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Abstract

This paper consists of two main sections. In the first part, we find the integrability conditions by calculating Nijenhuis tensors of the
horizontal lifts of F(K,1)−structure satisfying FK +F = 0. Later, we get the results of Tachibana operators applied to vector and covector
fields according to the horizontal lifts of F(K,1)−structure in cotangent bundle T ∗(Mn). Finally, we have studied the purity conditions of
Sasakian metric with respect to the horizontal lifts of F(K,1)−structure. In the second part, all results obtained in the first section were
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1. Introduction

The investigation for the integrability of tensorial structures on manifolds and extension to the tangent or cotangent bundle, whereas the
defining tensor field satisfies a polynomial identity has been an actively discussed research topic in the last 50 years, initiated by the
fundamental works of Kentaro Yano and his collaborators, see for example [14]. There are a lot of structures on n−dim. differentiable
manifold Mn. Firstly, Ishıhara and Yano [7] have obtained the integrability conditions of a structure F satisfying F3 +F = 0. Gouli-Andreou
[1] has studied the integrabilty conditions of a structure F satisfying F5 +F = 0. Later, R. Nivas and C.S. Prasad [10] studied on the form
Fa(5,1)−structure. In 1989, V. C. Gupta [6] studied on more generalized form F(K,1)−structure satisfying FK +F = 0, where K is a
positive integer ≥ 2. This paper consists of two main sections. In the first part, we find the integrability conditions by calculating Nijenhuis
tensors of the horizontal lifts of F(K,1)−structure satisfying FK +F = 0. Later, we get the results of Tachibana operators applied to vector
and covector fields according to the horizontal lifts of F(K,1)−structure in cotangent bundle T ∗(Mn). Finally, we have studied the purity
conditions of Sasakian metric with respect to the horizontal lifts of F(K,1)−structure. In the second part, all results obtained in the first
section were obtained according to the complete and horizontal lifts of F(K,1)−structure in tangent bundle T (Mn).
Let us consider an n−dimensional differentiable manifold Mn of class C∞ equipped with a non-null tensor field F(6= 0) of type (1,1) and of
class C∞ satisfying

FK +F = 0, (1.1)

where K is a positive integer ≥ 2.
Let us put (1,1) tensor s and t

s =−FK−1, t = I +FK−1, (1.2)

where I being the identity operator. Then we have the properties

s2 = s, t2 = t, s.t = t.s = 0, s+ t = I.

Consequently, if there is a tensor field F 6= 0 satisfying (1.1), then there exist on Mn two complementary distributions S and T . Corresponding
to s and t respectively. Let the rank of F be constant and be equal to r ewerywhere, then the dimensions of S and T are r and n− r,
respectively. We call such a structure a ‘F(K,1)−structure of rank r’ and the manifold Mn with this structure a ‘F(K,1)−manifold.’
In the manifold Mn endowed with FK +F = 0, (F 6= 0,K ≥ 2) structure, the (1,1) tensor field ψ given by ψ = s− t =−I−2FK−1 gives
an almost product structure.

Email address: hasim.cayir@giresun.edu.tr



282 Konuralp Journal of Mathematics

1.1. Horizontal Lift of the Structure Satisfying FK +F = 0, (F 6= 0,K ≥ 0) on Cotangent Bundle

Let F,G be two tensor field of type (1,1) on the manifold Mn. If FH denotes the horizontal lift of F , we have [9, 14]

FHGH +GHFH = (FG+GF)H . (1.3)

Taking F and G identical, we get

(FH)2 = (F2)H , (1.4)

Continuing the above process of replacing G in equation (1.3) by some higher powers of F , we obtain

(FK)C = (FC)K ,

where K is a positive integer ≥ 2. Also if G and H are tensors of the same type then

(G+H)H = GH +HH

Taking horizontal lift on both sides of equation FK +F = 0, we get

(FH)K = (FK)H . (1.5)

Since F gives on Mn the F(K,1)−structure, we have

FK +F = 0. (1.6)

Taking horizontal lift, we obtain

(FK)H +FH = 0. (1.7)

In view of (1.5) and (1.7), we can write [9]

(FH)K +FH = 0. (1.8)

Proposition 1.1. Let Mn be a Riemannian manifold with metric g, ∇ be the Levi-Civita connection and R be the Riemannian curvature
tensor. Then the Lie bracket of the cotangent bundle T ∗(Mn) of Mn satisfies the following

i) [ωV ,θV ] = 0, (1.9)

ii)
[
XH ,ωV

]
= (∇X ω)V ,

iii)
[
XH ,Y H

]
= [X ,Y ]H + γR(X ,Y ) = [X ,Y ]H +(pR(X ,Y ))V

for all X ,Y ∈ ℑ1
0 (M

n) and ω,θ ∈ ℑ0
1 (M

n) . (See [14] p. 238, p. 277 for more details).

