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Abstract

Following the idea of T.A. Burton, of progressive contractions, presented in some examples (T.A. Burton, A
note on existence and uniqueness for integral equations with sum of two operators: progressive contractions,
Fixed Point Theory, 20 (2019), No. 1, 107-113) and the forward step method (I.A. Rus, Abstract models of
step method which imply the convergence of successive approximations, Fixed Point Theory, 9 (2008), No. 1,
293-307), in this paper we give some variants of contraction principle in the case of operators with Volterra
property. The basic ingredient in the theory of step by step contraction is G-contraction (I.A. Rus, Cyclic
representations and fized points, Ann. T. Popoviciu Seminar of Functional Eq. Approxim. Convexity, 3
(2005), 171-178). The relevance of step by step contraction principle is illustrated by applications in the
theory of differential and integral equations.
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1. Introduction

Following an idea of T.A. Burton ([7], [8], [9], ...) of progressive contractions, and the forward step
method ([21]), in this paper we give some variants of contraction principle in the case of operators with
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Volterra property. The basic ingredient in our variant, step by step contraction principle, is G-contraction
(J20]). Some applications to differential and integral equations are also given. In connection with our abstract
results, a conjecture is formulated.

2. Preliminaries

2.1. G-contractions
Let (X,d) be a metric space and G C X x X be a nonempty subset. An operator f : X — X is a
G-contraction if there exists | €]0, 1 such that,

d(f(z), f(y)) < ld(z,y),¥(z,y) € G.

Here are some examples of subsets G C X x X:

(1) G := G(f), the graphic of the operator f. In this case, a G-contraction is a graphic contraction ([17],
24, ...).

(2) Let A; C X, i=1,p, be nonempty closed subsets such that:

ﬁC'@

( ) ( ) l+17 i = m7 (Ap—i-l = A1>.
P

For, G := U(Az X A;+1), a G-contraction is a cyclic contraction of Kirk-Srinivasan-Veeramani (see the
i=1

references in [20]).

(3) Let a,b,c € R, a < ¢ < band X := Cla,b] with d(z,y) := m[a>l§1|x( ) —y(t)|. For K,H € C([a,b] x

[a,b] x R,R), we consider the operator, f : C[a,b] — Cla,b], defined by,

f@)(t) := /c K(t,s,xz(s))ds + /tH(t,s,x(s))ds, t € [a,bl.
We suppose that there exists Ly > 0 such that
|H(t,s,u) — H(t,s,v)| < Lyglu—v|, ¥t,s€]lab], VuveR.
If, Ly(b—c¢) <1 and if we take
G i={(z,9) € Cla,b] x Cla,b] | al ;= o]0}
then f is a G-contraction.

For other examples of G-contractions see [20] and [24], pp. 282-284.

2.2. Weakly Picard operators

Let (X, —) be an L-space ((X,d), — ( ,7), =5 (X, 1D, ~L —;...). An operator f: X — X is weakly
Picard operator (W PO) if the sequence, (f"(z )neN; converges for all x € X and the limit (which generally
depend on z) is a fixed point of f.

If an operator f is W PO and the fixed point set of f, Fy = {«*}, then by definition f is Picard operator
(PO,).

For a WPO, f: X — X, we define the operator > : X — X, by f>*(z) := lim f"(z).

n—oo
We remark that, f°(X) = Fy, i.e., f* is a set retraction of X on Fy.
For the case of ordered L-spaces, we have some properties of W PO and PO.

Abstract Gronwall Lemma. Let (X, —, <) be an ordered L-space and f : X — X be an operator. We
suppose that:
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(1) f is increasing;
(2) fis WPO.
Then:
(i) z < f(z) = o < f>(2);

(i) x> f(x) = x> [>(z).

Abstract Comparison Lemma. Let (X, —, <) be an ordered L-space and f,g,h: X — X be such that:
(1) f<g<h
(2) the operators f, g, h are W PO;
(3) the operator g is increasing.

Then:
r<y<z= ) <g™(y) <h7(2).

Regarding the theory of W PO and PO see [18], [19], [22], [23], [26], [17], [24], [2], ...

