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Abstract
Let Sp(RM) be the lattice of all saturated submodules of an R-module M with respect
to a prime ideal p of a commutative ring R. We examine the properties of the mappings
η : Sp(RR) → Sp(RM) defined by η(I) = Sp(IM) and θ : Sp(RM) → Sp(RR) defined
by θ(N) = (N : M), in particular considering when these mappings are lattice homomor-
phisms. It is proved that if M is a semisimple module or a projective module, then η is a
lattice homomorphism. Also, if M is a faithful multiplication R-module, then η is a lattice
epimorphism. In particular, if M is a finitely generated faithful multiplication R-module,
then η is a lattice isomorphism and its inverse is θ. It is shown that if M is a distributive
module over a semisimple ring R, then the lattice Sp(RM) forms a Boolean algebra and
η is a Boolean algebra homomorphism.
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1. Introduction
We assume throughout this paper that all rings are commutative with nonzero identity

and all modules are unitary. Let R be a ring and M be an R-module. For any submodule
N of M , we denote the annihilator of the R-module M/N by (N : M), i.e., (N : M) =
{r ∈ R | rM ⊆ N}.

It is well-known that the collection of all submodules of M forms a lattice with respect
to the operations ∨ and ∧ defined by

L ∨ N = L + N and L ∧ N = L ∩ N.

Note that this lattice, denoted L(RM), is bounded with the least element (0) and great-
est element M . Recently, P.F. Smith has studied several mappings between L(RR) and
L(RM) [22–24]. For instance, in [22], he examined conditions under which the map-
pings λ : L(RR) → L(RM) defined by λ(I) = IM and µ : L(RM) → L(RR) defined by
µ(N) = (N : M) are injective, surjective or lattice homomorphisms. An R-module M is
called a λ-module (respectively µ-module), if λ (respectively µ) is a lattice homomorphism.
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The study of the mappings λ and µ continued in [23], considering when these mappings
are complete lattice homomorphisms.

A proper submodule P of M is called a prime submodule if for r ∈ R and x ∈ M , rx ∈ P
implies that r ∈ (P : M) or x ∈ P (see, for example, [2,6,18,19]). For a proper submodule
N of an R-module M , the intersection of all prime submodules of M containing N is called
the radical of N and denoted by rad N ; if there are no such prime submodules, rad N is
M (see, for example, [11, 14, 17]). A submodule N of M is called a radical submodule if
rad N = N . The collection of all radical submodules of M which is denoted by R(RM)
forms a lattice with respect to the following operations:

L ∨ N = rad(L + N) and L ∧ N = L ∩ N.

Note that R(RM) is a bounded lattice with the least element rad(0) and the greatest
element M .

In [20], H.F. Moghimi and J.B. Harehdashti have studied the properties of the mappings
ρ : R(RR) → R(RM) defined by ρ(I) = rad(IM) and σ : L(RR) → L(RM) defined by
σ(N) = (N : M), in particular considering when these mappings are lattice monomor-
phisms or epimorphisms. Later in [9], they investigated conditions under which these
mappings are complete homomorphisms. Note that ρ is always a lattice homomorphism,
but not necessarily a complete lattice homomorphism. An R-module M is called a σ-
module if σ is a lattice homomorphism.

Let M be an R-module. For a prime ideal p of R and a submodule N of M , the set
Sp(N) = {m ∈ M | cm ∈ N for some c ∈ R \ p} is called the saturation of N with respect
to p. It is clear that N ⊆ Sp(N). It is said that N is saturated with respect to p, if
N = Sp(N). It is easily seen that Sp(N) is a saturated submodule of M (see [15, 16], for
more details about saturation of submodules). The collection of all saturated submodules
of an R-module M with respect to a fixed prime ideal p of R is a lattice with the following
operations:

L ∨ N = Sp(L + N) and L ∧ N = L ∩ N.

We shall denote this lattice by Sp(RM), or by Sp(M) if there is no ambiguity about R.
Note that Sp(M) is bounded, with the least element Sp(0) and the greatest element M .

