Kükürt Dioksitinin (SO₂) Şaraptaki Rolü ve Önemi

Prof. Dr. Arif. AKMAN
A.U. Zir. Fak. Gida Bilimi ve Tek. Anabilim Dalı Emekli Öğr. Üyesi

Şarabın yapılamasında, olgunlaştırılmasında, kaplarda ya da şişelerde saklanmasında, şarap hastalığı ve küsülme önlenmesinde küük Küük dioksitin çok büyük rolü ve vaz geç克莱meyecek önemli vardır. Denebilmir ki, küükdioksitsiz şarabı olgunlaştırmak ve saklamak mümkün değildir. Küük dioksit, iç içe bir iyimserlikle, şarap içlemeyecek kadar bozulmaya bile, rengi, görünüşü ve tadı kötü bir durum alır. Şu halde Küük dioksit kullanmadan sonra öyle böyle bir kalite şarabı, yine eli yüzü düzgün ve tat bakımından en mütevazı ve mümkün olan isterleri bile karşılayabilecek bir şarap yapılamaz.

Öteyandan şarap teknolojisinde şimdiki kadar Küük dioksitin yerini tutacak herhangi bir madde de bulunamamıştır. Bunun içindeki şarap kanunlarında, ya da şarabın kontrolüne sağlayacak bir dizi ve yönetim mekaniklerinde şarap ve şaraba belirli öğütlere küük dioksit katılması için verilmişdir. Daha sonra kısa ve de genel olarak şarapın bir bileşenidir (C vitaminidir) de kullanılmaya başlanmış ise de, bu organik asit, ancak Küük dioksitin etkisini desmekle bir rol oynar ve yalnız başına Küük dioksitin yerini tutamaz.

Şarap ve şaraba Küük dioksit verme «Kükürtleme» diyoruz. Şu halde küükütleme denildiği zaman, şarap ve şaraba elementer Küük dioksit, Küük dioksitin (SO₂) verilmişleri olarak gelir. Şarap teknolojisinde şaradan ve hatta aynı şekilde kullanılan şarabin hemen her sahasından uygun ve gerekli miktarlarda Küük sürtünme uygulanan ve nişanet şişeleme sırasında da, aşağıda genel öğütlüğe üzerinden durulacağı gibi, şarapta belirli öğütlere serbest Küük dioksitin bulunmasına mutlaka önem verilir.

Bellidiği gibi şirra şarapların küükütenmesinde daha çok basını çift altında sıvı duruma getirilmiş şekilde kaplarkı sivi Küük dioksit (% 100), ya da bu svi Küük dioksit gazından yapılarak ve içinde % 4–6 kadar SO₂ bulunan sulu Küük gazı kullanılır. Sulu Küük gazı çok la-bil olduğu için 0 derece sıcaklıkta % 8 ilk, 10 derecede % 5.7 ilk ve 20 derecede ise ancak % 4 lik eriyik yapılabilir.

İkinci Küükütleme aracı olarak potasyum metabolisüfit, ya da potasyum pirosüfit (K₂S₂O₇) de denilen sülfüroz asidin (H₂SO₄) bir tuz kullanılır. Potasyum metabolisüfit, aşağıdaki formülde görülen reaksiyon gereğince:

\[2 \text{ C}_2\text{H}_3\text{O}_4^- + \text{K}_2\text{S}_2\text{O}_7^- \rightarrow 2 \text{ C}_2\text{H}_3\text{O}_4\text{K} \]

Tartarik

Meta-

Potasyum

asit

bisüfit

tartarat

+ \text{SO}_2 + 2 \text{H}_2\text{O}

Kükürt

Su

dioksit

ve teorik olarak % 57 SO₂ vermesi gerekerken, pratikte randman % 50 olarak kabul edilip buna göre hesap edilerek kullanılır.

Metabolisüfit kullanırken dikkat etmell ve bu tuz eskı olmalıdır. Akşı halde şaraba Küük dioksit veriyorum derken, tamamiyle etkisiz bir tuz kullanılmış olur. Zira potasyum metabolisüfit parafinli paketlerde dahi yaklaşık 8 ay kadar etkili olabilir, paketi açılmış tabletlerde ise bu süre içinde ancak % 25 kadar SO₂ bulunan. Hele toz, ya da granül halindeki metabolisüftler 3 ay sonra etkisini % 100 kaybeder.

