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Abstract 
 
Some all-purpose design equations are derived for designing fractional order controllers for integer order 
plants with time delay. The results combine many design techniques appearing in the literature. In 
addition to plotting the global stability boundaries, they can be used to achieve desired gain and phase 
margins with a flat phase response near the gain cross over frequency. So, robustness can also be 
guaranteed. Further, satisfactory output disturbance and high frequency noise rejections can be realizable. 
An example is treated to make connections with the already existing results in the literature, which proves 
the usability of the obtained design equations.  
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Gerçek Zaman Gecikmeli Rasyonel Transfer Fonksiyonuna Sahip Sistemlerin 
Kontrolü için Kesirli Mertebeden Oransal-Entegral-Türevsel (PID) Bir Kontrol 

Edicinin Genel Tasarım Denklemleri 
 
Öz 
 
Herhangi bir gerçek zaman gecikmeli rasyonel transfer fonksiyonuna sahip sistemin kontrolü için kesirli 
mertebeden oransal-entegral-türevsel (PID) kontrol edicinin tasarımı için çok amaçlıtasarım denklemleri 
türetilmiştir. Sonuçlar literatürde mevcut birçok tasarım metodunu birleştirmektedir. Özellikle genel 
kararlılık sınırlarının çiziminde kullanılmakta, istenilen kazanç ve faz aralıklarının kazanç-kesim 
frekansında yatay bir faz karakteritiği ile birlikte tasarımını sağlamaktadır. Dolayısıyla dayanıklılık da 
garanti edilmektedir. Ayrıca, tatminkar çıkış bozulması karakteristiği ve yüksek frekans gürültü 
engellenmesi gerçekleştirilemesine imkan sağlamaktadır. Literatürde mevcut metodlarla ilişkileri 
göstermek için bir örnek ele alınmıştır, ki böylece elde edilen tasarım denklemlerinin faydası 
gösterilmiştir. 
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1. INTRODUCTION 
 
Proportional–Integral–Derivative (PID) controllers 
are very commonly and successfully used in 
controlling many industrial plants suffered from 
load disturbance and high frequency noise 
interference. They are also efficient to realize 
robustly the required performance specifications in 
cases of nonlinearities and uncertainties in the 
plant components [1-3]. In parallel with the 
invention of the high-speed computers and 
numerical techniques, fractional order calculus and 
the fractional order controllers have gained 
importance in recent decades [4-7]. In particular, 
fractional order PID (FOPID) controllers, which 
are the generalization of the 3-parameter 
conventional PID controllers, are now widely used 
to meet the given design specifications including 
mainly the desired gain and phase margins [8]. 
With introducing the fractional integral order 𝜆𝜆 
and the fractional derivative order 𝜇𝜇 in PID 
controllers, the obtained FOPID (or 𝑃𝑃𝐼𝐼𝜆𝜆𝐷𝐷𝜇𝜇) 
controllers with 5-parameters will have more 
powerful and effective control on the integer order 
and fractional order plants with or without a 
constant delay. 
 
Although some other integer order controllers 
(lead-lag compensator [9], CRONE [10], 
optimized-order [11], and many other controllers 
have been generalized to fractional orders, these 
are excluded in the content of this contribution.  
 
Fractional order systems (FOSs) could model 
various real materials more adequately than integer 
order ones and thus provide an excellent modelling 
tool in describing many actual dynamical 
processes. It is intuitively true, as also argued in 
[3], that these fractional order models require the 
corresponding fractional order controllers to 
achieve excellent performance. 
 
The most common technique to realize the FOPID 
controller is to replace, according to the Oustaloup 
and Matsuda methods [7,12], the fractional-order 
transfer function by an integer-order transfer 
function whose characteristics are close enough to 
the desired. This process is performed for 

fractional order plants but not for the controllers in 
this presentation.  
 
The special forms of 𝑃𝑃𝐼𝐼𝜆𝜆𝐷𝐷𝜇𝜇  controllers such as 
𝑃𝑃𝐼𝐼𝜆𝜆 [8,9,13-15], 𝑃𝑃𝐷𝐷𝜇𝜇  [16,17] controllers are used 
most of the time due to their design simplicities, 
though there are some derived alternatives (𝑃𝑃𝐼𝐼)𝜆𝜆 
[18], (𝑃𝑃𝐷𝐷)𝜇𝜇 [18], 𝑃𝑃𝐼𝐼𝜆𝜆 + 𝑃𝑃 [19], and fractional 
lead-lag compensator (FLLC, [20]).  
 
