
2 [O(ρ)]

nT
2

dρ

1∫
a

∞∫
0

(1−ρ2)n

(1−a)λ[M(ρ)]
n
2 [G(ρ,λ)]

n
2 [I(ρ,λ)]

nT
2

dλdρ

POR4: For testing the null hypothesis H6 : ρ = 1, µi1 ̸= µi2, λ = 1 or H7 : ρ = 1, µi1 =
µi2, λ = 1 series is difference stationary with no break against the alternative hypothesis
H1 : ρ ϵ s, µi1 ̸= µi2, λ ̸= 1, series is stationary when break in both. Then, POR is given
as

(5.4) β4
01 =

θ

1− θ

[
n∑

i=1

T∑
t=1

(yit − yi,t−1)
2

]−nT
2

1∫
a

∞∫
0

(1−ρ2)n

(1−a)λ[M(ρ)]
n
2 [G(ρ,λ)]

n
2 [I(ρ,λ)]

nT
2

dλdρ
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POR5: For testing the null hypothesis H8 : ρ ϵ s, µi1 = µi2, λ = 1, series is trend
stationary with no break against the alternative hypothesis H1 : ρ ϵ s, µi1 ̸= µi2, λ ̸= 1,
series is stationary under consideration of break is present in both. Then, POR is given
as

(5.5) β5
01 =

θ

1− θ

1∫
a

(1−ρ2)
n
2

(1−a)[P (ρ)]
n
2 [R(ρ)]

nT
2

dρ

1∫
a

∞∫
0

(1−ρ2)n

(1−a)λ[M(ρ)]
n
2 [G(ρ,λ)]

n
2 [I(ρ,λ)]

nT
2

dλdρ

POR6: For testing the null hypothesis H2 : ρ = 1, µi1 ̸= µi2, λ ̸= 1 or H3 : ρ = 1, µi1 =
µi2, λ ̸= 1 series is difference stationary with break in variance against the alternative
hypothesis H4 : ρ ϵ s, µi1 = µi2, λ ̸= 1, series is stationary under consideration of break
in variance only. Then, POR is given as

(5.6) β6
01 =

θ

1− θ

∞∫
0

1

λ[S(λ)]
nT
2

dλ

1∫
a

∞∫
0

(1−ρ2)
n
2

(1−a)λ[A(ρ,λ)]
n
2 [C(ρ,λ)]

nT
2

dλdρ

POR7: For testing the null hypothesis H5 : ρ ϵ s, µi1 ̸= µi2, λ = 1, series is trend
stationary with break in mean against the alternative hypothesis H4 : ρ ϵ s, µi1 =
µi2, λ ̸= 1, series is stationary under break in variance. Then, POR is given as

(5.7) β7
01 =

θ

1− θ

1∫
a

(1−ρ2)n

(1−a)[M(ρ)]
n
2 [N(ρ)]

n
2 [O(ρ)]

nT
2

dρ

1∫
a

∞∫
0

(1−ρ2)
n
2

(1−a)λ[A(ρ,λ)]
n
2 [C(ρ,λ)]

nT
2

dλdρ

POR8: For testing the null hypothesis H6 : ρ = 1, µi1 ̸= µi2, λ = 1 or H7 : ρ = 1, µi1 =
µi2, λ = 1 series is difference stationary with no break against the alternative hypothesis
H4 : ρ ϵ s, µi1 = µi2, λ ̸= 1, series is stationary under consideration of break in variance.
Then, POR is given as

(5.8) β8
01 =

θ

1− θ

[
n∑

i=1

T∑
t=1

(yit − yi,t−1)
2

]−nT
2

1∫
a

∞∫
0

(1−ρ2)
n
2

(1−a)λ[A(ρ,λ)]
n
2 [C(ρ,λ)]

nT
2

dλdρ

POR9: For testing the null hypothesis H8 : ρ ϵ s, µi1 = µi2, λ = 1, series is trend
stationary with no break against the alternative hypothesis H4 : ρ ϵ s, µi1 = µi2, λ ̸= 1,
series is stationary under the consideration of break in variance. Then, POR is given as