Eskiden çok kullanılan Küük şeritler bugünü artik az kullanılmakta olup daha çok boş fişlərin (Boş beton kapları değil) konserve edilmesinde kullanılır. Küük şeritleri boş fişlərin içinde yakarak böylece fiş içinde bir Küük dioksit atmosferi oluştururur ve bu sadece boş fişler külkenmekten ve Sarah ilemsmekten korunmuş olurlar.

Sivi Küük dioksitten yapılan % 2 lik sulu Küük gazı filterlerin, şişelerin, mantarların dezenfekte edilmesinde kullanılır.

II. Küük Dioksitin Şaraptaki Durumu

Şarapın verilmesi Küük dioksit geçitli şe-killerin arıdır. Şöyle ki; bir kısmı sulu Küük
dioksid durumuna geçer (1. şekil). Bir kısmı ile su ile birleşerek sülfüroz asit haline gelir (2. şekil):

\[
\text{SO}_2 + \text{H}_2\text{O} = \text{H}_2\text{SO}_3 \quad (\text{sülfüroz asit})
\]
Sülfüroz asit de disosiyile olarak bir hidrojen verip:

\[
\text{H}_2\text{SO}_3 \rightarrow \text{H}^+ + \text{SO}_3\text{H}^- \quad (3. şekil), \text{ya da 2 hidrojen verip :}
\]

\[
\text{H}_2\text{SO}_3 \rightarrow \text{H}_2\text{O}^+ + \text{SO}_3^- \quad \text{şeklinde disosiyile olur} (4. şekil).
\]

Sülfüroz asitin dissoyasyonun derecesi şarabın pH derecesi ile sıkı sıkıya ilgili olup pH derecesi düşük, yani asidi yüksek şaraplardan daha az disosiyale olur. Yukarıda aşığanın 4 şeklinin, şaraptaki etkiyi olan SO₂ şekil; 1. şekildeki suyu kütük gazı ile 2. şekildeki H₂SO₃ asidinin dissoyice olmasının şeklidir. Buna göre önemli olarak şu durum söz konusu olur:

Aynı miktarda serbest, yani aktif kükürt dioksid, asidi yüksek şaraplarda mikroorganizmalara ve özellikle zararlı bakterlere karşı, asitçe fakir olan şaraplardan olduğundan daha fazla etkili olur. Bunun anlamı da asıtte fakir şarapların, onu yenecek şaraplarından daha fazla serbest SO₂ ve iyılaşma göstermesidir.

Bu durum özellikle şaraptaki kirde bakterileri ve sıkı asidi hastalığına sebep olan laktik asit bakterileri gibi hastalık yapan bakteriler bakımından kesinlikle önem kazanır. Zira bu bakteriler serbest kükürt dioksida karşı maşılara olduğundan çok daha fazla duyarlılıklar, ki daha sonra bu nokta üzerinde kesica durulacaktır.

III. Kükürt Dioksidin Şaraptaki Olumu Etkileri

Kükürt dioksidin şaraptaki etkisi 3 maddede halinde toplanabilir:

1. Tat üzerine olan olumu etkisi : Şaraba verilen SO₂, şişenin gülümseti şarapın gözülü maddeleriyle bileşikler yapar. Her ne kadar şaraptaki bazı maddelerde de az çok bileşikler yaparsa da, SO₂ nin hiçbir bağlandığı madde, fermentasyon sırasında meydana gelen asetaldehidtir (C₂H₅CHO). Büyük üzüne birleşmedi asetaldehit — sülfüroz asit meydana gelmiş ve serbest asetaldehit sağlanmış olur:

\[
\text{CH}_3\text{CHO} + \text{H}_2\text{SO}_3 = \text{CH}_3\text{CH(OH)}_2 + \text{SO}_2 \quad \text{Aset-} \quad \text{Sülfüroz} \quad \text{Aldehit-} \quad \text{sülfüroz}
\]

Asetaldehidin bu şekilde bağlanması şarabın tadı bakımından büyük önem vardır. Zira şarapta fermentasyon sırasında meydana gelen aldehit, serbest kalındığı takdirde şaraptan istenmeyen ve hava tadi denilen yayan bir tat meydana gelmiş olur. Şu halde SO₂ bu tadi olmadığıını önler. Şarabın diniyeliğine, diğer şarapda kapların tam dolu bulundurulması halinde de şarap havası ile temasında akıldan asetaldehit oluşur. Şu halde genel olarak kapların tam dolu bulundurulmasına dairin önem vermelidir ve böylece şarabın hisç bir zaman havası ile temasında meydana verilmemelidir. Bu noktada yalnız Şeri şarapları bir istisna teşkil eder.