Although there are some genetic and evolutionary 
optimization algorithms [21], heuristic algorithms 
such as particle swarm [22, 23] and group hunting 
[24], designing fractional-order PID controllers in 
time domain [25-30] still has difficulties. 
Therefore, most studies are in the frequency 
domain using gain crossover frequency (ωgc), gain 
margin (GM), phase crossover frequency (ωpc), 
phase margin (𝑃𝑃𝑃𝑃) of the open-loop system [31].  
 
Excluding many time domain specifications 
treated in the literature, a unified controller 
parameter expressions are derived in this paper for 
the standard PIλDμ controller structure to meet. 
Wang et al.’s frequency domain specifications 
(GM, PM, phase flatness PF) [32] in the stability 
region found by stability boundaries method [8, 
15,33,34]. The results reduce to already existing 
ones present in the literature for some bench-mark 
examples. 
 
The content follows in Section 2 by introducing 
the general FOPID control structure and the design 
requirements. The derivation of universal design 
equations and design method is presented in 
Section 3. An illustrative example and its 
simulation results are treated in Section 4. Finally, 
Section 5 includes conclusions. 
 
2. 𝑷𝑷𝑰𝑰𝝀𝝀𝑫𝑫𝝁𝝁 CONTROL STRUCTURE 

AND DESIGN SPECIFICATIONS  
 
Denoting the plant and controller transfer functions 
by Gp and Gc, respectively, the block diagram of 
the control system is shown in Figure 1 where Gv 
is the transfer function of the virtual compensator    
(it is also called gain-phase margin tester, GPMT     
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[8,33]) inserted to achieve the desired GM=20logA 
and PM=ϕ; r, e, u, y represent reference, error, 
actuating, and output (controlled) signals, 
respectively. The additive output disturbance 𝑑𝑑 at 
the beginning of the feedback path and the additive 
noise 𝑛𝑛 at the input of the plant are not shown in 
the figure.  
 

 
Figure 1. Block diagram of PIλDμ control system 

structure 
 
The transfer functions Gc, Gv, Gp are expressed as 
(Equation 1a, 1b and 1c) 
 
Gc=Kp+ Ki

sλ +Kdsμ,  (1a) 
 

Gv=Ae-jϕ, (1b) 
 

Gp= N2�s2�+sN1�s2�
D2�s2�+sD1�s2�

e-sθ (1c) 
 

Gc is obviously a PIλDµ controller transfer function 
with proportional, integral, and derivative control 
coefficients Kp, Kp, Kp, and 0, λ, µ orders, 
respectively. In Gv,𝐴𝐴 represents the GM, and ϕ 
represents the PM specifications. 𝐺𝐺𝑝𝑝 is assumed to 
be a rational function with numerator polynomial 
N=N2(s2)+sN1(s2) where N2 (sN1) represents its 
even (odd) part. D=D2(s2)+sD1(s2) is defined 
similarly for the denominator polynomial. Finally, 
𝜃𝜃 is the constant delay term in the plant transfer 
function. 
 
It is straightforward to show that the control 
system output is expressed by (Equation 2) where 
the transfer functions on the right side of the 
equality sign are due to reference input (G), output 
disturbance (S) and noise interference (T), 
respectively. 
 

Y(s)=
GcGvGp

1+GcGvGp
R(s)+

1
1+GcGvGp

D(s) 

+
Gp

1+GcGvGp
N(s) 

 
=G(s)R+S(s)D+T(s)N.                                        (2) 
 
The aim of the 𝑃𝑃𝐼𝐼𝜆𝜆𝐷𝐷𝜇𝜇  controller is to meet the 
following frequency domain specifications: GM 
[35], the Wang et al.[36]’s frequency domain 
specifications (PM, phase flatness PF) [18,36]. 
 

i) Phase cross over frequency ωpc and Gain 
margin (GM) 𝐴𝐴: (Equation 3a-3e) 

 
Arg(GcGvGp)|

s=jωpc
=-π, �GcGvGp�

s=jωpc
=A (3a) 

 
ii) Gain cross over frequency 𝜔𝜔𝑔𝑔𝑔𝑔 and Phase 

margin (𝑃𝑃𝑃𝑃) 𝜙𝜙: 
 