2.3. Fiber Contraction Principle
In order to present our results, we need the following theorems (see [22], [25], |26], [27], ...).

Fiber Contraction Theorem. Let (X,—) be an L-space, (Y,p) be a metric space, g : X — X, h :
XxY—=Yand f: X XY - X XY, f(z,y) := (9(z), h(z,y)). We suppose that:

(Y, p) is a complete metric space;

Then, f is WPO. Moreover, if g is a PO, then f is a PO.

Generalized Fiber Contraction Theorem. Let (X,—) be an L-space, (X;,d;), i = 1,m, m > 1 be
metric spaces. Let, f; : Xo X ... x X; = X;, i = 0, m, be some operators. We suppose that:

(1) (X;,d;), i =1,m, are complete metric spaces;

(2) foisa WPO;

(3) filzo,...,wi—1,"): X; — X;, i = 1,m, are l;-contractions;
(4) fi, i =1, m, are continuous.

Then, the operator f: Xg X ... X X;,, = Xo X ... X X, defined by,

f(aj‘o, e ,xm) = (fg(l‘o), f1 ($0, $1), ey fm(xo, e ,.Z‘m))

is a WPO.
If fop is a PO, then f is a PO.
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3. Operators with Volterra property with respect to a subinterval

Let (B, +,R,|:|) be a Banach space, a,b,c € R, a < ¢ < b. In what follows, we consider on C([a, b],B),
C([a, c],B) norms of uniform convergence (max-norm, ||-||, Bielecki norm, [|-||;). In, C([a,b],B) x C([a, b],B),
we consider a subset defined by,

G :={(z,y) | z,y € C([a, 1], B), x‘[mc] = y‘[a’c]}v
and in, C([a,b],B), for each = € C([a, c],B) we consider the subset,
XJC = {y S C([avaB) ’ y‘[(hc] - x}

Definition 3.1. An operator, V : C([a,b],B) — C([a,b],B), has the Volterra property with respect to the
subinterval, [a,c|, if the following implication holds,

z,y € C([a,b], B), ~T|[a7c] = y‘[(l’c] = V(:E)‘[ajc] = V(y)‘[a’c]-

Definition 3.2. An operator, V : C(la,b],B) — C([a,b],B), has the Volterra property if it has the Volterra
property with respect to each subinterval, [a,t|, for a <t <b.

For example, let K, H € C([a,b] X [a,b] x B,B) and V : C([a,b],B) — C([a, b],B) be defined by,

V()(t) = /CK(t,s,x(s))ds—l—/ H(t, s, 2(s))ds, 1 € [a,b].

This operator has the Volterra property with respect to the subinterval [a,c], but V' has not the Volterra

property.
If, V: C([a,b],B) — C([a,b],B), is an operator with Volterra property with respect to [a,c]|, then the
operator V' induces an operator, Vi, on C([a,c|,B), defined by

where Z € C([a, b],B) with, :E‘[a g =

Remark 3.3. If V' has the Volterra property with respect to [a,c] and V is a G-contraction (see section 2.1.),
then the operator
Vi

is a contraction for all x € C([a,c],B). If * € Fy,, then, V(Xgp«) C Xypx.

; Xy — le(x)7

The first abstract result of our paper is the following.

Theorem 3.4. In terms of the above notations, we suppose that:

(1) V has the Volterra property with respect to [a, c|;

(2) Vi is a contraction;

(3) V is a G-contraction.
Then:

(i) Fy =A{z"};

(i7) x*‘[w] =V>®(x), Yz ela,c,B);

(1ii) z* =V>®(z), Ve X .

la,c]
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Proof. From (1) we have that, Fy, = {z}}, 2] € C([a,c|,B). From (3) and Remark , V]t Xor = Xor,
*1
is a contraction, i.e., it has a unique fixed point, x*, and :E*‘[a q= x7. From these we have (i), (i¢) and
(iii). 0
Conjecture 3.5. In the conditions of Theorem the operator V is PO, i.e., x* = V>®(z), V x €
C([a, b, B).
For a better understanding of Theorem [3.4]and Conjecture in what follows, we present some examples.