2. Main Results

Definition 2.1. Let F be a tensor field of type (1,1) admitting FK +F = 0 structure in Mn. The Nijenhuis tensor of a (1,1) tensor field F of
Mn is given by

NF = [FX ,FY ]−F [X ,FY ]−F [FX ,Y ]+F2 [X ,Y ] (2.1)

for any X ,Y ∈ ℑ1
0(M

n) [2, 11, 12]. The condition of NF (X ,Y ) = N(X ,Y ) = 0 is essential to integrability condition in these structures.
The Nijenhuis tensor NF is defined local coordinates by

Nk
i j∂k = (Fs

i ∂
k
s Fk

j −F l
j ∂lF

k
i −∂iF l

j Fk
l +∂ jFs

i Fk
s )∂k (2.2)

where X = ∂i, Y = ∂ j, F ∈ ℑ1
1(M

n).
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2.1. The Nijenhuis Tensors of (FK)H on Cotangent Bundle T ∗(Mn)

Theorem 2.2. The Nijenhuis tensors of
(
FK)H and F denote by Ñ and N, respectively. Thus, taking account of the definition of the Nijenhuis

tensor, the formulas (1.9) stated in Proposition 1.1 and the structure
(
FK)H

+FH = 0, we find the following results of computation.

i) Ñ(FK)H (FK)H

(
XH ,Y H

)
= {[FX ,FY ]−F [FX ,Y ]−F [X ,FY ]

+F2[X ,Y ]}H + γ{R(FX ,FY )−R(FX ,Y )F

−R(X ,FY )F +R(X ,Y )(F)2}.

ii) Ñ(FK)H (FK)H

(
XH ,ωV

)
= {ω ◦ (∇FX F)− (ω ◦ (∇X F)F}V ,

iii) Ñ(FK)H (FK)H

(
ω

V ,θV
)

= 0.

Proof. i)The Nijenhuis tensor Ñ(FK)H (FK)H (XH ,Y H) of the horizontal lift (FK)H vanishes if F is an almost complex structure i.e., F2 =−I
and R(FX ,FY ) = R(X ,Y ).

Ñ(FK)H (FK)H (XH ,Y H) = [(FK)HXH ,(FK)HY H ]− (FK)H [(FK)HXH ,Y H ]

−(FK)H [XH ,(FK)HY H ]+ (FK)H(FK)H [XH ,Y H ]

= [FHXH ,FHY H ]−FH [FHXH ,Y H ]

−FH [XH ,FHY H ]+ (FH)2[XH ,Y H ]

= {[FX ,FY ]−F [FX ,Y ]−F [X ,FY ]

+F2[X ,Y ]}H + γ{R(FX ,FY )−R(FX ,Y )F

−R(X ,FY )F +R(X ,Y )(F)2}.

(FK)H is integrable if the curvature tensor R of ∇ satisfies R(FX ,FY ) = R(X ,Y ) and F is an almost complex structure, then we get
R(FX ,Y ) = −R(X ,FY ). Hence using F2 = −I, we find R(FX ,FY )−R(FX ,Y )F −R(X ,FY )F +R(X ,Y )F2 = 0. Therefore, it follows
Ñ(FK)H (FK)H (XH ,Y H) = 0.
ii)The Nijenhuis tensor Ñ(FK)H (FK)H (XH ,ωV ) of the horizontal lift (FK)H vanishes if ∇F = 0.

Ñ(FK)H (FK)H (XH ,ωV ) = [(FK)HXH ,(FK)H
ω

V ]− (FK)H [(FK)HXH ,ωV ]

−(FK)H [XH ,(FK)H
ω

V ]+ (FK)H(FK)H [XH ,ωV ]

= [(FX)H ,(ω ◦F)V ]−FH [(FX)H ,ωV ]

−FH [XH ,(ω ◦F)V ]+ (FH)2(∇X ω)V

= {ω ◦ (∇FX F)− (ω ◦ (∇X F)F}V ,

We now suppose ∇F = 0, then we see Ñ(FK)H (FK)H
(
XH ,ωV )= 0, where F ∈ ℑ1

1(M
n), X ∈ ℑ1

0(M
n), ω ∈ ℑ0

1(M
n).

iii)The Nijenhuis tensor Ñ(FK)H (FK)H (ωV ,θV ) of the horizontal lift (FK)H vanishes.
Because of [ωV ,θV ] = 0 for ω ◦F,θ ◦F,ω,θ ∈ ℑ0

1(M
n) on T ∗(Mn), the Nijenhuis tensor Ñ(FK)H (FK)H (ωV ,θV ) of the horizontal lift (FK)H

vanishes.