Let R be a ring, p a fixed prime ideal of R and M an R-module. Now consider the
mappings η : Sp(R) → Sp(M) defined by

η(I) = Sp(IM),

for every saturated ideal I of R, and θ : Sp(M) → Sp(R) defined by

θ(N) = (N : M),

for every saturated submodule N of M . It will be convenient for us to call the module
M an η-module (resp. a θ-module) in case the above mapping η (resp. θ) is a lattice
homomorphism.
In this paper, we investigate conditions under which η and θ are lattice homomorphisms,
in particular considering when η and θ are Boolean algebra homomorphisms. It is shown
that modules over Prüfer domains (Corollary 2.4), projective modules (Corollary 2.6) and
semisimple R-modules (Corollary 2.7) are three classes of η-modules. It is proved that if
M is a faithful multiplication R-module, then η is a lattice epimorphism, and in particular
Sp(M) is isomorphic to a quotient of Sp(R) (Theorem 2.8) for all prime ideals p of R. It is
shown that a finitely generated module M is a θ-module if and only if it is a multiplication
module (Corollary 2.11). In particular, every cyclic R-module is a θ-module (Corollary
2.10). Moreover, if M is a finitely generated faithful multiplication R-module then η and
θ are lattice isomorphisms (Corollary 2.17).
An R-module M is called distributive if L(RM) is a distributive lattice (see, for example,
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[8]). A ring R is called arithmetical if it is a distributive R-module. We say that an R-
module M is S-distributive with respect to a prime ideal p of R if Sp(M) is a distributive
lattice. It is proved that an R-module M is distributive if and only if it is S-distributive
with respect to any prime ideal of R (Corollary 3.4). In particular, every multiplication
module over an arithmetical ring R is S-distributive with respect to any prime ideal
of R (Corollary 3.5). It is shown that if M is a distributive module over a semisimple
ring R, then Sp(M) forms a Boolean algebra (Theorem 3.7) and η is a Boolean algebra
homomorphism (Theorem 3.13). In particular, if M is a multiplication module over a
semisimple ring R, then η is a Boolean algebra epimorphism (Corollary 3.14).

2. η-modules and θ-modules
We start with a lemma which collects some facts about saturation of submodules.

Lemma 2.1. Let R be a ring, p a prime ideal of R and M an R-module. Then
(1) Sp(L ∩ N) = Sp(L) ∩ Sp(N) for all submodules L and N of M ;
(2) Sp(Sp(IM) + Sp(JM)) = Sp(Sp(I + J)M) = Sp(IM + JM) for all ideals I and

J of R.

Proof. (1) Clear.
(2) Since IM ⊆ (I + J)M ⊆ Sp(I + J)M , we conclude that Sp(IM) ⊆ Sp(Sp(I + J)M).
Similarly, Sp(JM) ⊆ Sp(Sp(I +J)M). Therefore, we have Sp(IM)+Sp(JM) ⊆ Sp(Sp(I +
J)M). Hence we have Sp(Sp(IM) + Sp(JM)) ⊆ Sp(Sp(I + J)M). Now, let x ∈ Sp(Sp(I +
J)M). Then there exists c ∈ R \ p such that cx ∈ Sp(I + J)M . Therefore cx =

∑k
i=1 rixi

for some ri ∈ Sp(I + J) and xi ∈ M (1 ≤ i ≤ k). Thus there are ci ∈ R \ p (1 ≤ i ≤ k)
such that ciri ∈ I + J , and so c1 . . . ckcx ∈ (I + J)M . It follows that x ∈ Sp((I + J)M).
Hence we have Sp(Sp(I + J)M) ⊆ Sp(IM + JM). It is also clear that Sp(IM + JM) ⊆
Sp(Sp(IM) + Sp(JM)). �
Theorem 2.2. Let R be a ring, p a prime ideal of R and M an R-module. Then the
following statements are equivalent:

(1) M is an η-module over R;
(2) Sp((I ∩ J)M) = Sp(IM) ∩ Sp(JM) for all ideals I and J of R;
(3) (Ip ∩ Jp)Mp = IpMp ∩ JpMp for all ideals I and J of R;
(4) Mp is a λ-module over Rp.

Proof. (1) ⇒ (2) By definition.
(2) ⇒ (1) Let I, J ∈ Sp(R). By the assumption, η(I ∧ J) = η(I) ∧ η(J).
By using Lemma 2.1, we have

η(I ∨ J) = Sp((I ∨ J)M) = Sp(Sp(I + J)M)
= Sp(Sp(IM) + Sp(JM))
= Sp(IM) ∨ Sp(JM)
= η(I) ∨ η(J).