Example 3.6. Let a,b,c be as above and B := R. For K,H € C([a,b] X [a,b] x R,R) we consider the

following functional integral equation,

/ K(t,s,z(s))ds + H t,s, max x(0))ds, t € [a,b]. (3.1)

0€(a,s]
We are looking for the solution of this equation in Cla,b]. In addition, we suppose that:

(2") there exists Ly > 0 such that:

|K(t,s,u) — K(t,s,v)| < Lglu—v|, Vt€lab], Vsé€lac, VuuveR;

(3') there exists Ly > 0 such that,

|H(t,s,u) — H(t,s,v)| < Lglu—v|, Yt,s€|a,b], VuveR.

In this case:

V(z)(t) = the second part of (3.1));
Vi(x)(t) = the second part of (3.1), fort € [a,c].

It is clear that V' has the Volterra property with respect to the subinterval |a, c].

We consider on Cla,c] and Cla,b] maz-norms and if, (Lx + Lg)(c —a) < 1, the operator Vi is a
contraction and if, Ly (b — ¢) < 1, the operator V' is a G-contraction.

So, by Theorem in the above conditions, equation has in Cla, b] a unique solution, z*. Moreover,
fort € [a,c], x*(t) = 71151010 xn(t), for each xo € Cla,c|, where {xy, }nen is defined by,

Tt (t / K(t,s,xn(s))ds + H t,s, max xn(0))ds,
Eas

and for t € [a,b], x*(t) = li_)m Yn(t), where {yn tnen, is defined by
yo € Cla,b], with y0|[ac} = ac*|[a o and

Yn+1(t / K(t,s,x* ds—l—/ Hit,s, max yn(O))ds.

Remark 3.7. In the case of operator V, in this example, Conjecture is a theorem. Indeed, let Xy :=
Cla,c], X1 := C[e,b] and Cla,b] be endowed with maz-norms. We take, fo := Vi and fi(x,y) : Cla,c] x
Cle,b] — Cle, b] be defined by

/ K(t,s,x(s))ds + H t, s, max x(0))ds+

Eas

m (t, s, max( Jnax, (), pmax y(0)))ds.
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We remark that, fo is a PO, and fi(x,-) : Cle,b] — C|e,b] is Ly (b — ¢)-contraction. By Fiber Contraction
Theorem, in the conditions, (Lx + Li)(c —a) <1 and Ly(b—c) < 1, the operator f is a Picard operator.
Let,

zg € Cla,c], xny1 = fo(xn), n €N,

and
Yo € C[C, b]7 Yn+1 = fl(l’myn)a n € N.

Then, x, — x*‘[(w] as n — 0o, Yp — x*‘[c,b] as n — oo.

We denote,
n t M t e ) )
P ECR
yn(t), t € [c,b].
Then, uy, € Cla,b], for n € N*, and, up+1 = V(uyp) with u, — =* as n — oo, i.e., V is a PO.

This result is very important because we can apply for V, the Abstract Gronwall Lemma. So we have:

Theorem 3.8. Let us consider the equation (3.1)) in the following conditions: (Lx + Lg)(c —a) < 1,
Ly(b—c) <1 and K(t,s,-), H(t,s,-) : R = R are increasing functions, for all t,s € [a,b]. Let us denote by
x* the unique solution of (3.1)). Then the following implications hold:

(i) € Cla,b], / K(t,s,z(s))ds + Hts max z(0))ds, t € [a,b], = © < z*;
0€la,s]

(i7) z € Cla,b], / K(t,s,z(s))ds + Hts max z(0))ds, t € [a,b], = © > x*.
0€la,s]

Also, from the Abstract Comparison Lemma we have a comparison result for equation (3.1]).
Remark 3.9. For the functional integral equations with mazima, see [1, [11/, [16], [22], [15], ...