(5.9) β9
01 =

θ

1− θ

1∫
a

(1−ρ2)
n
2

(1−a)[P (ρ)]
n
2 [R(ρ)]

nT
2

dρ

1∫
a

∞∫
0

(1−ρ2)
n
2

(1−a)λ[A(ρ,λ)]
n
2 [C(ρ,λ)]

nT
2

dλdρ

POR10: For testing the null hypothesis H6 : ρ = 1, µi1 ̸= µi2, λ = 1 or H7 : ρ = 1, µi1 =
µi2, λ = 1, series is difference stationary with no break against the alternative hypothesis
H5 : ρ ϵ s, µi1 ̸= µi2, λ = 1, series is stationary under break in mean. Then, POR is
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given as

(5.10) β10
01 =

θ

1− θ

[
n∑

i=1

T∑
t=1

(yit − yi,t−1)
2

]−nT
2

1∫
a

(1−ρ2)n

(1−a)[M(ρ)]
n
2 [N(ρ)]

n
2 [O(ρ)]

nT
2

dρ

POR11: For testing the null hypothesis H8 : ρ ϵ s, µi1 = µi2, λ = 1, series is stationary
with no break against the alternative hypothesis H5 : ρ ϵ s, µi1 ̸= µi2, λ = 1, series is
stationary under break in mean. Then, POR is given as

(5.11) β11
01 =

θ

1− θ

1∫
a

(1−ρ2)
n
2

(1−a)[P (ρ)]
n
2 [R(ρ)]

nT
2

dρ

1∫
a

(1−ρ2)n

(1−a)[M(ρ)]
n
2 [N(ρ)]

n
2 [O(ρ)]

nT
2

dρ

POR12: For testing the null hypothesis H2 : ρ = 1, µi1 ̸= µi2, λ ̸= 1 or H3 : ρ = 1, µi1 =
µi2, λ ̸= 1, series is difference stationary with break in variance against the alternative
hypothesis H5 : ρ ϵ s, µi1 ̸= µi2, λ = 1, series is stationary under break in mean. Then,
POR is given as

(5.12) β12
01 =

θ

1− θ

∞∫
0

1

λ[S(λ)]
nT
2

dλ

1∫
a

(1−ρ2)n

(1−a)[M(ρ)]
n
2 [N(ρ)]

n
2 [O(ρ)]

nT
2

dρ

POR13: For testing the null hypothesis H2 : ρ = 1, µi1 ̸= µi2, λ ̸= 1 or H3 : ρ = 1, µi1 =
µi2, λ ̸= 1, series is difference stationary with break in variance against the alternative
hypothesis H8 : ρ ϵ s, µi1 = µi2, λ = 1, series is stationary under no break. Then, POR
is given as

(5.13) β13
01 =

θ

1− θ

∞∫
0

1

λ[S(λ)]
nT
2

dλ

1∫
a

(1−ρ2)
n
2

(1−a)[P (ρ)]
n
2 [R(ρ)]

nT
2

dρ

POR14: For testing the null hypothesis H6 : ρ = 1, µi1 ̸= µi2, λ = 1 or H7 : ρ = 1, µi1 =
µi2, λ = 1, series is difference stationary with no break against the alternative hypothesis
H8 : ρ ϵ s, µi1 = µi2, λ = 1, series is stationary under no break. Then, POR is given as

(5.14) β14
01 =

θ

1− θ

[
n∑

i=1

T∑
t=1

(yit − yi,t−1)
2

]−nT
2

1∫
a

(1−ρ2)
n
2

(1−a)[P (ρ)]
n
2 [R(ρ)]

nT
2

dρ

6. Numerical Illustrations
Structural break in the model occurs because of various reasons like change on policy,

management or any other social or political changes and any time series may be affected
by them. In present study our main purpose is to studying PAR(1) time series model
considering both type of breaks i.e. break in mean and variance given by (2.3). For
understanding the impact of the break, we have performed simulation and empirical
analysis. This may be misinterpreted by various forms given by (2.4) to (2.8) and one
may also be interested to study the behavior in respect to a particular form for various
hypothesis.