Şarabın havası ile teması gelmesi yalnız asetaldehit oluşması bakımından değil, aynı zamanda aerob olan kirde bakterileri ve çığır hastalığına yapan Mycoderma yabanı mayaların gelişmesine de yol açar.

Bu arada önemli gördüğümüz bir noktayı da işaret etmek yerinde olur, ki bu da fermentasyona alınacak şarabın ölçüül miktarda kükürtlenmesidir. Her ne kadar mayalar bellii ölçülerde kükürt dioksid gazına karşı faza duyarlı değişir, SO₂ yine de meya üzüne de engelleyici ve faaliyetini geçici bir etki yapar. Maya bu durumda SO₂ nin bu etkisi ona kornuk için fazla asetaldehit yapIPv SO₂ yi bağlama čeşti için gider. Böylece şarabi asıl koruyacak olan serbest kükürt dioksit gazı ya tamnimli, asetaldehidte bağlanmış olur, ya da pek azı serbest kalır.

Bu durumda ise şaraptaki gerekli serbest SO₂ yi sağlamaktan ilgin giderecek şaraba da fazla, SO₂ vermek gibi kisir bir döngüye girilmiş olur. Bu noka göz önünde tutularak normal, yani ezilip harpinanmış özelliklerin sahalarına başlangıça fazla SO₂ verilmesi liftey 50 - 70 mg, ile yetinmelidir. Ancak, yurdumuz koşullarında üzemler çok kez çok uzak mesafe-lerden ve hatta branda bazı üzerine dönüm olarak taşındıklarında işlemeyi gelen üzüm- ler fazla harpalamış, ezilmiş ve şiraz akmış durumda olurlar. Bu gibi durumlarla üzümler
hiç bekletmeden hemen işlemek ve imkân varsa separatörden geçirirken, ya da daha yüksekle düzeyde, yani litreye 100 ve hatta üzümün dördümünde göre 150 mg. kadar SO₂ ve rekt şırayı 12 saat kadar dini lendirdikten sonra aktarıp hemen fermentsasyona almaktır ki bu işleme tortul alma diyoruz. Bu takdirde ise fermentsasyonu süsflit mayaları ile, yani SO₂ ve altına Türk mayaları yapmak gerekir. Separatörden geçirilmiş, ya da tortul almanın bir yararı da polifenol anızmilerinin bir kısmının da sıradan ayrılmaması sağlamasıdır ki, bunun önemine daha aşağıda değinilecekktir.

Bundan dolayı üzümleri işlerken mümkün mertebeye az polifenollerin şıraya geçmesine çalışmak gerekir ki, bu da gününk ıslâyecel kadar üzüm almak, ıslâyetmeye gelen üzümlerin bekletmeden hemen işleyerek, hatta mayeðen başlayarak şırayı gereği gibi kükürtelemek, akan içişin fazla uzmayarak kısır zemanda açık gibi tedbirlerle sağlanır. Yukarıda aazını ettirilmiş separatörden geçirile, ya da tortul alma işlemeleri de oksidasyona neden olan polifenoloksidaz anızmilerinin bir kısmının tortu ile birlikte ayrılması ve böylece şaraba daha az anızm geçmesi bakımından önemlidir.

Şaraplık üzüm çeşitlerimizde doğal olarak polifenollerin fazla olması çeşitli çok ilkim koşullarından ve bu bakımdan yağmur rejiinin düzensiz olmasından ileri gelse gerekir. Genel olarak bazı bölgelerimizde yetiştirilme az olduğu gibi, yetiştirilenin dâhilisi de elverişli ve dolaysıyla vejetasyon dönmünün büyük bir kısmında yetiştirilir ya da olur, ya da bazan hiç olmaz. Asmanın az bu almacı sonucunda üzümlerimizde fazla miktarda polifenoller oluşur.