(2) ⇒ (3) Let z ∈ IpMp ∩ JpMp. Then z =
∑k

i=1 aixi/si =
∑k

i=1 biyi/ti for some ai ∈ I,
bi ∈ J , xi, yi ∈ M , si, ti ∈ R\p. Hence we have s1 . . . skt1 . . . tkz ∈ IM ∩JM which follows
that z ∈ Sp(IM) ∩ Sp(JM). Therefore by (2), z ∈ Sp((I ∩ J)M). Thus cz ∈ (I ∩ J)M for
some c ∈ R \ p, and so z ∈ (Ip ∩ Jp)Mp as desired. The reverse inclusion is clear.
(3) ⇒ (2) Let x ∈ Sp(IM) ∩ Sp(JM). Then cx ∈ IM and dx ∈ JM for some c, d ∈ R \ p.
Therefore cx =

∑k
i=1 cixi and dx =

∑k
j=1 djx′

j for some ci ∈ I, dj ∈ J and xi, x′
j ∈ M

(1 ≤ i, j ≤ k). Thus c1dx =
∑k

j=1 c1djx′
j and hence c1dx ∈ (I ∩J)M such that c1d ∈ R\p.

Thus x ∈ Sp((I ∩ J)M). The reverse inclusion is clear.
(3) ⇔ (4) Follows from [22, Lemma 2.1 (ii)]. �



246 M. Noferesti, H.F. Moghimi, M.H. Hosseini

Let R be a domain with the field of fractions K. A non-zero ideal I of R is called
invertible provided I−1I = R where I−1 = {k ∈ K : kI ⊆ R}. A domain R is called
Prüfer if every non-zero finitely generated ideal of R is invertible (see, for more details,
[13]).

Corollary 2.3. Let R be a domain, p a prime ideal of R and M an R-module. Then the
following statements are equivalent:

(1) Rp is Prüfer;
(2) Every Rp-module is a λ-module;
(3) Every R-module is an η-module.

Proof. (1) ⇔ (2) By [22, Theorem 2.3].
(2) ⇔ (3) By Theorem 2.2. �

Corollary 2.4. Let R be any Prüfer domain. Then every R-module is an η-module.

Proof. Let R be a Prüfer domain and p be a prime ideal of R. Then by [13, Theorem
6.6], Rp is a valuation ring. Thus by [22, Proposition 2.4], every Rp-module is a λ-module
and hence by Corollary 2.3, every R-module is an η-module. �

Theorem 2.5. Let R be any ring.Then
(1) Every direct summand of an η-module is an η-module.
(2) Every direct sum of λ-modules is an η-module.

Proof. (1) Let K be a direct summand of an η-module M . Let I and J be any ideals of
R and p be a prime ideal of R. Then by Lemma 2.1 (1) and Theorem 2.2, we have

Sp(IK) ∩ Sp(JK) = Sp(K ∩ IM) ∩ Sp(K ∩ JM)
= Sp(K) ∩ Sp(IM) ∩ Sp(JM)
= Sp(K) ∩ Sp((I ∩ J)M)
= Sp(K ∩ (I ∩ J)M)
= Sp((I ∩ J)K).

Thus by Theorem 2.2, K is an η-module.
(2) Let Mi (i ∈ I) be any collection of λ-modules and let M = ⊕i∈IMi. Given any ideals
I and J of R, by [22, Lemma 2.1], we have

Sp(IM) ∩ Sp(JM) = Sp(⊕i∈IIMi) ∩ Sp(⊕i∈IJMi)
= Sp(⊕i∈IIMi ∩ ⊕i∈IJMi)
= Sp(⊕i∈I(IMi ∩ JMi))
= Sp(⊕i∈I(I ∩ J)Mi)
= Sp((I ∩ J)M).

Thus by Theorem 2.2, M is an η-module. �

Corollary 2.6. For any ring R, every projective R-module is an η-module.

Proof. By [22, Lemma 2.1], every ring R is a λ-module. Thus by [10, Theorem IV.2.1]
and Theorem 2.5(2), every free R-module is an η-module, and therefore by [10, Theorem
IV.3.4] and Theorem 2.5(1), every projective R-module is an η-module. �

Corollary 2.7. For any ring R, every semisimple R-module is an η-module.