Example 3.10. Let a,b,c € R, a < b < ¢, and (B, +,R, |-|) be a Banach space. For K, H € C([a,b] X [a, b] X
B, B) we consider the following integral equation,

= /C K(t,s,x(s))ds—l—/ H(t,s,z(s))ds, t € [a,b]. (3.2)

We are looking for solutions of these equations in C([a,b],B). To do this, in addition, we suppose that:
(2") there exists Lx > 0 such that,

|K(t,s,u) — K(t,s,v)] < Lg|lu—v|, Vtelab], Vselac], YVuveB;

(3") there exists Ly > 0 such that,

|H(t,s,u) — H(t,s,v)| < Lglu—wv|, Vtsé€lab], VuveB.

In the case of equation (3.2]) we have:

V(z)(t) = the second part of (3.2));
Vi(z)(t) = the second part of (3.2), fort € [a,c].

First, we remark that V' has the Volterra property with respect to the subinterval [a, c|.
If we consider on (Cla,c],B) and Cla,b] maz-norms, then if, (Lx + Lg)(c — a) < 1, the operator
Vi is a contraction (i.e., PO) and if, Ly(b —c) < 1, the operator V is a G-contraction. By Theorem
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in these conditions, equation (3.2) has in C([a,b],B) a unique solution, x*. Moreover, for t € [a,c],
x*(t) = lim z,(t), where zg € Cla, ],
n—oo

Tny1(t) = /C K(t,s,xn(s))ds +/ H(t,s,xn(s))ds, n € N

and for t € [a,b], x*(t) = ILm Yn(t), where yo € C([a,b],B), with yo‘[(z q= x*, and

c t
Yn+1(t) :/ K(t,s,x*(s))ds—i—/ H(t,s,yn(s))ds, n € N.
a a
Remark 3.11. In a similar way, as in the case of Example the Conjecture is a theorem for the
operator V in Ezample[3.10,

Remark 3.12. We can work, in the case of Example with maz-norm on C([a,c],B) and with a Bielecki

norm on Clc,b], i.e., on C([a,b],B) with the norm, ||z|| = max ( max |z(t)], m[a}g] e (t_c)|m(t)|).
s t€|c,

If B .= R™, then we can work with vectorial maz-norms and with vectorial Bielecki norms.
Remark 3.13. For example of integral operator like V in Example which appear in differential equa-
tions, see: [5], [T, [4], [3] and the references in [3].
4. Operators with Volterra property

Let, V : C([a,b],B) — C([a,b],B), be an operator with Volterra property. Let m € N, m > 2, ¢y := a,
o= to+ 0ty =t + B = b We denote by Vi : C([to, t],B) = C([to, ti], B),
k =1,m — 1, the operators induced by V on [tg, ;] (see the definition of V; in section 3). We also consider
the following sets,

Gr :={(z,y) | =,y € C([to, tg+1],B), x}[to,tk] = y}[to,tk]}’ k=1,m—1.
For, zy € C([to, tx],B), k =1,m — 1, we denote,
Xz, = {y € C([to, tr+1],B) | y‘[to,tk] = x1}.
The second basic result of this paper is the following.
Theorem 4.1 (Theorem of step by step contraction). We suppose that:
(1) V' has the Volterra property;

(2) Vi is a contraction;

(3) Vi is a Gg_1-contraction, for k =2,m.
Then:
(i) Fy ={z"};
(i)
x*|[t07t1] =V>(x), ¥V z € C([to, t1],B),

2y = Vo (@), Vo EX |
[to,t1]
x*}[t07tm71] = V?’Iczbo—l('r)a Vaxe X:D*‘
[t0:tm —2]
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(tii) 2* =V>®(z), Ve X Y
[t07tmfl]

Proof. 1t follows from successive (step by step !) application of Theorem for the pairs, (Vii1, Vi),

k=1,m—1, with V31 as V and V} as V]. O

Conjecture 4.2. In the condition of Theorem[].1] the operator V is PO, with respect to uniform convergence
on C(la,b],B).

