GIDA (1992) 17 (5) 319-318
Farklı Basıncılarda Uygulanan Homogenizasyon İşlemenin
Set Yoğurtlarının Bazı Nitelikleri Üzerine Etkisi
II. Serbest Yağ Asitleri İçerişine Etkisi
A.Ü. Ziraat Fakültesi Süt Teknolojisi Bölümü – ANKARA

ÖZET
Arastirmada, farkli homogenizasyon basincilarinin, set yoğurtlarinin serbest yağ asitleri içerişine etkisini birle şmesi amaçlanmıştır. Bu nedenle, 0 (kontrol, homojenize edilmemiş), 50, 100, 150, 200, 250 ve 300 kg/cm² basıncılarda homojenize edilen sütlerden elde edilen yoğurtlarda asit değer analizi yapılmıştır.

Analizler sonucunda homogenizasyon basincının artmasıyla örnekle rlerin serbest yağ asitler içerişine etkisi saptanmıştır. Kontrol örne şine göre bir değişiklik yarılmadığı, serbest yağ asitlerindeki artış %100 kg/cm² basıncı uygulamalarında belirlenir olarak ortaya çıkmıştır. Homogenizasyon basıncının ve asit değer arasındaki korrelasyon ve reg resyon katsayları ise sırasıyla 0,974, 0,0008 olarak bulunmuştur. Ayrıca depolama sürünçesi (14 gün) yoğurt örneklerinde sözü edilen değerin etkisi da belirlenmiştir.

ABSTRACT
In this study, the effect of different homogenization pressure on free fatty acid content of set yogurt was investigated. For this purpose, acid degree value was determined in yogurts manufactured from milk samples which were homogenized under the pressures of 0 (control, unhomogenized), 50, 100, 150, 200, 250 and 300 kg/cm².

As a result of analysis, it was found that acid degree value of samples increased with increasing homogenization pressure. Considerable increase in free fatty acid was observed in those samples homogenized at ≥100 kg/cm² than that of control. Correlation and regression coefficients between homogenization pressure and acid degree value were found 0.974, 0.0008 respectively. It was determined that acid degree value increased in yoghurt samples during storage (14 days).

GİNİŞ
Süt yağının lipaz enzımı ile enzimatik hidrolizasyonu lipoliz olarak değerlendirilir. Triglıseritlerin hidrolizasyonu sonucunda serbest hale geçen küçük molekülü yağ asitlerinin miktarına bağlı olarak süt ve ürünlerinde aça leşme ve ransit tet olarak tanımlanan aroma huzuklarını gösterebilir (ATAMER ve ark., 1985).

Süt yağı globüllerine membran ağı verilen ince koruyucu bir tabaka ile çevrilidir. Bu membranın temel fonksiyonu, yağ globülleri enzim faaliyetlerine karşı korumak, onların toplaklaşmasını ve birleşmesini önlemektir. Başka bir ifadeyle yağ globül membranı, lipolizin önlenmesinde anahtar olarak rol oynamaktadır. An-
çak, homojenizasyon işleminde Yağ globüllü mem-

bran parçalanmakta, serum proteinleri, kazein ve submisellerinden oluşan yeni membran, lip-

polize karşı süt yüzünü koruyamaktadır. Ay-

ni zamanda yağ globüllü yüzeyin bir kemi-

plazma proteinleriyle kaplanmadan kazeinle-

ilgili olan plazma lipazi, trigliseritlerle reaksi-

yona girerek lipolize neden olmaktadır. Ay-

rısca homojenizasyon işleminde uygulanan ba-

şının etkisiyle parçalanıyı yağ globüllü ve Yağ

globüllü membranlarda yer alan serbest yağ asit-

leri serum fazına geçtiğlerinden homojenize

süt ve süt ürünlerinde asit değer artmaktadır

(MULDER ve WALSTRA 1974, WALSTRA ve

JENNESS 1984).

Özetle, homojenizasyon işleminin etkisi ile

süt ve süt ürünlerinde raf örümceklerinin belirlen-

mesinde yararlanılan önemli öğüttelerden biri

olan asit değerinde görülen artışın nedenleri

genel olarak şu şekilde sıralanabilir:

— Lipaz enziminin globül yüzeyine taşın-

ması ile aktivasyonu.

— Substrat yüzey alanının (süt yağ) art-

ması.

— Oluşan yeni membranın geçirişenlik

özelliğinin yüksek olması.