Proof. Clearly every simple module is a λ-module. Since any semisimple module is a
direct sum of a family of simple submodules, the result follows from Theorem 2.5(2). �
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An R-module M is called a multiplication module if the mapping λ is surjective, i.e.,
for each submodule N of M there exist an ideal I of R such that N = IM . In this case,
we can take I = (N : M) (see, for example, [4, 7]).

Theorem 2.8. Let M be a faithful multiplication R-module. Then η is a lattice epimor-
phism.
In particular, Sp(M) is isomorphic to a quotient of Sp(R) for all prime ideals p of R.

Proof. Since M is a faithful multiplication R-module, M is a λ-module by [22, Theorem
2.12]. Thus by [22, Lemma 2.1], (I ∩ J)M = IM ∩ JM for all ideals I and J of R. It
follows that, by Lemma 2.1 (1),

Sp((I ∩ J)M) = Sp(IM ∩ JM) = Sp(IM) ∩ Sp(JM)
for all ideals I and J and prime ideals p of R. Hence by Theorem 2.2, η is a lattice
homomorphism. Now, let p be a prime ideal of R and N ∈ Sp(M). Since M is a
multiplication module, we have

η((N : M)) = Sp((N : M)M) = Sp(N) = N

and therefore η is an epimorphism. Now, we define the relation ∼ on Sp(R) by
I∼J ⇔ Sp(IM) = Sp(JM).

It is evident that ∼ is an equivalence relation on Sp(R). We show that ∼ is a congru-
ence relation. Assume that I1∼J1 and I2∼J2. Thus we have Sp(I1M) = Sp(J1M) and
Sp(I2M) = Sp(J2M). Since M is a faithful multiplication module,

Sp((I1 ∩ J1)M) = Sp(I1M) ∩ Sp(J1M)
= Sp(I2M) ∩ Sp(J2M)
= Sp((I2 ∩ J2)M),

and therefore I1 ∧ J1∼I2 ∧ J2. Also, by Lemma 2.1 (2),
Sp(Sp(I1 + J1)M) = Sp(Sp(I1M) + Sp(J1M))

= Sp(Sp(I2M) + Sp(J2M))
= Sp(Sp(I2 + J2)M)

which follows that I1 ∨ J1∼I2 ∨ J2. Thus Sp(R)/∼, the set of equivalence classes with
respect to ∼, is a lattice with the following operations:

I/∼ ∨̃ J/∼ = I ∨ J/∼ and I/∼ ∧̃ J/∼ = I ∧ J/∼.

Now, the mapping η̄ : Sp(R)/∼ → Sp(M) given by η̄(I/∼) = η(I) = Sp(IM) is a lattice
isomorphism. �

Recall that θ : Sp(M) → Sp(R) defined by θ(N) = (N : M) is the restriction of
the mapping µ : L(RM) → L(RR) to Sp(M) given in [22]. Thus every µ-module is a
θ-module.

Theorem 2.9. Let R be a ring and M an R-module. Consider the following statements:
(1) M is a θ-module over R;
(2) (L + N : M) = (L : M) + (N : M) for all saturated submodules L and N of M ;
(3) (Lp + Np : Mp) = (Lp : Mp) + (Np : Mp) for all submodules L and N of M and

for all prime ideals p of R;
(4) (L + N : M) = (L : M) + (N : M) for all submodules L and N of M ;
(5) M is a µ-module over R.

Then (1) ⇔ (2) and (4) ⇔ (5).
In particular, if M is a finitely generated R-module, then all of the above statements are
equivalent.
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Proof. (1) ⇔ (2) Follows from definition.
(4) ⇔ (5) Follows from [22, Lemma 3.1].
(4) ⇒ (2) Clear.
(2) ⇒ (3) Suppose that M is finitely generated. Then M = Rm1 + . . . + Rmk for some
mi ∈ M (1 ≤ i ≤ k). Let L and N be two submodules of M . First we show that
(Sp(L)+Sp(N) : M)p = ((L+N)p : Mp) for all prime ideals p of R. Let p be a prime ideal
of R and assume that r/1 ∈ (Sp(L) + Sp(N) : M)p. It follows that rM ⊆ Sp(L) + Sp(N).
Thus rmi = xi + yi for some xi ∈ Sp(L), yi ∈ Sp(N) (1 ≤ i ≤ k). Therefore cixi ∈ L and
diyi ∈ N for some ci, di ∈ R \ p (1 ≤ i ≤ k). Now, since c1 . . . ckd1 . . . dkrM ⊆ L + N , we
have r/1 ∈ ((L + N)p : Mp), as requested. Hence, by using [15, Theorem 2.1], we have

(Lp : Mp) + (Np : Mp) = (Sp(L) : M)p + (Sp(N) : M)p

= ((Sp(L) : M) + (Sp(N) : M))p

= (Sp(L) + Sp(N) : M)p

= ((L + N)p : Mp)
= (Lp + Np : Mp).