1222

Figure 1. When alternative hypothesis considers break on mean and
variance both

6.1. Simulation Study. A simulation study is carried out in which we have generated
panel data time series model of size T=25 considering three panels with the initial ob-
servations [y10, y20, y30] = [100, 120, 140] and taken break point in each panel at TB=15.
Our main interest is to explore PAR(1) in respect to unit root hypothesis in association
with break in mean and variance. Therefore we have explored our study for various
autoregressive models using coefficient ρ = [0.90, 0.92, 0.95, 0.98, 0.99], λ = [3, 5, 7, 9,
11] with error variance τ = 0.025, µi1 is the mean before the break considering three
combinations [(30,40,50); (60,70,80); (80,90,100)] and µi2 is the mean after the break
considering three combinations [(300,400,500); (600,700,800); (800,900,1000)]. For the
posterior probability, expression need’s to integrate in respect to ρ and λ. For this, we
used Monte Carlo integration method taking 5000 values of ρ from U (a, 1) and λ from
U (0, 1), where a is obtained by Dickey Fuller test statistic.

Model (2.3) can be written by a particular model (i) break on both, (ii) break only in
variance (iii) break only in mean and (iv) no break in consideration of trend stationary
as well as difference stationary series. All cases from (i) to (iv) are tested, taking vari-
ous null hypothesis which are considered with the posterior odds ratio listed by POR1

to POR14. As there are several values and our purpose is to test the null against the
alternative and conclude the inference therein. The POR value which we get is too small
to identify the accept-reject criterion and do not give better interpretation. For making
appropriate conclusion, we interpreted the result by using graphically. In the figures,
x-axis and y-axis denote the different values of λ, ρ and z-axis considering the decision
rule to accept or reject the null hypothesis. If the value of POR is less than one means
reject the null hypothesis, denoted by 1 otherwise accepted, denoted by -1. In details all
cases are discussed below:

Case 1: Both break on mean and variance
The true model with generated model is considering break in both mean and variance.
First we have taken it as alternative and testing for all possible null by using theorem 4.1
to 4.6 which is given in section (4) .We have tested the null hypothesis against similar
alternative hypothesis one by one and obtained the POR from POR1 to POR5. The
results obtained for simulated data are very small and cannot be represented due to of
size limitation, therefore we are presenting here graphically. In the Figure 1, considering
all hypotheses under the given model in equations from (2.4) to (2.8) as a null and the al-
ternative hypothesis are set by equation (2.3) i.e. hypothesis associated with true model
which allows structural break in both mean and variance. We observed that except H4,
other null hypothesis under the true model is rejected which advocate that both break
provide more impact on series to decrease the POR. In hypothesis H4, we ignore break in
the intercept which increase fluctuation and then impact the value of the error variance.
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Figure 2. When alternative hypothesis considers break on variance

Figure 3. When alternative hypothesis considers break on mean

This reduces the value of POR and concludes that alternative hypothesis is rejected. It is
easily observed from the figure, rejection criterion does not much affected by large value
ofρ and λ as well as different values of intercept term do not affect the acceptance or
rejection criterion.

Case 2: Break in variance
If we ignore break in mean, hypothesis under the true model is coming only due to break
in error variance and testing with other null hypothesis be carried out. We know that
error term affect the series more than other terms like linear trend, intercept etc. If break
is also present in the error term, then fluctuation of the series after the break point is
more and this directly impact the model. Therefore, the POR is always less than 1. In
Figure 2, here it is observed that all null hypotheses are rejected whatever the series is
stationary or non-stationary with break in mean or variance. Increase on value of inter-
cept term and different values of λ as well as ρ do not change our rejection or acceptance
of the hypothesis. Similarly, ignoring break in mean is also not affecting the unit root
hypothesis.