2.2. Tachibana Operators Applied to Vector and Covector Fields According to Lifts of FK +F = 0 Structure on T ∗(Mn)

Definition 2.3. Let ϕ ∈ ℑ1
1(M

n), and ℑ(Mn) = ∑
∞
r,s=0 ℑr

s(M
n) be a tensor alebra over R. A map φϕ |r+s〉0 :

∗
ℑ(Mn)→ ℑ(Mn) is called as

Tachibana operatör or φϕ operatör on Mn if

a) φϕ is linear with respect to constant coefficient,

b) φϕ :
∗
ℑ(Mn)→ ℑr

s+1(M
n) for all r and s,

c) φϕ (K
C
⊗L) = (φϕ K)⊗L+K⊗φϕ L for all K,L ∈

∗
ℑ(Mn),

d) φϕXY =−(LY ϕ)X for all X ,Y ∈ ℑ1
0(M

n), where LY is the Lie derivation with respect to Y (see [3, 5, 8]),
e)

(φϕX η)Y = (d(ıY η))(ϕX)− (d(ıY (ηoϕ)))X +η((LY ϕ)X) (2.3)

= φX(ıY η)−X(ıϕY η)+η((LY ϕ)X)

for all η ∈ ℑ0
1(M

n) and X ,Y ∈ ℑ1
0(M

n), where ıY η = η(Y ) = η
C
⊗Y,

∗
ℑr

s(M
n) the module of all pure tensor fields of type (r,s) on Mn with

respect to the affinor field,
C
⊗ is a tensor product with a contraction C [2, 4, 11] (see [12] for applied to pure tensor field).

Remark 2.4. If r = s = 0, then from c),d) and e) of Definition2.3 we have φϕX (ıY η) = φX(ıY η)−X(ıϕY η) for ıY η ∈ ℑ0
0(M

n), which is
not well-defined φϕ−operator. Different choices of Y and η leading to same function f = ıY η do get the same values. Consider Mn = R2
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with standard coordinates x,y. Let ϕ =

(
0 1
1 0

)
. Consider the function f = 1. This may be written in many different ways as ıY η . Indeed

taking η = dx, we may choose Y = ∂

∂x
or Y = ∂

∂x
+ x ∂

∂y
. Nov the right-hand side of φϕX (ıY η) = φX(ıY η)−X(ıϕY η) is (φX)1−0 = 0 in

the first case, and (φX)1−Xx =−Xx in the second case. For X = ∂

∂x
, the latter expression is −1 6= 0. Therefore, we put r+ s > 0 [11].

Remark 2.5. From d) of Definition2.3 we have

φϕXY = [ϕX ,Y ]−ϕ[X ,Y ]. (2.4)

By virtue of

[ f X ,gY ] = f g[X ,Y ]+ f (Xg)Y −g(Y f )X (2.5)

for any f ,g ∈ ℑ0
0(M

n), we see that φϕXY is linear in X , but not Y [11].

Theorem 2.6. Let (FK)H be a tensor field of type (1,1) on T ∗(Mn). If the Tachibana operator φϕ applied to vector fields according to
horizontal lifts of FK +F = 0 structure defined by (1.7) on T ∗(Mn), then we get the following results.

i) φ(FK)H XH Y H = ((LY F)X)H +(PR(Y,FX))V

−((PR(Y,X))◦F)V ,

ii) φ(FK)H XH ω
V = ((∇X ω)◦F)V − (∇(FX)ω)V ,

iii) φ(FK)H ωV XH = (ω ◦ (∇X F))V ,

iv) φ(FK)H ωV θ
V = 0,

where horizontal lifts XH ,Y H ∈ ℑ1
0(T
∗(Mn)) of X ,Y ∈ ℑ1

0(M
n) and the vertical lift ωV ,θV ∈ ℑ1

0(T
∗(Mn)) of ω,θ ∈ ℑ0

1(M
n) are given,

respectively.