(3) ⇒ (4) Follows from [3, Proposition 3.8 and Corollaries 3.4 and 3.15].
(4) ⇒ (3) Follows from [3, Corollary 3.4 and Corollary 3.15]. �

Corollary 2.10. For any ring R, every cyclic R-module is a θ-module.

Proof. Follows from [22, Corollary 3.7] and Theorem 2.9. �

Corollary 2.11. Let M be a finitely generated R-module. Then the following statements
are equivalent:

(1) M is a θ-module over R;
(2) Mp is a θ-module over Rp for every prime ideal p of R;
(3) Mm is a θ-module over Rm for every maximal ideal m of R;
(4) M is a µ-module over R;
(5) M is a σ-module over R;
(6) M is a multiplication module over R.

Proof. (1) ⇔ (4) By Theorem 2.9.
(4) ⇔ (5) ⇔ (6) By [20, Theorem 2.11 and Theorem 2.19].
(6) ⇔ (2) ⇔ (3) By [4, Lemma 2 (ii)], [20, Theorem 2.11] and Theorem 2.9. �

Corollary 2.12. Let R be a ring. If M is a finitely generated θ-module over R and
((0) : M) = Re for some idempotent e of R, then M is an η-module over R. In particular,
every finitely generated faithful θ-module is an η-module.

Proof. By Corollary 2.11 M is a multiplication R-module, and then by [21, Theorem 11]
M is a projective R-module. Thus by Corollary 2.6, M is an η-module over R. �

Now, we investigate conditions under which η and θ are injective or surjective.

Theorem 2.13. Let η and θ be as before. Then
(1) ηθη = η;
(2) θηθ = θ.

Proof. (1) Let p be a prime ideal of R and I ∈ Sp(R). Since ηθη(I) = Sp((Sp(IM) :
M)M), we must show that Sp((Sp(IM) : M)M) = Sp(IM). First note that, since I ⊆
(Sp(IM) : M), we have IM ⊆ (Sp(IM) : M)M and thus Sp(IM) ⊆ Sp((Sp(IM) : M)M).
The reverse inclusion follows from

Sp((Sp(IM) : M)M) ⊆ Sp(Sp(IM)) = Sp(IM).
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(2) Let p be a prime ideal of R and N ∈ Sp(M). Now, since θηθ(N) = (Sp((N : M)M) :
M), we must show that (Sp((N : M)M) : M) = (N : M). Since (N : M)M ⊆ Sp((N :
M)M), we have (N : M) ⊆ (Sp((N : M)M) : M). The reverse inclusion follows from

(Sp((N : M)M) : M) ⊆ (Sp(N) : M) = (N : M).
�

Corollary 2.14. Let η and θ be as before, and p be a prime ideal of R. Then the following
statements are equivalent:

(1) η : Sp(R) → Sp(M) is a surjection;
(2) ηθ = 1;
(3) Sp((N : M)M) = N for all N ∈ Sp(M);
(4) θ : Sp(M) → Sp(R) is an injection.

Proof. (1) ⇒ (2) and (4) ⇒ (2) follows from Theorem 2.13.
(2) ⇔ (3), (2) ⇒ (1) and (2) ⇒ (4) are clear. �
Corollary 2.15. Let η and θ be as before, and p be a prime ideal of R. Then the following
statements are equivalent:

(1) η : Sp(R) → Sp(M) is an injection;
(2) θη = 1;
(3) (Sp(IM) : M) = I for all I ∈ Sp(R);
(4) θ : Sp(M) → Sp(R) is a surjection.

Proof. (1) ⇒ (2) and (4) ⇒ (2) follows from Theorem 2.13.
(2) ⇔ (3), (2) ⇒ (1) and (2) ⇒ (4) are clear. �
Corollary 2.16. Let η and θ be as before. Then η is a bijection if and only if θ is a
bijection. In this case η and θ are inverse of each other.