— Yağ globüllü ile, yağ globüllü membran-

nda bulunan serbest yağ asitlerinin se-

rum fazina geçmesi.

Kaynak taramaları sonucunda, yağkurun

reolojik özelliklerinin tıtılemesinde önemli rol

oynayan homojenizasyon işlemi, karakteris-

tik tavsiye değerine önemli rol oynamaktadır.

Bundan dolayı, homojenizasyon işlemi, homojenizasyon

basıncını serbest yağ asitleri üzerinde et-

kin olmaktadır. Bu asitlerin kullanıl-

kısımları belirleme amaçıyla 0 (kontrol, homoje-

nizasyon edilmemiş), 50, 100, 150, 200, 250 ve 300

kg/cm^2 basınçlarda homojenize edilen sütler-

den üretilen yoğurtların, asit değerlerini tespit

edilmiştir.

MATERIAL ve METOT

Araştırımda, A.Ö. Ziraat Fakültesi Zoote-

ki Bölümü Hayvancılık İşletmelerinden sağlanan sütler % 2 oranında yağız süt tozu katılarak

kuru madde standartizasyonu yapılmıştır. Kont-

rol örnekleri (homojenize edilmemiş) için gereklı

miktarında alındıktan sonra geriye kalan sütler

60°C’ye ısıtıp 6 gruba bölünmüş ve 50, 100,

150, 200, 250, 300 kg/cm^2 basınçlarda homojen-

izasyon işlemelerine tabi tutulmuştur. Ar-

kazdon tüm süt örneklerin %85°C ile 20 da-

kığa ısıtma uygulanmış ve 45°C’ye soğutul-

muşlardır, % 2 oranında kültür (Redi-Set) ile

edilmişden sonra örnekler 43°C’de ilküba-

yona bırakılmış ve 4,7 pH da da inkubaşyon işle-

mine son verilmiştir. 4-5°C’ler arasında de-

polanan yoğun örneklerinde 1, 2, 3 ve 14. gün-

lerde gerekli analizler yapılmıştır. Deneme-i k
tekerrürlü olarak düzenlenmiştir.

— Sütte titrasyon asitliği ile, yağ T.S.E.

ve, toplam kuru madde Ackermann-cetvelinde

tartışlanmıştır.

— Yoğurt örneklerinde titrasyon asitliği,

yağ, toplam kuru madde T.S.E. (1989)’ya, asit

degerleri A.O.A.C. (1979)’e istatistiksel değerlé-

erlandirmeler ise DÜZGÜN E. ve ark. (1997)’ye göre

yapılmıştır.

— Homojenizasyon işlemi, de pilot UHT

düzenin (D-tipi, a-laval), homojenizatörün

den tek kademeli olarak yapılmıştır.
TARTIŞMA ve SONUÇ

Hammadde olarak yaralanlan əşğ sırtın bazı özellikleri Çizelge 1'de sunulmuştur.

Kontrol, 50, 100, 150, 200, 250 ve 300 kg/cm² basınçlıda homojenize edilen sütlər-änderi üretilen yığunların şekti, toplam kurumad-çi, tıraşyon asıtığı değerleri Çizelge 2'de, əğ ve ürün bazıında içərməsi oldunları serbest yağ asitleri miktarları da Çizelge 3 ve Şekil 1'de verilməştir.

Çizelge 1. Hammadde Olarak Kullanılan Sütün Bazı Özellikleri

<table>
<thead>
<tr>
<th>Nitelikleri</th>
<th>Ortalama Değerler</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeş (%)</td>
<td>3,10</td>
</tr>
<tr>
<td>Toplam Kurumadde (%)</td>
<td>11,60</td>
</tr>
<tr>
<td>Tıraşyon Asıtığı (°SH)</td>
<td>8,45</td>
</tr>
<tr>
<td>Asit Değeri (mg/g ürün)</td>
<td>0,0193</td>
</tr>
<tr>
<td>Asit Değeri (mg/g yağ)</td>
<td>0,6226</td>
</tr>
</tbody>
</table>

Çizelge 2. Yoğurt Örneklerinin Yeş, Toplam Kurumadde ve Tıraşyon Asıtığı

<table>
<thead>
<tr>
<th>Nitelikleri</th>
<th>Depolama 1. Günü</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yeş (%)</td>
<td>3,10</td>
</tr>
<tr>
<td>Toplam Kurumadde (%)</td>
<td>13,60</td>
</tr>
<tr>
<td>Tıraşyon Asıtığı (°SH)</td>
<td>52,40</td>
</tr>
</tbody>
</table>