Bunun nedeni de kalinlaşan ve koyulasan kabuklarda daha fazla polifenollerin birikmiş olmasıdır. Sanırım durumun böyle olması, asmanın kahvenin kalinlaşdırmak suretiyle kuraklığı karşılı bir tedbir ola rak daha fazla suyun buharlaşmasını önlemek çabasına girmesidir. Bunun sonucu olarak da örneklerin taban arazi deki bahzin üzümlerinden yapılan şarabin tadı daha ince olduğu gibi renk de aÇık olur.

3. SO₂ nin mikroorganizmalar üzerine etkisi : SO₂ gazı mikroorganizmalar üzerine şarabin lehine de bir etki yapar ki, bu olumlu etki, yukarıda da kısaca değinildiği gibi, özellikle bakteriler bakımından önem kazanır. Mayalan SO₂ ye karşı fazla duyarlı olmamalarına karşılık özellikle şarabi hastalandırır birik bakterileri ile laktik asit bakterileri fazla duyarlıdır. Adı geçen bu bakteriler litrede 40 - 50 mg. SO₂ karşısında saf sıva olurlar, buna karşıJKTİK meyalar çok daha fazla kükür dikokelde
dayanılar. Örneğin Saccharomyces cerevisiae şarap mayaları ancak iltrode 500 mg. SO₃ karşısında olur. Bu arada şaraplarda çıçek hası, talığı yapan Mycoderma yabanı mayaları da küük dioksit gazına karşı pek duyarlı değişildir.

Şıra ve şaraba verilecek SO₂ miktarın bakımından dikette edilecek nokta ise birden fazla miktarla küük dioksit vermeipv, şaradan başlayarak fermentasyondan sonra alınanlar ve diniendirme sırasında ihtiyaçsızge göre ve azar azar küükürlümemey uygunluk ve bu arada şarapta her durumduda daima bir miktar serbest küük dioksitin bulunması önemli vermek ve gereğindedir ve bunulmasında iler verilen miktarından fazla SO₂ vermemektedir. Zira fazla küük dioksit olunlaşmayı gerceklendiği gibi bukeinin olumluşun da olması, cildi ki, fazla küük dioksit tatta bu gazun duyulmasına neden olur ki, bu da kesindir. Fazla küük dioksit ağızda kuru tuğla gibi başganası ve mide rahatsızlığı neden olur.

Son zamanlarda kullanılması tavsiye edilen asorbid asit (C vitamini), giris kısımda de drainlidliği gibi, küük dioksitin yerini tutamakla birlikte onu destekleyici bir rol oynar. SO₂ anizmatik oksidasyonları önlediği halde, asorbid asit bu oksidasyonları önleyemez, ancak atmosferik oksidasyonları önlemede rol oynayabilir. Bu itibарı şaraban yapımı ve dini-endirilemesi sırasında değil, ancak şısyeye doldurulması sırasında şaraba verilir. Sun filtrasyon ve şısyeye doldurulma sırasında şarabın alacaği havanın yaraçağı oksidasyonlar, asorbid asit yardımıyle önlenmiş olur. Şaraba verilecek miktar da itreke 50 mg. kadarıdır.

III. Şısyeye Şarapları ve Küükürlüeme

Şısyeye şaraplarının görünüş ve karakterini muhafazada ise, küük dioksitin büyük rolü vardır. Küük dioksitin bu elverişli rolü de ancak şaraptaki serbest SO₂ ile sağlanmış olur; şısyeye şısyeye alınacak şarapa belirli miktarlardan serbest küük dioksitin bulunmasına her zaman ve mutlaka önem verilmesidir. Şarapa alınacak serbest küük dioksit ise şısyeye doldurulması sırasında şarapta ve örnegin 1-2 yıl kadar sağlanmak şısyelerde iltrode 45 - 50 mg., bu yüzden yıllar sağlamacaktır olanlarda ise iltrode 50 - 60 mg. serbest SO₂ oldurulur.