Case 3: Break in mean
Present case considers the break in mean only i.e. we ignore the break in variance. We
have presented the result in Figure 3. Here it is revealed the proposed hypothesis signifi-
cantly affecting the correct model for large value of ρ and λ i.e. alternative hypothesis is
accepted. But if series is stationary with no break comparison to our assumed hypothe-
sis, the POR value is greater than one and null is accepted. Under unit root hypothesis
with break in mean does not affect much because mean term is vanishes from the model.
Here, ignoring break in error variance of models may increase the strength of evidence
for a unit root against stationary when an alternative model has break in mean term.
This is also justified from the present simulation study.
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Figure 4. When alternative hypothesis considers no break

Case 4: No break is consider
There are several examples where break is not taken into account. Considering this ar-
gument we have tested the model without any break and results are presented by Figure
4. This figure present decision between the unit root against stationary hypothesis. The
first hypothesis H2 or H3 is rejected for every value of µ, ρ and λ whereas the second
hypothesis H6 or H7 is accepted for small value of ρ and λ with increasing value of µ. It
is clear from the Figure 4, unit root hypothesis is rejected for all the case because break
in both is ignored and there is coefficient on upper direction which will defiantly increase
the autoregressive coefficients value. It is also observed that if series is stationary under
break or no break provides less POR value as compare to unit root hypothesis.

6.2. Empirical Study. In present section, we have done empirical analysis of our pro-
posed model to get better interpretation and target then to get justify the proposed
study. For a nation, agriculture product is one of the necessary elements to observe the
economic growth and mainly changeable according to the season. But it also depends
upon average land use, quality of seeds, better use of fertilizers, new technology etc and
it affects the production of the outputs. Therefore, we proposed a panel data time series
model which is handling the change in the production of agriculture commodities when
series having structural break. For which we have taken data from Agricultural Statistics
at a Glance 2014, Source data from Department of Fertilizers, Ministry of Chemicals &
Fertilizers. In this data set, we analyzed the import of fertilizers, name as N (Nitrogen),
P (Phosphate), K (Potash) cover the period from 1980-81 to 2013-14. First of all, we
identified the structural break in the import series using R software. Command struc-
change recognizes break point for individual series is developed by (Zeileis et al. [24])
and recorded the break point of individual series reported in the Table 1 are given below.

Table 1. Structural break point present in different fertilizers

Break point Fertilizers
N P K

T1 24 25 16
T2 28 - 24

Here it is observed that the range of break point is between 16 to 28. Therefore, we
have tested our model considering every time point as a break point in this interval. The
model has explored first fitting for the import data of fertilizers and tested the unit root
hypothesis under all fours cases using the derived POR listed by POR1 to POR14.

Table 2 shows that if break is present in mean and variance both, the posterior odds
ratio value is too small to reject the null hypothesis except null hypothesis is considers
only break in variance. This may be happened due to direct impact of the error variance
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Table 2. Posterior odds ratio value when alternative hypothesis con-
sider break in both

Break Point β1
01 β2

01 β3
01 β4

01 β5
01

16 7.24E-31 1.4100 3.09E-30 2.13E-29 3.73E-30
17 7.11E-29 2.5025 4.32E-28 2.81E-27 5.16E-28
18 2.12E-27 2.6595 1.11E-26 8.48E-26 1.39E-26
19 1.98E-25 3.3339 9.11E-25 5.83E-24 1.12E-24
20 8.11E-25 2.5833 4.25E-24 2.85E-23 5.14E-24
21 9.58E-25 1.9031 4.99E-24 3.02E-23 5.99E-24
22 1.64E-24 1.5227 6.46E-24 5.14E-23 7.85E-24
23 2.17E-24 3.0106 1.04E-23 6.70E-23 1.23E-23
24 1.98E-20 1.7244 9.23E-20 6.15E-19 1.03E-19
25 4.11E-17 1.1200 1.54E-16 1.04E-15 1.79E-16
26 1.99E-14 1.2738 6.99E-14 5.20E-13 7.68E-14
27 2.47E-10 1.2153 8.57E-10 4.90E-09 8.31E-10
28 1.10E-10 1.1944 3.67E-10 2.07E-09 3.72E-10