Çizelge 3. Yoğurt Örneklerinin Asit Değerleri

<table>
<thead>
<tr>
<th>Deneme</th>
<th>Asit Değeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Örnekleri</td>
<td>mg/g ürün</td>
</tr>
<tr>
<td>1. gün 14. gün</td>
<td>1. gün 14. gün</td>
</tr>
<tr>
<td>0 (Kontrol)</td>
<td>0,1417 0,2240 4,5879 7,2244</td>
</tr>
<tr>
<td>50 kg/cm²</td>
<td>0,1747 0,2434 5,4582 8,1134</td>
</tr>
<tr>
<td>100 kg/cm²</td>
<td>0,2698 0,2968 8,7011 9,2755</td>
</tr>
<tr>
<td>150 kg/cm²</td>
<td>0,2828 0,3168 9,1210 10,2179</td>
</tr>
<tr>
<td>200 kg/cm²</td>
<td>0,3335 0,3648 10,7524 11,7606</td>
</tr>
<tr>
<td>250 kg/cm²</td>
<td>0,3596 0,4346 11,5969 14,0182</td>
</tr>
<tr>
<td>300 kg/cm²</td>
<td>0,3763 0,4927 12,1360 15,8898</td>
</tr>
</tbody>
</table>

örneğe olduğu, bu basıncın yukarıdakı homojenize edilenlerde de asit değeriinin artığı, ancak değişimin miktarının giderek azaldığı tespit edilmiştir. Kontrol ile 50 kg/cm² basınçta homojenizasyona tabii tutulan örnekler arasında asit değeri artışın önemli bir farklılığı olmadığı belirlenmiştir. Homojenizasyon basıncı ile asit değerleri arasındaki iliskiyi ortaya koymak için depolamanın bir. gününde əldə edilen değerləri (ürün bazıında) istatistiksel analiz uygulanmıştır. Sonuçta, homojenizasyon basıncı ile asit değerleri arasındaki korelasyon katsayısi 0,974 bulunmuştur. Regresyon katsayısi ise 0,0008 olarak belirlenmiştir. Yani homojenizasyon basıncı 1 kg/cm² artığında üründeki serbest yağ asitleri miktarı 0,0008 mg/g ürün oranında artmaktadır. Örneğin süt 100 kg/cm² de homojenize edildiğinde, yağdara asit değeri kontrol örneğine göre 0,08 mg/g ürün dan fazla olmaktadır.
Üretim sırasında, stater kültürünün lipo-
litik aktivitesine bağlı olarak yogurt örneklerinin asit değerlerinin arttığı saptanmıştır. Üre-
timde kullanılan çığ sırtın asit değeri 0,0193
mg/g ürün (0,6226 mg/g .yağ) bulunurken aynı
sütten üretilen yogurtta (kontrol-örneği) bu
değer 0,1417 mg/g ürün (4,5879 mg/g .yağ)
belirlenmiştir. Ayrıca, 14 günlük depolama sü-
resince de tüm örneklerin asit değerlerinin art-
tiği saptanmıştır.

KAYNAKLAR

A.O.A.C., 1979. Official methods of analysis the
of association of official agricultural che-
mists. The Association of Agricultural Che-
mists. Washington, 95 s.

ATAMER, M., ÇAVUŞ, A. ve ŞEN, H., 1985. Süt
ve ürünlerinde lipoliz. Gida Dergisi, Sayı: 3,
177 - 183 s.

DOWNIE, W.K., 1980. Risks from pro- and post-
manufacture lipolysis. International Dairy
Federation Bulletin, Document 118, 4 - 18 s.

İstatistik metotları, Ankara Üniversitesi
Ziraat Fakültesi Yayınları, No. 681, Ankara.

MULDEN, H. ve WALSTRA, P., 1974. The milk
fat globule. England, Centre for Agricultural
Publishing and Documentation, the Nether-
lands, 296.

T.S.E. (Türk Standartları Enstitüsü), 1961. Çığ

T.S.E. (Türk Standartları Enstitüsü), 1989. Yo-
gurt Standardı, T.S. 1030, Ankara.

WALSTRA, P. ve JENNESS, R., 1984. Dairy
chemistry and physics. Printed in the Uni-