Proof. By Corollaries 2.14 and 2.15. �
Corollary 2.17. Let R be a ring and M be a finitely generated faithful multiplication
R-module. Then the mappings η and θ are lattice isomorphisms. In particular, η and θ
are inverse of each other, and therefore Sp(R) and Sp(M) are isomorphic lattices for all
prime ideals p of R.

Proof. Since M is a faithful multiplication R-module, η is an epimorphism by Theorem
2.8, and hence θ is a monomorphism by Corollary 2.14 and [22, Theorem 3.8]. On the
other hand, by [15, Proposition 3.2], we have

(Sp(IM) : M) = Sp(IM : M) = Sp(I) = I,

for all prime ideals p of R and I ∈ Sp(R). Hence, by Corollary 2.15, η is an injection and
θ is a surjection. Hence η is an isomorphism and its inverse is θ. �

3. Sp(M) as a Boolean algebra
We start this section by recalling the following basic definition.

Definition 3.1. Let R be a ring and p be a prime ideal of R. An R-module M is called
a S-distributive module with respect to p, if Sp(M) is a distributive lattice.

First note the following simple fact.

Lemma 3.2. Let R be a ring, p a prime ideal of R and M be an R-module. Then the
following statements are equivalent:

(1) M is S-distributive with respect to p;
(2) K ∩ Sp(L + N) = Sp((K ∩ L) + (K ∩ N)) for all K, L, N ∈ Sp(M);



250 M. Noferesti, H.F. Moghimi, M.H. Hosseini

(3) Sp(K + (L ∩ N)) = Sp(K + L) ∩ Sp(K + N) for all K, L, N ∈ Sp(M).
Proof. By [5, Theorem I.3.2]. �

The following example shows that a ring R may be S-distributive with respect to a
prime ideal and not with respect to another one.
Example 3.3. Let R = K[X, Y ] be the ring of polynomials with independent indetermi-
nates X and Y over a field K. It is evident that R is S-distributive with respect to (0),
since S(0)(R) = {(0), R}. However, R is not S-distributive with respect to m = RX +RY .
Let p1 = RX, p2 = RY , p3 = R(X + Y ) . Since p1, p2 and p3 are prime ideals of R, these
ideals are saturated with respect to m and hence p3 ∩ p1 and p3 ∩ p2 are saturated with
respect to m by Lemma 2.1 (1). Now, since p3 ∩ (p1 + p2) * (p3 ∩ p1) + (p3 ∩ p2), R is not
S-distributive with respect to m by Lemma 3.2.

It is remarked that some classes of R-modules are characterized by using the localization
with respect to all prime ideal of R (see for example [1]). In the next result, it is seen that
the class of distributive modules has this property.
Corollary 3.4. Let R be a ring and M be an R-module. Then the following conditions
are equivalent:

(1) M is a distributive R-module;
(2) M is S-distributive with respect to any prime ideal p of R;
(3) Mp is a distributive Rp-module for all prime ideals p of R.

Proof. (1) ⇒ (2) Let p be a prime ideal of R and K, L, N ∈ Sp(M). By Lemma 2.1 (1)
and the assumption, we have

Sp(K + L) ∩ Sp(K + N) = Sp((K + L) ∩ (K + N)) = Sp(K + (L ∩ N)).
Thus, the result follows from Lemma 3.2 (3).
(2) ⇒ (3) Let p be a prime ideal of R and K, L and N be submodules of M . It suffices
to show that (Kp + Lp) ∩ (Kp + Np) ⊆ (Kp + (Lp ∩ Np)) or equivalently, by [3, Corollary
3.4], ((K + L) ∩ (K + N))p ⊆ (K + (L ∩ N))p. For this, let x/s ∈ ((K + L) ∩ (K + N))p.
Thus there are elements k1, k2 ∈ K, l ∈ L, n ∈ N and s1, s2 ∈ R \ p such that x/s =
(k1 + l)/s1 = (k2 + n)/s2. It follows that uss1s2x = (k1 + l) = (k2 + n) for some u ∈ R \ p
so that x ∈ Sp(K + L) ∩ Sp(K + N). Hence by (2), x ∈ Sp(K + (L ∩ N)). Therefore
cx ∈ K + (L ∩ N) for some c ∈ R \ p which implies that x/s = cx/cs ∈ (K + (L ∩ N))p,
as required.
(3) ⇒ (1) Follows from [3, Corollary 3.4 and Proposition 3.8].