Proof. i)

φ(FK)H XH Y H = −(LY H (FK)H)XH

= −LY H (FK)HXH +(FK)HLY H XH

= LY H FHXH −FH([Y,X ]H +(PR(Y,X))V )

= ((LY F)X)H +(PR(Y,FX))V − ((PR(Y,X))◦F)V

ii)

φ(FK)H XH ω
V = −(LωV (FK)H)XH

= −LωV (FK)HXH +(FK)HLωV XH

= LωV (FX)H +FH(∇X ω)V

= −(∇(FX)ω)V +((∇X ω)◦F)V

= ((∇X ω)◦F)V − (∇(FX)ω)V

iii)

φ(FK)H ωV XH = −(LXH (FK)H)ωV

= −LXH (FK)H
ω

V +(FK)HLXH ω
V

= LXH (ω ◦F)V −FH(∇X ω)V

= (∇X (ω ◦F))V − ((∇X ω)◦F)V

= (ω ◦ (∇X F))V

vi)

φ(FK)H ωV θ
V = −(LθV (FK)H)ωV

= −LθV (FK)H
ω

V +(FK)H(LθV ω
V )

= LθV (ω ◦F)V

= 0
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2.3. The Purity Conditions of Sasakian Metric with Respect to (FK)H

Definition 2.7. A Sasakian metric Sg is defined on T ∗(Mn) by the three equations

Sg(ωV ,θV ) = (g−1(ω,θ))V = g−1(ω,θ)oπ, (2.6)

Sg(ωV ,Y H) = 0, (2.7)

Sg(XH ,Y H) = (g(X ,Y ))V = g(X ,Y )◦π. (2.8)

For each x ∈Mn the scalar product g−1 = (gi j) is defined on the cotangent space π−1(x) = T ∗x (M
n) by

g−1(ω,θ) = gi j
ωiθ j,

where X ,Y ∈ ℑ1
0(M

n) and ω,θ ∈ ℑ0
1(M

n). Since any tensor field of type (0,2) on T ∗(Mn) is completely determined by its action on vector
fields of type XH and ωV (see [14], p.280), it follows that Sg is completely determined by equations (2.6), (2.7) and (2.8).

Theorem 2.8. Let (T ∗(Mn),S g) be the cotangent bundle equipped with Sasakian metric Sg and a tensor field (FK)H of type (1,1) defined
by (1.7). Sasakian metric Sg is pure with respect to (FK)H if F = I (I = identity tensor field of type (1,1)).

Proof. We put

S(X̃ ,Ỹ ) =S g((FK)H X̃ ,Ỹ )−S g(X̃ ,(FK)HỸ ).

If S(X̃ ,Ỹ ) = 0, for all vector fields X̃ and Ỹ which are of the form ωV ,θV or XH ,Y H , then S = 0. By virtue of FK +F = 0 and (2.6), (2.7),
(2.8), we get
i)

S(ωV ,θV ) = Sg((FK)H
ω

V ,θV )−S g(ωV ,(FK)H
θ

V )

= Sg(−FH
ω

V ,θV )−S g(ωV ,−FH
θ

V )

= −(Sg((ω ◦F)V ,θV )−S g(ωV ,(θ ◦F)V )).

ii)

S(XH ,θV ) = Sg((FK)HXH ,θV )−S g(XH ,(FK)H
θ

V )

= Sg(−FHXH ,θV )−S g(XH ,−FH
θ

V )

= −(Sg((FX)H ,θV )−S g(XH ,(ω ◦F)V ))

= 0.

iii)

S(XH ,Y H) = Sg((FK)HXH ,Y H)−S g(XH ,(FK)HY H)

= Sg(−FHXH ,Y H)−S g(XH ,−FHY H)

= −(Sg((FX)H ,Y H)−S g(XH ,(FY )H)).

Thus, F = I, then Sg is pure with respect to (FK)H .