�GcGvGp�

s=jωgc
=1, Arg(GcGvGp)|

s=jωgc
=ϕ-π (3b) 

 
iii) Phase flatness (𝑃𝑃𝑃𝑃, iso-damping) 𝜓𝜓:  

 
dArg(GcGvGp)s=jω

dω
|ω=ωgc

=-ψ (3c) 
 

iv) A good output disturbance rejection 
(ODR) B: 

 

�S(jω)= 1
1+GcGvGp

� ≤B for all ω≤ωs, |S(jωs)|=B (3d) 

 
v) High frequency noise rejection 

(HFNR) C: 
 

�T(jω)= Gp

1+GcGvGp
� ≤C   for all ω≥ωt, |T(jω)|=C (3e) 

 
Condition i) and ii), that is, GM and PM have 
always served as important measures of robustness 
[35,37]. It is known that the phase margin is 
related to the damping of the system and therefore 
can also serve as a performance measure.  
 
Condition iii) is related with the robustness to 
variations in the gain of the plant (see [38]); this 
condition forces the phase of the open-loop system 
to be flat (completely flat for ψ=0) at ωgc and 
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hence to be almost constant within an interval 
around ωgc. It means that the system is more robust 
to gain changes and the overshoot of the response 
is almost constant within a gain range (iso-
damping property of the time response). In testing 
the 3rd, 4th, 5th conditions, the virtual gain of 
GPMT, that is 𝐺𝐺𝑣𝑣 , should be taken to be identity 
since it is virtually inserted to satisfy the specified 
GM and PM requirements. The phase plot is 
horizontal at 𝜔𝜔𝑔𝑔𝑔𝑔 for ψ=0, it gets away from -180o 
line by moving upward as 𝜔𝜔 increases so for ψ<0 
so the system is relatively more stable and robust, 
the approach to -180o becomes faster as 𝜔𝜔 
increases for ψ≪0 so the system gets less robust. 
 
3. DESIGN EQUATIONS AND 

DESIGN METHOD  
 
The characteristic equation of the closed loop 
system obviously is 1+GcGvGp=0, or (Equation 4a 
and 4b) 
 

1+
Kpsλ+Ki+Kdsλ+μ

sλ  

*Ae-jϕ N2�s2�+sN1�s2�
D2�s2�+sD1�s2�

e-sθ=0 (4a) 

 
Then, the characteristic polynomial becomes 
 
sλ[D2(s2)+sD1(s2)]+�Kpsλ+Ki+Kdsλ+μ� 
*[N2(s2)+sN1(s2)]Ae-sθ-jϕ=0 (4b) 
 
Since the designed system should be stable for    
A=1, θ=0, the roots of the characteristic equation 
must be in the stable region in the three-
dimensional Kp-Ki-Kd space. The borders of this 
region are defined by the stability boundaries. The 
stability boundaries are computed as in [8,15,33, 
34] where stability regions are computed on two-
dimensional Kp-Ki or Ki-Kd  Cartesian plane; the 
stability boundaries are some curves or lines in this 
case. On the other hand, the stability boundaries in 
our three-dimensional case are surfaces separating 
the stable and unstable volumetric regions. For 
A≥1, θ≥0, the boundaries separate the feasible 
stable regions with the desired GM=20logA dB 
and PM=θo. 

The real, infinite, and imaginary (complex) root 
boundaries (RRB, IRB, CRB) are found by 
substituting 𝑠𝑠 = 0, ∞, 𝑗𝑗𝜔𝜔,  in Equation 5a-5c; for 
λ,μ>0,degD>  μ+degN, the results are  
 
RRB: Kİ=0 (5a) 
 
IRB: It does not exist (5b) 
 
ωλ �cos

π
2

λ+jsin
π
2

λ� [D2(-ω2)+jωD1(-ω2)] 

* �Kpωλ �cos
π
2

λ+jcos
π
2

λ� 

+Ki+Kdωμ �cos
π
2

μ+jsin
π
2

μ�� 

*[N2(-ω2)+jωN1(-ω2)] 
*A�cos(ωθ+ϕ)-jsin(ωθ+ϕ)�=0, (5c) 
 
where deg stands for the degree.  
 