�
Corollary 3.5. Let R be an arithmetical ring, and M be a multiplication R-module. Then
M is a S-distributive R-module with respect to any prime ideal of R.
Proof. By [8, Proposition 1.2] and Corollary 3.4. �

Our next example shows that M being a multiplication module is needed in Corollary
3.5.
Example 3.6. Let K be a field and V = K ⊕ K be the usual two-dimensional vector
space over K. It is easy to see that every subspace of V is saturated with respect to (0).
Now if W1 = K(1, 0), W2 = K(0, 1) and W3 = K(1, 1). Then W3 ∩ (W1 + W2) = W3 while
(W3 ∩ W1) + (W3 ∩ W2) = K(0, 0). Thus V is not S-distributive

We recall that a distributive lattice (L, ∨, ∧) is a Boolean algebra if there is a unary
operation ′ on L and two constants 0 and 1 such that x ∧ x′ = 0 and x ∨ x′ = 1.

Let M be a semisimple R-module and N a submodule of M . Then, by definition, there
is a submodule L of M such that M = N ⊕ L. We define the unary operation ′ on Sp(M)
by N ′ = Sp(L).



Mappings between the lattices of saturated submodules... 251

Theorem 3.7. Let R be a semisimple ring, p a prime ideal of R and M a distributive
R-module. Then the lattice Sp(M) is a Boolean algebra with the unary operation ′ defined
above, 0 = Sp(0) and 1 = M .

Proof. By Corollary 3.4, M is a S-distributive R-module. By using Lemma 2.1 (1),
N ∧ N ′ = N ∩ N ′ = Sp(N) ∩ Sp(L) = Sp(N ∩ L) = Sp(0) = 0.

Moreover, M = N + L ⊆ Sp(N) + Sp(L) ⊆ Sp(Sp(N) + Sp(L)), which implies
N ∨ N ′ = Sp(N + N ′) = Sp(Sp(N) + Sp(L)) = M.

Hence Sp(M) is a Boolean algebra. �
From now on, Sp(M) is assumed to be a Boolean algebra with the above assumptions.

Corollary 3.8. For any semisimple ring R, Sp(R) is a Boolean algebra with respect to
any prime ideal p of R.

Proof. Let R be a semisimple ring and p a prime ideal of R. By [12, Exercise 1.2.5] R is
an arithmetical ring. Thus by Theorem 3.7, Sp(R) is a Boolean algebra. �
Corollary 3.9. Let R be a semisimple ring and M be a distributive R-module. Then
Sp(M) is a Boolean ring with the following operations:

L + N = Sp(L ∩ Sp(Ñ) + Sp(L̃) ∩ N) and L · N = L ∩ N,

where M = L ⊕ L̃ = N ⊕ Ñ .

Proof. Follows from Theorem 3.7 and [5, Theorem IV.2.3]. �
Corollary 3.10. Let R be a semisimple ring, p a prime ideal of R and M a multiplication
R-module. Then M is cyclic and the lattice Sp(M) is a Boolean algebra.

Proof. Since R is a semisimple ring, by [12, Corollary 2.6], R is an Artinian ring. Hence
M is cyclic by [7, Corollary 2.9]. Also, by [12, Exercise 1.2.5], R is an arithmetical ring.
Thus by [8, Proposition 1.2], M is a distributive R-module. Hence by Theorem 3.7, Sp(M)
is a Boolean algebra with respect to any prime ideal p of R. �
Theorem 3.11. Let R be a ring, p a prime ideal of R, M an R-module and N a submodule
of M . Then the followings hold:

(1) For any submodule L containing N , Sp(L/N) = Sp(L)/N . In particular, the
assignment L 7→ L/N is a one to one corresponding between the set {L | L ∈
Sp(M), L ⊇ N} and Sp(M/N);

(2) If M is a S-distributive lattice over R with respect to p, then M/N is S-distributive
over R with respect to p;

(3) If R is a semisimple ring and M a distributive R-module, then Sp(M/N) is a
Boolean algebra.