2.4. Complete Lift of F(K,1)−Structure on Tangent Bundle T (Mn)

Let Mn be an n−dimensional differentiable manifold of class C∞ and TP(Mn) the tangent space at a point p of Mn and

T (Mn) = U
p∈Mn

TP(Mn) (2.9)

is the tangent bundle over the manifold Mn.
Let us denote by T r

s (M
n), the set of all tensor fields of class C∞ and of type (r,s) in Mn and T (Mn) be the tangent bundle over Mn. The

complete lift of FC of an element of T 1
1 (M

n) with local components Fh
i has components of the form [13]

FC =

[
Fh

i 0
δ h

i Fh
i

]
. (2.10)

Now we obtain the following results on the complete lift of F satisfying FK +F = 0, (F 6= 0,K ≥ 0).
Let F,G ∈ T 1

1 (M
n). Then we have [13]

(FG)C = FCGC. (2.11)

Replacing G by F in (2.11) we obtain

(FF)C = FCFC or (F2)C = (FC)2. (2.12)
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Now putting G = F4 in (2.11) since G is (1,1) tensor field therefore F4 is also (1,1) so we obtain (FF4)C = FC(F4)C which in view of
(2.12) becomes

(F5)C = (FC)5.

Continuing the above process of replacing G in equation (2.11) by some higher powers of F , we obtain

(FK)C = (FC)K ,

where K is a positive integer ≥ 2. Also if G and H are tensors of the same type then

(G+H)C = GC +HC (2.13)

Taking complete lift on both sides of equation FK +F = 0, we get

(FK +F)C = 0

Using (2.13) and IC = I, we get

(FK)C +FC = 0 (2.14)

(FC)K +FC = 0.

Let F satisfying (1,1) be an F−structure of rank r in Mn. Then the complete lifts sC = −(FK−1)C of s and tC = I +(FK−1)C of t are
complementary projection tensors in T (Mn). Thus there exist in T (Mn) two complementary distributions SC and TC determined by sC and
tC, respectively.

Proposition 2.9. The (1,1) tensor field ψ̃ given by ψ̃ = sC− tC =−2(FK−1)C− I gives an almost product structure on T (Mn).

Proof. For sC =−(FK−1)C, tC = I +(FK−1)C and ψ̃ = sC− tC =−2(FK−1)C− I, we have

ψ̃
2 = 4(F2K−2)C +4(FK−1)C + I

= 4(FK)C(FK−2)C +4(FK−1)C + I

= −(4FK−1)C +4(FK−1)C + I

= I,

where ψ̃ ∈ ℑ1
1(T (M

n)), I = identity tensor field of type (1,1).

2.5. Horizontal Lift of F(K,1)−Structure on Tangent Bundle T (Mn)

Let Fh
i be the component of F at A in the coordinate neighbourhood U of Mn. Then the horizontal lift FH of F is also a tensor field of type

(1,1) in T (Mn) whose components F̃A
B in π−1(U) are given by

FH = FC− γ(∇F) =

(
Fh

i 0
−Γh

t Ft
i +Γt

iF
h

t Fh
i

)
. (2.15)

Let F , G be two tensor fields of type (1,1) on the manifold M. If FH denotes the horizontal lift of F , we have

(FG)H = FHGH . (2.16)

Taking F and G identical, we get

(FH)2 = (F2)H . (2.17)

Multiplying both sides by FH and making use of the same (2.17) , we get

(FH)3 = (F3)H

Thus it follows that

(FH)4 = (F4)H , (FH)5 = (F5)H (2.18)

and so on. Taking horizontal lift on both sides of equation FK +F = 0 we get

(FK)H +FH = 0 (2.19)

view of (2.18), we can write

(FH)K +FH = 0.
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2.6. The Structure (FK)C +FC = 0 on Tangent Bundle T (Mn)

Definition 2.10. Let X and Y be any vector fields on a Riemannian manifold (Mn,g), we have [14][
XH ,Y H

]
= [X ,Y ]H − (R(X ,Y )u)V ,[

XH ,YV
]

= (∇XY )V ,[
XV ,YV

]
= 0,

where R is the Riemannian curvature tensor of g defined by

R(X ,Y ) = [∇X ,∇Y ]−∇[X ,Y ].

In particular, we have the vertical spray uV and the horizontal spray uH on T (Mn) defined by

uV = ui (∂i)
V = ui

∂i, uH = ui (∂i)
H = ui

δi,

where δi = ∂i−u jΓs
ji∂s. uV is also called the canonical or Liouville vector field on T (Mn).

Theorem 2.11. The Nijenhuis tensors Ñ(FK)C(FK)C

(
XC,YC), Ñ(FK)C(FK)C

(
XC,YV ), Ñ(FK)C(FK)C

(
XV ,YV ) of the complete lift (FK)C van-

ishes if the Nijenhuis tensor of the F is zero.