Equating the real and imaginary parts of Equation 
5c to zero and arranging the terms, we obtain 
CRB: 
 

�C11 C12 C13
C21 C22 C23

� �
Kp
Ki
Kd

� = 

�
-ωλD2�-ω2�cos π

2
λ+ωλ+1D1�-ω2�sin π

2
λ

-ωλD2�-ω2�sin π
2

λ-ωλ+1D1�-ω2�cos π
2

λ
� (6) 

 
where 
 
C11=ωλA �N2 cos �

π
2

λ-ωθ-ϕ� -ωN1 sin �
π
2

λ-ωθ-ϕ�� , 

C21=ωλA �N2 sin �
π
2

λ-ωθ-ϕ� +ωN1 cos �
π
2

λ-ωθ-ϕ�� , 

C12=A[N2 cos(ωθ+ϕ) +ωN1 sin(ωθ+ϕ)], 

C22=A[-N2 sin(ωθ+ϕ) +ωN1 cos(ωθ+ϕ)], 

C13=ωλ+μA �
N2cos �

π
2

(λ+μ)-ωθ-ϕ� -ωN1

sin �
π
2

(λ+μ)-ωθ-ϕ�
� , 

C23=ωλ+μA �
N2sin �

π
2

(λ+μ)-ωθ-ϕ� +ωN1

cos �
π
2

(λ+μ)-ωθ-ϕ�
� . 
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For a fixed set of design parameters 𝜆𝜆, 𝜇𝜇 and 
design specifications 𝐴𝐴, 𝜙𝜙, Equation 6 describes 
the parametric representation of the boundary for 
the stable permissible region (feasible volume, FV) 
of the design parameters Kp, Ki, Kd. And the 
specified PF, ODR, HFNR limitations can be 
chosen properly in this region. 
 
For the desired phase flatness, gain cross over 
frequency 𝜔𝜔𝑔𝑔𝑔𝑔 is computed first by using    
Equation 3b; the result is the solution of Equation 
7a for 𝜔𝜔. 
 
ω2λKp

2+Ki
2+ω2λ+2μKd

2+2ωλKpKicos
π
2

λ 

+2ω2λ+μKpKdcos
π
2

μ+2ωλ+μKiKdcos
π
2

(λ+μ) 

= ω2λ(D2
2
+ω2D1

2)

A2(N2
2+ω2N1

2)
, (7a) 

 
With the value of 𝜔𝜔 = 𝜔𝜔𝑔𝑔𝑔𝑔  found by this equation, 
Equation 3c yields 
 
λωλ-1KpKisin

π
2

λ+μω2λ+μ-1K
p
Kdsin

π
2

μ+ 

+(λ+μ)ωλ+μ-1KiKdsin
π
2

(λ+μ) 

=
ω2λ(D2

2+ω2D1
2)

QA2(N2
2+ω2N1

2)
                                                (7b) 

 
where all 𝜔𝜔 values are taken as 𝜔𝜔𝑔𝑔𝑔𝑔 in this 
equation and in the following defining Q: 
(Equation 7c). 
 
1
Q

=θ-ψ+
D1D2+2ω2�D1D2̇ -Ḋ1D2�

 D2
2+ω2D1

2  

-
N1N2+2ω2�N1N2̇ -Ṅ1N2�

N2
2+ω2N1

2 
. 

 
Note that Ṅ1=dN1(x)/dx|x=-ω2 , and similar 
formulas are valid for the remaining dotted 
variables. Equation 7b defines a surface in Kp-Ki-
Kd coordinate system for a given set of values GM 
(A), PM (ϕ), PF (ψ) and with the value of 𝜔𝜔 =
𝜔𝜔𝑔𝑔𝑔𝑔  found from Equation 7a. So, Kp, Ki, Kd must 

be chosen on the part remaining in the feasible 
region defined by Equation 6 of this surface. 
 
Output disturbance rejection specification in        
Equation 3d yields 
 

ωλ�D2
2+ω2D1

2

f
≤B,                                               (8a) 

 
where 
 
 f2� Kp,Ki,Kd,ω�=A2(N2

2+ω2N1
2) 

* �(ω2λKp
2+Ki

2+ω2λ+2μKd
2)+2ωλKpKi cos

π
2

λ+ 

2ω2λ+μKpKdcos
π
2

μ+2ωλ+μKiKdcos
π
2

(λ+μ)� 

+A(N2D2+ω2N1D1) 

* �2ω2λKpcos(ωθ+ϕ)+2ωλKi cos �
π
2

λ+ωθ+ϕ� 

+2ω2λ+μKd cos �
π
2

μ-ωθ-ϕ�� 

+ω2λ(D2
2+ω2D1

2)                                                 (8b) 
 
for all values of 𝜔𝜔 ≤ 𝜔𝜔𝑠𝑠 where the value of 𝜔𝜔𝑠𝑠 is 
found from Equation 8a by using equality sign 
instead of the inequality sign appearing in this 
equation. For 𝜔𝜔 = 𝜔𝜔𝑠𝑠 Equation 8b with the 
equality sign defines a surface which defines the 
boundary of the feasible volume for satisfying the 
required disturbance rejection specification 
(remember to replace 𝐴𝐴 by 1 and 𝜙𝜙 by 0).   
 