Proof. (1) Clear.
(2) Let Sp(M) be a distributive lattice with the operations ∨ and ∧ and Sp(M/N) be a
lattice with the operations ∨̃ and ∧̃ . It is seen that ∨̃ and ∧̃ are expressed by ∨ and ∧
respectively as follows:

L/N ∨̃ K/N = Sp(L/N + K/N)
= Sp((L + K)/N)
= Sp(L + K)/N

= (L ∨ K)/N,

and
L/N ∧̃ K/N = L/N ∩ K/N = (L ∩ K)/N = (L ∧ K)/N.
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By these statements, the distributivity of Sp(M/N) follows immediately from the dis-
tributivity of Sp(M).
(3) Follows from Theorem 3.7 and (2). �
Theorem 3.12. Let R be a ring, T a multiplicatively closed subset of R, M an R-module
and N a submodule of M . Then the followings hold:

(1) ST −1p(T −1N) = T −1(Sp(N)) for all prime ideals p disjoint from T . In particular,
N ∈ Sp(M) if and only if T −1N ∈ ST −1p(T −1M) for all prime ideals p disjoint
from T ;

(2) If M is a S-distributive lattice over R with respect to a prime ideal p of R such
that p ∩ T = ∅, then T −1M is S-distributive over T −1R with respect to T −1p;

(3) If R is a semisimple ring, p a prime ideal of R with p∩T = ∅ and M a distributive
R-module, then ST −1p(T −1M) is a Boolean algebra.

Proof. (1) Clear.
(2) Let p be a prime ideal of R such that p ∩ T = ∅. Let Sp(M) be a distributive lattice
with the operations ∨ and ∧ and ST −1p(T −1M) be a lattice with the operations ∨̃ and
∧̃ . It is seen that ∨̃ and ∧̃ are expressed by ∨ and ∧ respectively as follows:

T −1L ∨̃ T −1N = ST −1p(T −1L + T −1N)
= ST −1p(T −1(L + N))
= T −1(Sp(L + N))
= T −1(L ∨ N),

and
T −1L ∧̃ T −1N = T −1L ∩ T −1N

= T −1(L ∩ N)
= T −1(L ∧ N).

By these statements, the distributivity of ST −1p(T −1M) follows immediately from the
distributivity of Sp(M).
(3) Since R is a semisimple ring, then so is T −1R. Thus the result follows from Theorem
3.7 and (2). �

Let A and B be Boolean algebras. A function f : A → B is called a Boolean algebra
homomorphism, if f is a lattice homomorphism, f(0) = 0, f(1) = 1 and f(a′) = f(a)′ for
all a ∈ A. It is easily proved that a lattice homomorphism f preserves 0 and 1 if and only
if it preserves ′. Thus, in order to show that a function f between two Boolean algebras is
a Boolean algebra homomorphism, it suffices to check that f preserves lattice operations
∨ and ∧ and constants 0, 1.

Theorem 3.13. Let R be a semisimple ring, p a prime ideal of R and M a distributive
R-module. Then η : Sp(R) → Sp(M) is a Boolean algebra homomorphism.

Proof. First note that Sp(M) and Sp(R) are Boolean algebras, by Theorem 3.7 and
Corollary 3.8 respectively. By Corollary 2.7, η is a lattice homomorphism. Also,

η(0) = η(Sp(0)) = Sp(Sp(0)M) = Sp(0) = 0,

and
η(1) = η(R) = Sp(RM) = Sp(M) = M = 1.

Hence, as noted above, η is a Boolean algebra homomorphism. �
Corollary 3.14. Let R be a semisimple ring, p a prime ideal of R and M a multiplication
R-module. Then η : Sp(R) → Sp(M) is a Boolean algebra epimorphism.
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Proof. By Corollaries 3.8 and 3.10, Sp(R) and Sp(M) are Boolean algebras respectively.
Also, by the proof of Corollary 3.10, M is distributive. Thus by Theorem 3.13, η is a
Boolean algebra homomorphism. Moreover, if N ∈ Sp(M), then (N : M) ∈ Sp(R) and

η(N : M) = Sp((N : M)M) = Sp(N) = N.

Thus, η is an epimorphism. �

Finally, we remark that if M is a faithful multiplication module over a semisimple ring
R, then since M is cyclic by Corollary 3.10, we conclude that M is isomorphic to R. So
it clearly follows that η and θ are Boolean algebra isomorphisms.
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