Proof. In consequence of Definition 2.1 and the formulations in Definition 2.10, the Nijenhuis tensors of
(
FK)C are given by

i)

Ñ(FK)C(FK)C

(
XC,YC

)
= [

(
FK
)C

XC,
(

FK
)C

YC]−
(

FK
)C

[
(

FK
)C

XC,YC]

−
(

FK
)C

[XC,
(

FK
)C

YC]+
(

FK
)C (

FK
)C [

XC,YC
]

= [(FX)C ,(FY )C]+FC[(FX)C ,YC]

−FC[XC,(FY )C]+FCFC
[
XC,YC

]
= NF (X ,Y )C

ii)

Ñ(FK)C(FK)C

(
XC,YV

)
= [

(
FK
)C

XC,
(

FK
)C

YV ]−
(

FK
)C

[
(

FK
)C

XC,YV ]

−
(

FK
)C

[XC,
(

FK
)C

YV ]+
(

FK
)C (

FK
)C [

XC,YV
]

= [(FX)C ,(FY )V ]−FC[(FX)C ,YV ]

−FC[XC,(FY )V ]+
(

F2
)C

[X ,Y ]V

= NF (X ,Y )V

iii) Because of
[
XV ,YV ]= 0 and X ,Y ∈M, easily we get

Ñ(FK)C(FK)C

(
XV ,YV

)
= 0.

2.7. The Purity Conditions of Sasakian Metric with Respect to (FK)C on T (Mn)

Definition 2.12. The Sasaki metric Sg is a (positive definite) Riemannian metric on the tangent bundle T (Mn) which is derived from the
given Riemannian metric on Mn as follows [11]:

Sg
(

XH ,Y H
)

= g(X ,Y ) , (2.20)

Sg
(

XH ,YV
)

= Sg
(

XV ,Y H
)
= 0,

Sg
(

XV ,YV
)

= g(X ,Y )

for all X ,Y ∈ ℑ1
0 (M

n).

Theorem 2.13. The Sasaki metric Sg is pure with respect to
(
FK)C if ∇F = 0 and F = I , where I=ıdentity tensor field of type (1,1).
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Proof. S(X̃ ,Ỹ ) =S g(
(
FK)C X̃ ,Ỹ )−S g(X̃ ,

(
FK)C Ỹ ) if S(X̃ ,Ỹ ) = 0 for all vector fields X̃ and Ỹ which are of the form XV ,YV or XH ,Y H

then S = 0.
i)

S
(

XV ,YV
)

= Sg(
(

FK
)C

XV ,YV )−S g(XV ,
(

FK
)C

YV )

= −Sg((FX)V ,YV )+S g(XV ,(FY )V )}
= −(g(FX ,Y ))V +(g(X ,FY ))V }

ii)

S
(

XV ,Y H
)

= Sg(
(

FK
)C

XV ,Y H)−S g(XV ,
(

FK
)C

Y H)

= Sg(XV ,(FY )H +
(
∇γ F

)
Y H)

= Sg
(

XV ,
(
∇γ F

)
Y H
)

= Sg(XV ,(((∇F)u)Y )V )

= (g(X ,((∇F)u)Y ))V

iii)

S
(

XH ,Y H
)

= Sg(
(

FK
)C

XH ,Y H)−S g(XH ,
(

FK
)C

Y H)

= − Sg(FCXH ,Y H)+ Sg(XH ,FCY H)

= −Sg((FX)H +
(
∇γ F

)
XH ,Y H)

+Sg(XH ,(FY )H +
(
∇γ F

)
Y H)

= −g((FX) ,Y )V +g(X ,(FY ))V }

Theorem 2.14. Let φϕ be the Tachibana operator and the structure
(
FK)C +FC = 0 defined by Definition 2.3 and (2.14), respectively. If

LY F = 0, then all results with respect to
(
FK)C is zero, where X ,Y ∈ ℑ1

0 (M
n), the complete lifts XC,YC ∈ ℑ1

0 (T (Mn)) and the vertical lift
XV ,YV ∈ ℑ1

0 (T (Mn)).

i) φ(FK)CXCYC = ((LY F)X)C

ii) φ(FK)CXCYV = ((LY F)X)V

iii) φ(FK)CXV YC = ((LY F)X)V

iv) φ(FK)CXV YV = 0

Proof. i)

φ(FK)CXCYC = −(LYC

(
FK
)C

)XC

= LYC (FX)C−FCLYC XC

= ((LY F)X)C

ii)