In a similar manner as the derivation of     
Equation 8b, high frequency noise rejection 
(HFNR) in Equation 3e yields 
 

ωλ�N2
2+ω2N1

2

f
≤C                                                 (9) 

 
for all values of 𝜔𝜔 ≥ 𝜔𝜔𝑡𝑡 ,  where the value of 𝜔𝜔𝑡𝑡 is 
found from Equation 9 by using equality sign 
instead of the inequality sign appearing in this 
equation. For 𝜔𝜔 = 𝜔𝜔𝑡𝑡. Equation 9 with the 
equality sign defines a surface which defines the 
boundary of the feasible volume for satisfying the 
required HFNR specification.  
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Note that when using Equations 7-9 𝐴𝐴 must be 
chosen to be 1 since it is a virtual gain. 
 
4. EXAMPLE 
 
Although all-purpose design formulas are derived 
for designing a general PIλDμ controller, a PIλ 
controller is designed to show the use of these 
formulas. 
 
The FOMCON Toolbox developed by A. 
Tepljakov, et al. is managed for the simulations of 
this example [39,40]. 
 
The example is similar to one in [8]. Gc=Kp+Ki/sλ 
so that Kd=0, μ=0; Gp=Ke-sθ/(Ts2+s), hence, 
N2=K, N1=0, D2=Ts2, D1=1. Design requirements 
are given as GM=6.02 dB, PM=30o, PF=-0.1 s, 
ODR=-6.06 dB, HFNR=13.98 dB which 
correspond to A=2, ϕ=π/3, ψ=-0.1, B=0.5, C=5. 
 
The feasible stability region is plotted in Figure 2. 
The phase flatness requirement is shown by the 
dotted graph. Choosing a point on this curve and 
approximately in the middle of the feasible region 
sets Kp≅0.03,  Ki≅0.03.  
 

 
Figure 2. The stability region for the given 

example 
 
The Bode plot with these values is shown in   
Figure 3 where the GM and PM appear to satisfy 
the design requirements: 𝐺𝐺𝑃𝑃 is increased from 
1.1349 dB to GM=17.2545 dB>6.02 dB and,  𝑃𝑃𝑃𝑃 

is increased from 6.7837𝑜𝑜 to 𝑃𝑃𝑃𝑃 = 77.2545𝑜𝑜 >
30𝑜𝑜. Therefore, the controlled system’s relative 
stability is much better than that of the system 
itself. 

 
Figure 3. Bode plot of the open loop system 
 
Time domain characteristics of the controlled 
system and the original plant are shown in Figure 4 
as the step response. It is seen that the designed 
FOPI controller makes the unstable system (its 
step response is shown as Gp*0.3 in the figure) 
stable by a rise time (FOPI+Gp) quite smaller then 
P controlled response ((P+Gp).    
 

 
Figure 4. Step response characteristics 
 
Output disturbance and noise rejections are also 
plotted in Figure 5. It is seen that the results are 
satisfactory when compared with the given design 
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specifications. In fact, Output disturbance rejection 
is smaller than B=0.5   for all ω≤ωs=0.06, and the 
noise rejection is smaller than 
C=5   for all ω>ωt=0.131. 
 

 
Figure 5. Output disturbance rejection and noise 

rejection 
 
5. CONCLUSIONS 
 
Some universal formulas are derived and 
interpreted for designing FOPID controllers for 
SISO integer order plants with a time delay. Three-
dimensional stability boundary method is defined 
for designing a general PIλDμ controller. The 
subspace of Kp-Ki-Kd=R3 guaranteeing stability of 
the closed loop system together with the specified 
GM and PM is called the feasible region or 
volume; and the other requirements such as PF is 
defined as a 3- dimensional surface. So, the choice 
of design parameters on this surface remaining on 
its part remaining in the feasible volume gives a 
satisfactory design. The success depends also 
one’s skills of drawing 3-D graphics by using 
MATLAB. Some more 3-D bench-mark problems 
should be worked on to prove the efficiency of the 
proposed method as the future work. 
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