in the series and it can also be analyzed by ignoring the mean term. Therefore, the
import of fertilizers series is stationary either break in mean and variance or break in
variance only.

Table 3. Posterior odds ratio value when alternative hypothesis con-
sider break in variance

Break Point β6
01 β7

01 β8
01 β9

01

16 5.13E-31 2.19E-30 1.51E-29 2.65E-30
17 2.84E-29 1.73E-28 1.12E-27 2.06E-28
18 7.96E-28 4.18E-27 3.19E-26 5.22E-27
19 5.95E-26 2.73E-25 1.75E-24 3.37E-25
20 3.14E-25 1.64E-24 1.10E-23 1.99E-24
21 5.04E-25 2.62E-24 1.59E-23 3.15E-24
22 1.08E-24 4.24E-24 3.38E-23 5.15E-24
23 7.22E-25 3.47E-24 2.23E-23 4.10E-24
24 1.15E-20 5.35E-20 3.57E-19 5.97E-20
25 3.67E-17 1.37E-16 9.29E-16 1.60E-16
26 1.56E-14 5.49E-14 4.08E-13 6.03E-14
27 2.03E-10 7.05E-10 4.03E-09 6.84E-10
28 9.20E-11 3.07E-10 1.73E-09 3.11E-10

In Table 3, we consider the alternative hypothesis which has break only in variance.
The POR is too small definitely less than 1, so we reject the null hypothesis. This may
be due to break in variance in error term and fluctuating the series to decrease the value
of POR. It is concluded that import series is always stationary when break present only
in variance.

Ignoring break in variance, the structure of the series may be changed by mean term
which is reported in Table 4. In our first two cases, null hypothesis considers no break
which can be concluded that series may be stationary or non-stationary but the third
posterior odds ratio gets the series is difference stationary. Under unit root hypothesis
with no break, series is non-stationary.
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Table 4. Posterior odds ratio value when alternative hypothesis con-
sider break in mean

Break Point β10
01 β11

01 β12
01

16 6.8921 1.2078 0.2343
17 6.5074 1.1961 0.1648
18 7.6307 1.2495 0.1906
19 6.4032 1.2327 0.2176
20 6.6993 1.2099 0.1910
21 6.0521 1.2008 0.1920
22 7.9629 1.2147 0.2540
23 6.4165 1.1821 0.2083
24 6.6640 1.1148 0.2143
25 6.7702 1.1659 0.2675
26 7.4360 1.0992 0.2848
27 5.7186 0.9697 0.2877
28 5.6385 1.0126 0.2995

Table 5. Posterior odds ratio value when alternative hypothesis con-
sider no break

Break Point β13
01 β14

01

16 0.1940 5.7064
17 0.1377 5.4405
18 0.1525 6.1068
19 0.1765 5.1945
20 0.1579 5.5371
21 0.1599 5.0401
22 0.2091 6.5557
23 0.1762 5.4281
24 0.1922 5.9778
25 0.2295 5.8068
26 0.2591 6.7652
27 0.2967 5.8973
28 0.2957 5.5681

In Table 5, no break is present in the series and get that series is non-stationary or unit
root. The value of posterior odds ratio is less than one when break is present under unit
root hypothesis and concluded that series is stationary. If no break is presence under unit
root hypothesis to accept the null hypothesis, then series is concluded non-stationary.