φ(FK)CXCYV = −(LYV

(
FK
)C

)XC

= −LYV

(
FK
)C

XC +
(

FK
)C

LYV XC

= LYV (FX)C−FCLYV XC

= ((LY F)X)V

iii)

φ(FK)CXV YC = −(LYC

(
FK
)C

)XV

= −LYC

(
FK
)C

XV +
(

FK
)C

LYC XV

= LYC (FX)V −FCLYC XV

= ((LY F)X)V
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iv)

φ(FK)CXV YV = −(LYV

(
FK
)C

)XV

= −LYV

(
FK
)C

XV +
(

FK
)C

LYV XV

= 0

Theorem 2.15. If LY F = 0 for Y ∈Mn , then its complete lift YC to the tangent bundle is an almost holomorfic vector field with respect to
the structure

(
FK)C +FC = 0.

Proof. i)

(LYC

(
FK
)C

)XC = LYC

(
FK
)C

XC−
(

FK
)C

LYC XC

= −LYC (FX)C +FCLYC XC

= −((LY F)X)C

ii)

(LYC

(
FK
)C

)XV = LYC

(
FK
)C

XV −
(

FK
)C

LYC XV

= −LYC (FX)V +FCLYC XV

= −((LY F)X)V

2.8. The Structure
(
FK
)H

+FH = 0 on Tangent Bundle T (Mn)

Theorem 2.16. The Nijenhuis tensor Ñ(FK)H (FK)H
(
XH ,Y H) of the horizontal lift

(
FK)H vanishes if the Nijenhuis tensor of the F is zero

and {−(R̂(FX ,FY )u)+(F(R̂(FX ,Y )u))+(F (R(X ,FY )u))− (F2(R̂(X ,Y )u))}V = 0.

Proof.

Ñ(FK)H (FK)H

(
XH ,Y H

)
= [

(
FK
)H

XH ,
(

FK
)H

Y H ]−
(

FK
)H

[
(

FK
)H

XH ,Y H ]

−
(

FK
)H

[XH ,
(

FK
)H

Y H ]+
(

FK
)H (

FK
)H [

XH ,Y H
]

= [(FX)H ,(FY )H ]− (F)H [(FX)H ,Y H ]

−(F)H [XH ,(FY )H ]+ (F)H (F)H
[
XH ,Y H

]
= (NF (X ,Y ))H − (R̂(FX ,FY )u)V

+(F(R̂(FX ,Y )u))V +(F(R̂(X ,FY )u))V

−(F2(R̂(X ,Y )u))V .

If NF (X ,Y )= 0 and {−R̂(FX ,FY )u+(F(R̂(FX ,Y )u))+(F(R̂(X ,FY )u))−(F2(R̂(X ,Y )u))}V = 0, then we get N(FK)H (FK)H
(
XH ,Y H)=

0, where R̂ denotes the curvature tensor of the affine connection ∇̂ defined by ∇̂XY = ∇Y X +[X ,Y ] (see [14] p.88-89).

Theorem 2.17. The Nijenhuis tensor Ñ(FK)H (FK)H
(
XH ,YV ) of the horizontal lift (FK)H vanishes if the Nijenhuis tensor of the F is zero

and ∇F = 0.

Proof.

Ñ(FK)H (FK)H

(
XH ,YV

)
= [

(
FK
)H

XH ,
(

FK
)H

YV ]−
(

FK
)H

[
(

FK
)H

XH ,YV ]

−
(

FK
)H

[XH ,
(

FK
)H

YV ]+
(

FK
)H (

FK
)H [

XH ,YV
]

= [FX +FY ]V − (F [FX ,Y ])V − (F [X ,FY ])V

+((F)2 [X ,Y ])V +(∇FY FX)V − (F (∇Y FX))V

−(F (∇FY X))V +((F)2
∇Y X)V

= (NF (X ,Y ))V +((∇FY F)X)V − (F ((∇Y F)X))V .
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Theorem 2.18. The Nijenhuis tensor Ñ(FK)H (FK)H
(
XV ,YV ) of the horizontal lift (FK)H vanishes.

Proof. Because of
[
XV ,YV ]= 0 for X ,Y ∈Mn, easily we get

Ñ(FK)H (FK)H

(
XV ,YV

)
= 0.

Theorem 2.19. The Sasakian metric Sg is pure with respect to
(
FK)H if F = I, where I =ıdentity tensor field of type (1,1).