Bu bakımından şısyeye alınacak şaraptaki serbest SO₂ miktarının, şısyeye doldurulmadan önce bilemek ve buna göre gereklı serbest SO₂ miktarını tamamlamak gereklidir. Fakat uygun mada çok kez ancak şarap şısyeye dolarken ya da 24 saat öncə şaraptaki serbest SO₂ miktarını ölçülme ve buna göre gereklı miktar sepa rakmakta, daha doğru saplanวาดırı sanılmaktadır. Oysa şısyeye doldurduktan bir kaç gün sonra şaraptaki serbest SO₂ miktarı kontrol ediliğe çok kez görüşür ki, bu serbest miktar sanıklındırdı, ya da heşapländiginden çok daha aşağı miktarıdır ve örnegin iltrode 50 mg. serbest SO₂ yerine bulunan miktar 30 miligramdır.

Zira şısyeye alınmasından bir gün önce, ya da şısyeye doldurulmadan hemen öncü şarapta bulunması isteem 50 mg. serbest SO₂ çekinde ayarlamak, şaraba verilecek küük miktarlarla mümkün olmaz. Düşümek gerektir ki, şarapta SO₂ yi bağlayan asetalselhitten başka, diğer maddeler de bulunmakta olup, bunlar da pirüşük asit, tanelli maddeler, ketogüterik asit ve varsa glüküz gibi maddeler de olup bunlar da SO₂ yi bağlarlar ve SO₂ ile bu maddeler arasında reaksiyonun eğişi ise, şaraban pH ve sıvaktır dörecelerine göre günlerce sürebilir.
Bu noktayı bir örnekle açıklamaya çalışalım ve diyelim ki, litre içinde servesteb 50 mg. SO₂ bulunanacak şekilde ayarlanmak istenen şarapta bulunan serbest SO₂ miktarını tahmin etmiş olalım ve diyelim ki, bu miktar litrede 10 miligramdır. Buna göre gori kalan 40 mg. serbest SO₂ bulunanacak şekilde kükürtlemek gerekliydi. Oysa şarapta önceden testi bir edilen serbest 10 mg. SO₂ belki de 5 miligramdır. Zira SO₂ sinyal edilirken, asetaldedhitten başka SO₂ yi az çok bağlayan ve yukarıda açıklanmış bulunan maddeler de mevcu toplu bunlar da iyo du okside etmekta, yani iyo du harcamaktadırlar, dolayısıyla bunların harcadiği lycyda hesaba girerek SO₂ olarak görülmektedirler. Bu maddelerden SO₂ olarak görülen miktar ise, litrede 5 - 10 miligram arasında olabilir.

Şu halde bu kümaya reaksiyonların gidisini göz önüne alarak, işe bir alicak şaraptaki serbest SO₂ miktarı bir iki hafta önceden zaman zaman kontrol edilmeli ve bu kümaya reaksiyonlar sona erince, yani SO₂ bağlayan maddeler doyunsu aneck o zaman serbest SO₂ miktarını ayarlamaya çalışmalıdır. Ancak bu yolla artık şarapta bulunan serbest SO₂ miktarı kolaylıkla saptanabilir.

Şayet şaraptaki serbest SO₂ miktarı bir kaq gün sabit kalıyorsa artık SO₂ yi bağlayan maddelerde reaksiyon sona ermiş, yani bu maddeler artık doymuş demektir. Bu halde pratikte bu noktaya önlem vererek şıra şaraplarında doğru miktarlarda serbest SO₂ nin bulundurulmasına gayret etmelidir.

Son olarak bir nokta üzerinde durmak isterim: Şaraplarımında bulunmasına izin verilen serbest SO₂ miktarları tüelli şaraplarında 100, kuru beyaz şaraplarında 50, kırmızı şaraplarında ise 30 miligramdır. Kısırıma göre kuru beyaz ve kırmızı şaraplarında bulunan serbest kükür dioksit miktarlarını bir miktar daha yüksek tutarak kuru (sek) şaraplarında litrede 50 - 60, kırmızı şaraplarında 40 - 50 miligram üzerine bulundurulması uygundur; zira şaraplarımında asit miktarları genel olarak düşük bir. Bu neden SEO yi destekleyici güvencin daha da az olmasına neden olur ki, bu noktaya daha önce işaret edilmiş bulunmaktadır.

KAYNAKLAR