The present empirical analysis is verifying the impact of structural break and reveals
that if it is ignored then unit root hypothesis may be reversed. It is also observed that
ignorance of break in variance is more prone to acceptance of unit root hypothesis. Here
it is noted that break in mean is vanishes under the unit root case so this does not impact
the model. It is also noticed that when both break are taken into account there are an
increase on the value of POR. This can happen because of break, which is present in
variance only under the unit root. The present study is strongly advocating that if break
is not taken into account then unit root hypothesis get reverted. The similar result is
also observed in simulated data.
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7. Conclusion
The present paper dealt the Bayesian analysis of PAR(1) time series model with break

in mean and variance both. This is showing the importance of the analysis of structure
break and recorded that the ignorance of break has serious impact on unit root hypothesis.
The study may be extended for the model with non-normal error as well as model with
non-linear time trend and then for multivariate time series model.
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Appendix
Posterior probability under various setup of PAR(1) time series model consider break

in mean and variance which are placed in equation (2.3) to (2.8). The likelihood function
connected with the assumed prior distribution, the derived posterior probability under
different model is given below.

A1: Posterior probability under H1

In this hypothesis, the likelihood function containing break in mean as well as variance
and is given by

L (τ, ρ, µ1, µ2, λ|y) =
τ

nT
2

(2π)
nT
2

exp

−
τ

2

n∑
i=1


TB∑
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yit − ρyit−1 − (1 − ρ)µi1

)2

+
1

λ

T∑
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(
yit − ρyit−1 − (1 − ρ)µi2

)2


Combining the likelihood function with the prior distribution, the posterior probability
is

P
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A2: Posterior probability under H2

The likelihood function under unit root hypothesis is given as

L (τ, λ|y) =
τ
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Combining it with the prior distributions, the posterior probability is
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A3: Posterior probability under H4

The likelihood function for the model containing break in variance is given as

L (τ, ρ, µ, λ|y) =
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The expression of posterior probability can be derive with the help of likelihood function
and prior distribution which is given as
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)y

2
i0 −

[B(ρ, λ)]2

A(ρ, λ)


 dτdλdρ

=

1∫
a

∞∫
0

(
1 − ρ2

)n
2 Γ

(
nT
2

)
(π)

nT
2 (1 − a)λ [A (ρ, λ)]

n
2 [C (ρ, λ)]

nT
2

dλdρ
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A4: Posterior probability under H5

The likelihood function is given under this hypothesis is

L (τ, ρ, µ1, µ2|y) =
τ

nT
2

(2π)
nT
2

exp

−
τ

2

n∑
i=1


TB∑
t=1

(
yit − ρyit−1 − (1 − ρ)µi1

)2

+

T∑
t=TB+1

(
yit − ρyit−1 − (1 − ρ)µi2

)2


The posterior probability is found by

P
(
y|H5

)
=

1∫
a

∞∫
0

∞∫
−∞

∞∫
−∞

τ
nT
2

+n−1
(1 − ρ2)n

(2π)
nT
2

+n
(1 − a)

exp

−
τ

2

n∑
i=1


TB∑
t=1

(
yit − ρyit−1 − (1 − ρ)µi1

)2

+
T∑

t=TB+1

(
yit − ρyit−1 − (1 − ρ)µi2

)2
+ (1 − ρ

2
) (µi1 − yi0)

2

+(1 − ρ
2
) (µi2 − yi0)

2
}]

dµ1dµ2dτdρ

=

1∫
a

∞∫
0

∞∫
−∞

∞∫
−∞

τ
nT
2

+n−1
(1 − ρ2)n

(2π)
nT
2

+n
(1 − a)

exp

[
−

τ

2

n∑
i=1

{
µ
2
i1

(
TB(1 − ρ)

2
+ (1 − ρ

2
)
)

−2µi1

(1 − ρ)