Proof. S(X̃ ,Ỹ ) =S g(
(
FK)H X̃ ,Ỹ )−S g(X̃ ,

(
FK)H Ỹ ) if S(X̃ ,Ỹ ) = 0 for all vector fields X̃ and Ỹ which are of the form XV ,YV or XH ,Y H

then S = 0.
i)

S
(

XV ,YV
)

= Sg(
(

FK
)H

XV ,YV )−S g(XV ,
(

FK
)H

YV )

= −Sg((FX)V ,YV )+S g(XV ,(FY )V )

= −(g(FX ,Y ))V +(g(X ,FY ))V }

ii)

S
(

XV ,Y H
)

= Sg(
(

FK
)H

XV ,Y H)−S g(XV ,
(

FK
)H

Y H)

= Sg(XV ,(FY )H)

= 0

iii)

S
(

XH ,Y H
)

= Sg(
(

FK
)H

XH ,Y H)−S g(XH ,
(

FK
)H

Y H)

= − (Sg(FX)H ,Y H)+S g(XH ,(FY )H)

= −(g(FX) ,Y )V +(g(X ,(FY )H))V

Theorem 2.20. Let φϕ be the Tachibana operator and the structure
(
FK)H

+FH = 0 defined by Definition 2.3 and (2.19), respectively. if

LY F = 0 and F = I, then all results with respect to
(
FK)H is zero, where X ,Y ∈ ℑ1

0 (M
n), the horizontal lifts XH ,Y H ∈ ℑ1

0 (T (Mn)) and the
vertical lift XV ,YV ∈ ℑ1

0 (T (Mn)) .

i) φ(FK)H XH Y H = −((LY F)X)H +(R̂(Y,FX)u)V

−(F(R̂(Y,X)u))V ,

ii) φ(FK)H XH YV = ((LY F)X)V − ((∇Y F)X)V ,

iii) φ(FK)H XV Y H = ((LY F)X)V +(∇FXY )V − (F (∇XY ))V ,

iv) φ(FK)H XV YV = 0.

Proof. i)

φ(FK)H XH Y H = −(LY H

(
FK
)H

)XH

= −LYC

(
FK
)H

XH +
(

FK
)H

LY H XH

= [Y,FX ]H − γR̂ [Y,FX ]

−(F [Y,X ])H +FH(R̂(Y,X)u)V

= −((LY F)X)H +(R̂(Y,FX)u)V

−(F(R̂(Y,X)u))V

ii)

φ(FK)H XH YV = −(LYV

(
FK
)H

)XH

= −LYV

(
FKX

)H
+
(

FK
)H

LYV XH

= [Y,FX ]V − (∇Y FX)V

−(F [Y,X ])V +(F (∇Y X))V

= ((LY F)X)V − ((∇Y F)X)V
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iii)

φ(FK)H XV Y H = −(LY H

(
FK
)H

)XV

= −LY H

(
FKX

)V
+
(

FK
)H

LY H XV

= − [Y,FX ]V +(∇FXY )V

−(F [Y,X ])H − (F (∇XY ))V

= ((LY F)X)V +(∇FXY )V − (F (∇XY ))V

iv)

φ(FK)H XV YV = −(LYV

(
FK
)H

)XV

= LYV (FX)V −FHLYV XV

= 0
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[5] H. Çayır and G. Köseoğlu, Lie Derivatives of Almost Contact Structure and Almost Paracontact Structure With Respect to XC and XV on Tangent

Bundle T (M), New Trends in Mathematical Sciences, 4(1)(2016), 153-159.
[6] V.C. Gupta, Integrability Conditions of a Structure F Satisfying FK +F = 0, The Nepali Math. Sc. Report, 14(1998), 55-62.
[7] S. Ishıhara and K. Yano, On integrability conditions of a structure f satisfying f 3 + f = 0, Quaterly J. Math., 15(1964), 217-222.
[8] S. Kobayashi and K. Nomizu, Foundations of Differential Geometry-Volume I. John Wiley & Sons, Inc, New York, 1963.
[9] S.D. Lovejoy, R. Nivas and V.N. Pathak, On horizontal and complete lifts from a manifold with f λ (7,1)−structure to its cotangent bundle, International

Journal of Mathematics and Mathematical Sciences, 8(2005), 1291-1297.
[10] R. Nivas and C.S. Prasad, On a structure defined by a tensor field f (6= 0) of type (1,1) satisfying f 5−a2 f = 0. Nep. Math. Sc. Rep., 10(1)(1985),25-30.
[11] A.A. Salimov, Tensor Operators and Their applications, Nova Science Publ., New York, 2013.
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