Example 4.3. For K € C([a,b] x [a,b] x R) we consider the following functional integral equation with
maxima,

K t,s, max x(0))ds, t € [a,b] (4.1)

0€(a,s]

By step by step contraction pmnczple we shall prove that, if there exists Lg > 0 such that,
|K(t,s,u) — K(t,s,v)] < Lg|lu—v|, Vts¢€lab], YuvekR,

then the equation (4.1) has in Cla,b] a unique solution.
Indeed, let m € N* be such that, W < 1. Let, V : C[a,b] = Cl[a,b] be defined by,

V(xz)(t) := the second part of (1))

First, we remark that V has the Volterra property. In this case:

t1

Vi :C[to,tl] — C[to,tl], ‘G(I‘)(t) = K(t,s, max x(ﬁ))ds, te [to,tl].

to Qe[to,s}

A Lipschitz constant for V7 is, . So, V1 is a contraction with respect to maz-norm.
In a similar way, Vo is a G1-contraction, Vi is a Gg_1-contraction and V is Gp,_1-contraction.
So, we are in the conditions of Theorem[{.1. From this theorem we have that:
The equation has in Cla,b] a unique solution, x*. Moreover,

Li(b—a)

t

o fort € [to,t1], *(t) = li_)In xn(t), where zg € Clto, t1], xnt1(t) = | K(t,s, In[ax]xn(@))ds;
n—+00 to €lto,s
o fort € [to,ta], z*(t) = nl;rgomn(t), where xg € Clto,t2] with xo‘[to’h] = x*‘[to7t1], and Tp+1(t) =
¢
K(t,s, max x,(0))ds, n € N;

to 96[1&0,8}

o fort € [to,tm], z*(t) = lim z,(t), where zg € Clto, ;] with mo‘[tot N and Tp41(t) =

n—o0
t

K(t,s, max x,(0))ds.
to 96[750,8}

*
= |
[t()ytmfl]’

Remark 4.4. In a similar way as in the Example by Generalized fiber contraction theorem, we have
that, for V in Example[{.3, the Conjecture is a theorem.

Example 4.5. For f € C([a,b] x R), we consider the following Cauchy problem

2(t) = £(t, max 2(0)), t € [a, ]
0€]a,t] (42)
z(a) =0

This problem with x € C'[a,b] is equivalent with the following functional integral equation with mazima, in

Cla, b],
/ f(s, max x(0))ds, (4.3)

96[(1 s]
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From the result, in Example we have that, if there exists Ly > 0 such that,
‘f(t7u) - f(t,?))‘ < Lf|u_1)’a Vite [a7b]7 v U,V € R,

then the equation (4.3) has in Cla,b] a unique solution, i.e., the Cauchy problem (4.2)) has in C'[a,b] a

unique solution.
Remark 4.6. For functional differential equations see: [1f, [6], [11], [12], [16], [22], ...

Remark 4.7. For operators with Volterra property see: [10], [21], [15] and the references therein.

5. Step by step generalized contraction principles

There is a large class of generalized contraction principle (see, for example, [24], [2], [I7]). As an example
in what follows, we consider the case of p-contractions.
Let (X, d) be a metric space, G C X x X a nonempty subset and f : X — X be an operator.

Definition 5.1. Let ¢ : Ry — Ry be a comparison function. By definition, f is a (G, y)-contraction if,

d(f(x), f(y) < @(d(z,y)), ¥V 2,y € G.

In the terms of notations in section 4, in a similar way as in the case of Theorem [.1 we have:
Theorem 5.2 (Theorem of step by step ¢-contraction). We suppose that:
(1) V' has the Volterra property;

(2) V1 is a p-contraction;

(3) Vi is a (Gg_1,)-contraction, for k= 2,m.
Then:
(i) Fv = {z*};
(i)
x*hthtl] =V>(x), ¥V z € C([to, 1], B),

* S gdes
x |[t07t2] - V2 (37)7 Vaxe XZL“*‘[tO!tl]’
x*}[to,tmﬂ] =V, (x), Vae Xx*‘

[to;tm—2l

(tit) o* =V>®(z),Vre X *}
v [t0stm—1]

Problem 5.3. For which generalized contractions we have step by step corresponding result ? If such gen-
eralized contractions are found, then the problem is to give relevant applications of such result.
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