TB∑
t=1

(
yit − ρyit−1

)
+ (1 − ρ

2
)yi0

 +

TB∑
t=1

(
yit − ρyit−1

)2

+

T∑
t=TB+1

(
yit − ρyit−1

)2 − 2µi2

(1 − ρ)

T∑
t=TB+1

(
yit − ρyit−1

)
+ (1 − ρ

2
)yi0


+µ

2
i2

(
(T − TB)(1 − ρ)

2
+ (1 − ρ

2
)
)
+ 2(1 − ρ

2
)y

2
i0

}]
dµ1dµ2dτdρ

=

1∫
a

∞∫
0

τ
nT
2

−1
(1 − ρ2)n

(2π)
nT
2 (1 − a) [M(ρ)]

n
2 [N(ρ)]

n
2

exp

−
τ

2

n∑
i=1


T∑

t=1

(
yit − ρyit−1

)2
+2(1 − ρ

2
)y

2
i0 −

[K(ρ)]2

M(ρ)
−

[L(ρ)]2

N(ρ)

}]
dτdρ

=

1∫
a

(1 − ρ2)nΓ
(

nT
2

)
(π)

nT
2 (1 − a)λ [M(ρ)]

n
2 [N(ρ)]

n
2 [O(ρ)]

nT
2

dρ

A5: Posterior probability under H6

No break is consider under unit root hypothesis, the likelihood function is given as

L (τ |y) =
τ

nT
2

(2π)
nT
2

exp

−
τ

2

n∑
i=1

T∑
t=1

(
yit − yit−1

)2
Combining the prior distributions, the posterior probability is obtained

P
(
y|H6

)
=

∞∫
0

τ
nT
2

−1

(2π)
nT
2

exp

−
τ

2

n∑
i=1

T∑
t=1

(
yit − yit−1

)2 dτ

=
Γ
(

nT
2

)
(π)

nT
2 λ

[
n∑

i=1

T∑
t=1

(
yit − yit−1

)2]nT
2

dλ

A6: Posterior probability under H8

The likelihood function is given as

L (τ, ρ, µ|y) =
τ

nT
2

(2π)
nT
2

exp

−
τ

2

n∑
i=1

T∑
t=1

(
yit − ρyit−1 − (1 − ρ)µi

)2
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The posterior probability is

P
(
y|H8

)
=

1∫
a

∞∫
0

∞∫
−∞

τ
nT+n

2
−1

(1 − ρ2)
n
2

(2π)
nT+n

2 (1 − a)

exp

−
τ

2

n∑
i=1


T∑

t=1

(
yit − ρyit−1 − (1 − ρ)µi

)2
+(1 − ρ

2
) (µi − yi0)

2
}]

dµdτdρ

=

1∫
a

∞∫
0

∞∫
−∞

τ
nT+n

2
−1

(1 − ρ2)
n
2

(2π)
nT+n

2 (1 − a)

exp

[
−

τ

2

n∑
i=1

{
µ
2
i

(
T (1 − ρ)

2
+ (1 − ρ

2
)
)
+ (1 − ρ

2
)y

2
i0

−2µi

(1 − ρ)

T∑
t=1

(
yit − ρyit−1

)
+ (1 − ρ

2
)yi0

 +
T∑

t=1

(
yit − ρyit−1

)2
 dµdτdρ

=

1∫
a

∞∫
0

τ
nT
2

−1
(1 − ρ2)

n
2

(2π)
nT
2 (1 − a) [P (ρ)]

n
2

exp

−
τ

2

n∑
i=1


T∑

t=1

(
yit − ρyit−1

)2
+(1 − ρ

2
)y

2
i0 −

[Q(ρ)]2

P (ρ)

}]
dτdρ

P =

1∫
a

(1 − ρ2)
n
2 Γ

(
nT
2

)
(π)

nT
2 (1 − a)λ [(ρ)]

n
2 [R(ρ)]

nT
2

dρ

Utilizing (A1) to (A6), we obtain the expression for required Theorem 4.1 to 4.6.
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